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“E nossa história não estará  

pelo avesso assim, sem final feliz. 

Teremos coisas bonitas pra contar. 

E até lá, vamos viver. 

Temos muito ainda por fazer, 

não olhe pra trás. 

Apenas começamos. 

O mundo começa agora. 

Apenas começamos”. 

Trecho de "Metal Contra as Nuvens", Legião Urbana 
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INTRODUÇÃO 

No final de 2010, a empresa Bell Geospace Inc. forneceu ao 

Observatório Nacional dados de gradiometria gravimétrica provenientes de um 

aerolevantamento realizado por esta empresa sobre o domo de sal Vinton, 

localizado no estado da Louisiana, EUA. O acesso a este tipo de dado é difícil, 

uma vez que levantamentos dessa natureza são, em geral, realizados apenas 

por empresas mineradoras e de petróleo. A disponibilidade dos dados sobre o 

domo de sal Vinton possibilitou o desenvolvimento de pesquisa usando dados 

de gradiometria gravimétrica em ambiente de bacias sedimentares, que até 

então nunca havia sido feita pelo grupo de pesquisa liderado pela professora 

Valéria C. F. Barbosa, minha orientadora.  

 A primeira dúvida sobre os dados de gradiometria gravimétrica foi se 

seria necessário realizar algum tipo de processamento além dos já realizados 

pela empresa de aquisição. Este processamento seria feito com o intuito de 

avaliar a qualidade dos dados, verificar se seria necessário fazer algum tipo de 

separação regional-residual e se o ruído em todas as componentes era o 

mesmo. Tendo em vista que os dados medidos são irregularmente espaçados, 

a técnica escolhida para avaliar a qualidade dos dados, bem como processá-

los, foi a camada equivalente. Além de permitir o processamento de dados 

irregularmente espaçados, a técnica da camada equivalente possibilita o 

processamento simultâneo de todas as componentes do tensor que, a 

princípio, são causadas pela mesma distribuição anômala de densidade em 

subsuperfície. A técnica da camada equivalente, no entanto, é 

computacionalmente custosa se o número de dados é muito grande. Essa 
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limitação computacional compromete a aplicação da técnica da camada 

equivalente convencional aos dados de gradiometria gravimétrica fornecidos 

pela empresa Bell Geospace Inc., uma vez que estes são provenientes de um 

aerolevantamento em grande escala. Este problema computacional nos 

motivou a desenvolver um método “rápido” para viabilizar o uso da camada 

equivalente no processamento de um grande volume de dados. A idéia é 

descrever a propriedade física dentro da camada equivalente por meio de 

funções polinomiais e estimar os coeficientes deste polinômio, ao invés de 

estimar a propriedade física de cada fonte equivalente que compõe a camada. 

Esta nova técnica, denominada Camada Equivalente Polinomial, foi aplicada 

com sucesso a dados magnetométricos e gravimétricos, resultando na 

publicação do artigo Oliveira Jr., V. C., Barbosa, V.C.F., and Uieda, L.  

(2013). ”Polynomial equivalent layer.” GEOPHYSICS, 78(1), G1–G13. doi: 

10.1190/geo2012-0196.1, que compõe a parte A desta tese.  

 Paralelamente ao desenvolvimento do método Camada Equivalente 

Polinomial, eu adaptei a metodologia desenvolvida no mestrado, que é sobre 

inversão de dados gravimétricos, para a aplicação a dados de gradiometria 

gravimétrica. No decorrer desta adaptação, testes preliminares feitos via 

modelagem direta indicaram que não havia necessidade de realizar uma 

separação regional residual nos dados sobre o domo de sal Vinton. A 

adaptação da metodologia desenvolvida no mestrado, bem como a sua 

aplicação na interpretação dos dados sobre o domo de sal Vinton, resultaram 

no artigo intitulado “3-D radial gravity gradient inversion”, submetido à revista 

Geophysical Journal International, e compõe a parte B desta tese. 
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ABSTRACT 

 

 We have developed a new cost-effective method for processing large-

potential-field data sets via the equivalent-layer technique. In this approach the 

equivalent layer is divided into a regular grid of equivalent-source windows. 

Inside each window, the physical-property distribution is described by a 

bivariate polynomial. Hence, the physical-property distribution within the 

equivalent layer is assumed to be a piecewise polynomial function defined on a 

set of equivalent-source windows. We perform any linear transformation of a 

large set of data as follows. First, we estimate the polynomial coefficients of all 

equivalent-source windows by using a linear regularized inversion. Second, we 

transform the estimated polynomial coefficients of all windows into the physical-

property distribution within the whole equivalent layer. Finally, we pre-multiply 

this distribution by the matrix of Green’s functions associated with the desired 

transformation to obtain the transformed data. The regularized inversion deals 

with a linear system of equations with dimensions based on the total number of 

polynomial coefficients within all equivalent-source windows. This contrasts with 

the classical approach of directly estimating the physical-property distribution 

within the equivalent layer, which leads to a system based on the number of 

data. Because the number of data is much larger than the number of polynomial 

coefficients, the proposed polynomial representation of the physical-property 

distribution within an equivalent layer drastically reduces the number of 

parameters to be estimated. By comparing the total number of floating-point 

operations required to estimate an equivalent layer via our method with the 

classical approach, both formulated with Cholesky’s decomposition, we verify 
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that the computation time required for building the linear system and for solving 

the linear inverse problem can be reduced by as many as three and four orders 

of magnitude, respectively. Applications to both synthetic and real data show 

that our method performs the standard linear transformations of potential-field 

data accurately. 
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INTRODUCTION 

 

In accordance with potential theory, a discrete set of observations of a 

potential field produced by a 3D physical-property distribution can be exactly 

reproduced by a 2D physical-property distribution. This 2D physical-property 

surface distribution is continuous and infinite. In practice, it is approximated by a 

finite set of equivalent sources arranged in a layer with finite horizontal 

dimensions and located below the observation surface. Usually the equivalent 

sources are represented by magnetic dipoles, doublets, point masses or more 

complex sources, such as, prisms. In the literature, this layer that is made up of 

equivalent sources is referred to as the equivalent layer (Dampney, 1969).  

By following the classical approach of the equivalent-layer principle, the 

physical property of each equivalent source is estimated by solving a linear 

inversion subject to fitting a discrete set of potential-field observations. Next, the 

estimated 2D physical-property distribution can be used to perform any 

standard linear transformation of the potential-field data such as interpolation 

(e.g., Cordell, 1992; Mendonça and Silva, 1994), upward (or downward) 

continuation (e.g., Emilia, 1973; Hansen and Miyazaki, 1984; Li and Oldenburg, 

2010) and reduction to the pole of magnetic data (e.g., Silva 1986; Leão and 

Silva, 1989; Guspí and Novara, 2009). Specifically, the desired linear 

transformation of the potential-field data can be obtained by multiplying the 

matrix of Green’s functions associated with the desired transformation by the 

estimated physical-property distribution (magnetization-intensity or density 

distributions). 
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The advent of airborne surveys made possible the acquisition of a huge 

volume of potential-field observations. In a typical airborne survey, these 

observations are collected every few meters, generating data sets that may 

contain hundreds of thousands observations (Uieda and Barbosa, 2012). 

Although airborne surveys provide high-resolution potential-field data, the 

processing of these large potential-field data sets may lead to costly 

computational schemes, such as the application of the equivalent-layer 

technique. Hence, the computational demand for performing discrete linear 

transformations of large potential-field data sets also increases. However, for 

processing a huge quantity of data via the equivalent-layer technique, a huge 

number of equivalent sources is required. Usually, the equivalent-layer 

technique requires a number of equivalent sources M  greater than the number 

of observations N. The larger the number of equivalent sources, the smaller will 

be the dependence of the result on the type of source used (dipoles, prisms, 

etc.) and on the distribution of these sources within the equivalent layer. Thus, 

the use of a large number of equivalent sources increases the chance of the 

estimated physical-property distribution yields an acceptable data fit. On the 

other hand, a large number of equivalent sources makes the construction of the 

linear system and the solution of the resulting inverse problem prohibitively 

inefficient. Hence, the challenge for potential-field data processing via the 

equivalent-layer technique is that of a large-scale inversion. As properly pointed 

out by Barnes and Lumley (2011), the key to a successful equivalent-source 

processing scheme rests with carefully designed software that can handle large 

optimization problems efficiently. To overcome this difficulty, few methods have 
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been developed to make feasible the use of the equivalent-layer technique for 

processing large data sets. 

Leão and Silva (1989) developed a fast method for performing any linear 

transformation of a large set of potential-field data using the equivalent-layer 

principle. These authors posed the linear inverse problem of estimating the 

physical properties of M  equivalent sources from potential-field data in the data 

space. This leads to a linear system of equations with dimensions based on the 

number of data N , instead of the number of sources M . To greatly reduce the 

total processing time and memory requirements, Leão and Silva’s (1989) 

method used a small-moving data window that is shifted over the whole gridded 

data set. By using the observations inside a small data window, Leão and Silva 

(1989) estimated the physical-property distribution of a set of equivalent 

sources forming a small equivalent layer. These authors set up an equivalent 

layer extending beyond the moving-data window and at a depth between two 

and six times the grid spacing of the observations. Next, they computed the 

transformed field at the center of the moving-data window only. This procedure 

is repeated for each position of a moving-data window which spans the data 

until the whole area is processed. Leão and Silva’s (1989) method leads to a 

fast grid operator which is applied to the data by a procedure similar to a 

discrete convolution.  

Mendonça and Silva (1994) developed the equivalent-data concept 

which makes the equivalent-layer technique a feasible interpolation method. 

The equivalent-data concept consists in determining a subset of all potential-

field observations (named equivalent data) such that the estimated physical-

property distribution within an equivalent layer that fits the determined subset 
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also fits the remaining potential-field observations automatically. The authors 

also pointed out that the computational efficiency of the method depends on the 

number of equivalent data. If the potential-field anomaly is nonsmooth, the 

number of equivalent data can be large and the method will be less efficient 

than the classical approach. 

Li and Oldenburg (2010) developed a rapid method for processing large 

potential-field data sets by using the equivalent-layer principle. Li and 

Oldenburg’s (2010) method uses the sparse wavelet representation of the 

matrix of Green’s functions whose j th column contains the potential-field 

contribution of the j th equivalent source, with unit physical property, at the 

positions where the observations were made. To obtain a sparse representation 

of the matrix of Green’s functions, Li and Oldenburg (2010) applied the 2D 

wavelet transform to each row and column of this matrix and set to zero the 

wavelet coefficients that are below a given threshold. Finally, these authors 

estimated the physical-property distribution within an equivalent layer by using 

the conjugate gradient least-squares strategy. By comparing with the classical 

equivalent-layer approach, the authors pointed out that, given the compression, 

their method reduces the computational time required for solving the linear 

system by as many as two orders of magnitude.  

Barnes and Lumley (2011) reduced the noise level by a factor of 2.4 of 

the zzg  component of the gravity gradient tensor by using the equivalent layer 

technique. These authors grouped equivalent sources far from an observation 

point in blocks with average physical properties. This procedure aims at 

obtaining a linear system with a sparse matrix which reduces the memory 

storage and computational time. By using a weighted-least-squares conjugate-
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gradient strategy, Barnes and Lumley (2011) solved the resulting linear inverse 

problem. 

We present a new fast method for processing large potential-field data 

sets by applying the equivalent-layer technique. Our method divides the 

equivalent layer into a regular grid of equivalent-source windows inside which 

the physical-property distribution is described by bivariate polynomial functions. 

This polynomial representation of the physical-property distribution within the 

equivalent layer considerably decreases the number of parameters to be 

estimated in the linear inverse problem. Our inverse problem is posed in the 

space of the total number of polynomial coefficients within all equivalent-source 

windows. This contrasts with the classical equivalent layer technique, derived 

through operations within the data or model spaces. By comparing the classical 

equivalent layer technique with our method and formulating the corresponding 

linear inverse problems using Cholesky’s decomposition, we illustrate that our 

method substantially reduces the required memory storage and number of 

floating-point operations. Tests conducted with large synthetic gravity- and 

magnetic-data sets and with a real magnetic-data set over the Goiás Magmatic 

Arc (in central Brazil) show the good performance of our method in producing 

equivalent layers able to carry out the standard linear transformations of 

potential-field data without a prohibitively costly computational load. 
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METHODOLOGY 

 

Classical approach 

 

 Let d  be an N -dimensional vector of potential-field observations (gray dots 

in Figure A1a) and  p  be an M -dimensional vector of the equivalent sources’ 

physical-property values. We assume that the M  equivalent sources (black 

dots in Figure A1b) are distributed in a regular grid with a constant depth 0z  

forming an equivalent layer. Usually, the equivalent sources can be either point 

of masses or dipoles, depending on the potential-field observations are gravity 

or magnetic data, respectively. Hence, p  contains a set of M  densities, in the 

case of gravity data, or magnetic intensities, in the case of magnetic data. The 

potential field predicted by the equivalent layer at N  observation points can be 

written in matrix notation as  

Gppg )(  ,             (A1) 

where )(pg  is an N -dimensional vector whose ith element )(pig  is the 

potential-field data predicted at the ith observation point ( ,, ii yyxx   and 

izz  , referred to a right-hand Cartesian coordinate system with the z -axis 

pointing downwards, Figure A1a) and G  is the MN   matrix of Green’s 

functions, whose ij th element is the potential field at the i th observation point 

produced by the j th equivalent source located at ( ,',' jj yyxx   and 0zz  , 

Figure A1b) and with unitary physical property. 

In applying the classical equivalent-layer technique, the parameters to be 

estimated are the physical properties (densities or magnetic intensities) of the 
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M  equivalent sources (e. g., point of masses or dipoles). The inverse problem 

of estimating this discrete physical-property distribution (the parameter vector p , 

in equation A1) from observed data is an ill-posed problem because its solution 

is non-unique and unstable. In the classical equivalent-layer technique a stable 

estimate of p  can be obtained by using a parameter-space approach with the 

zeroth-order Tikhonov regularization (Tikhonov and Arsenin, 1977), i.e.: 

dGIGGp
TT 1)(*   ,          (A2) 

where the superscript T  stands for a transpose,   is a regularizing parameter 

and I  is an identity matrix of order M . After estimating the vector *p ,  a 

desired  linear transformation, such as interpolation, reduction to the pole and 

upward (or downward) continuation, is performed by 

*Tpt  ,             (A3) 

where t  is an N -dimensional vector containing the transformed field and T  is 

an MN  matrix of Green’s functions whose ij th element is the transformed 

field at the i th observation point (Figure A1a) produced by the j th equivalent 

source (Figure A1b) with unitary physical property. For example, if the desired 

transformation is an upward continuation of the gravity data, the ij th element of 

the matrix T  is the gravity effect at the continuation height produced by the j th 

point of mass located at ),','( 0zyx jj and with unitary density. 

A linear transformation through the equivalent-layer technique is 

performed in two steps:  1) estimating the physical-property distribution 

(equation A2) and 2) performing a matrix-vector multiplication to obtain the 

transformed field (equation A3). In terms of computational load, the first step is 

the biggest obstacle in using the equivalent-layer technique. This step requires 
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the solution of a large linear system (equation A2) based on matrix )( IGG T  

with dimension MM  .  Hence, the computational problem in forming and 

inverting an MM   matrix is not feasible when the number of parameters is 

large. To avoid the dependence on the source pattern and on the spatial 

distribution of the sources within the equivalent layer, the equivalent-layer 

technique usually requires a number of equivalent sources M  greater than the 

number of observations N , and thus, a large-scale inversion is expected.  

Alternatively, a stable estimate of the parameter vector can be obtained 

by using a data-space approach with the zeroth-order Tikhonov regularization 

(Tikhonov and Arsenin, 1977), i.e. 

dIGGGp
1)(*  TT ,          (A4) 

where I  is an identity matrix of order N . The data-space approach is 

computationally much more efficient than the parameter-space because it forms 

the NN   matrix )( IGG T , instead of the MM   matrix in equation A2. To 

reduce even further the computational effort, *p  (equation A4) can be obtained 

in two steps. In the first one, we solve the linear system 

dwIGG  )( T ,           (A5) 

where the vector w  is a dummy variable. In the second step we evaluate  

*pwG T  .            (A6) 

 Although formulating the equivalent-layer problem in the data space 

(equation A4) reduces significantly the size of the linear system to be solved 

compared with the parameter-space approach (equation A2), the computational 

effort is still excessive. In practice, this makes it unfeasible when dealing with 

large values of N  (i.e., the number of data). To overcome this difficulty, we 
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propose a new concept of equivalent layer that leads to a computationally 

efficient method to estimate *p . 

 

Polynomial equivalent layer (PEL) 

 

 Let an equivalent layer be composed of M  equivalent sources (black dots 

in Figure A1b) whose physical properties (densities or magnetic intensities) are 

the elements of an M -dimensional parameter vector p . Here, the equivalent 

sources consist of magnetic dipoles or point of masses, because they demand 

simple computer calculations. Let’s divide this equivalent layer into Q  

equivalent-source windows (dashed rectangles in Figure A1b) with the same 

horizontal extensions and the same number sM  of equivalent sources, where 

MM s   and QMM s  . Hence, we partition the parameter vector as 

TTQT
][ 1

ppp  , where k
p , Qk ,,1 , is an sM -dimensional vector 

containing the physical properties of the equivalent sources within the k th 

equivalent-source window. Here, the physical-property distribution within the k th 

window is described by a bivariate polynomial kq , ,,,1 Qk   of degree  . The 

number P  of constant coefficients of kq  is given by 







1

1



l

lP .             (A7) 

It follows that the physical-property values of the equivalent sources within the 

k th equivalent-source window, k
p , can be expressed in terms of the 

coefficients k

lc , Pl ,,1 , of the  th-order polynomial function kq , i.e.,  
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



P

l

k

l

k

l

k c
1

bp .             (A8) 

This linear relationship can be written in matrix notation as 

kkk
cBp   , ,,,1 Qk             (A9) 

where k
c  is a P -dimensional vector whose l th element k

lc  is the l th coefficient 

of  the polynomial kq , and k
B  is an PM s   matrix whose l th column is the sM -

dimensional vector k

lb . A generic element of matrix k
B  is the first-order 

derivative of the  th-order polynomial function kq  with respect to one of the P  

coefficients ( k

P

k cc ,,1  ). To illustrate this matrix, let’s consider a k th equivalent-

source window composed of sM  = 12 equivalent sources whose physical-

property distribution can be described by a second-order polynomial (  = 2 and 

P  = 6, equation A7). In this case, the j th element of the 112  parameter vector 

k
p  (equations A8 and A9) is 

2

65

2

4321 '''''' j

k

jj

k

j

k

j

k

j

kkk

j ycyxcxcycxccp  ,  12,...,1j      (A10) 

and the 612  matrix k
B  is 























22

2

222

2

222

2

111

2

111

''''''1

''''''1

''''''1

ssssss MMMMMM

k

yyxxyx

yyxxyx

yyxxyx


Β .      (A11) 

It is then clear that k

jp , 12,...,1j , is numerically equal to the second-order 

polynomial kq  evaluated at the horizontal coordinates ),( jj yx   of the j th 

equivalent source within the k th equivalent-source window. 

 Here, the physical-property distribution within the equivalent layer is 

assumed to be a set of Q  piecewise  th-order polynomial functions (i.e., kq , 
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Qk ,,1 ) defined on a user-specified set of Q  equivalent-source windows. 

Hence, the physical-property distribution of the entire equivalent layer, which 

includes all equivalent sources from all windows, can be described as 

Bcp   ,           (A12) 

where B  is an HM  matrix ( QPH  ) that can be partitioned as 























Q
B00

0B0

00B

Β








2

1

,         (A13) 

where 0  is an PM s   matrix of zeros. The H -dimensional vector c  (equation 

A12) is partitioned as TTQT
][ 1

ccc  . Hence, the vector c  contains all 

coefficients describing all polynomial functions, kq , ,,,1 Qk   which are 

associated with the Q  equivalent-source windows composing the entire 

equivalent layer.  

By using equation A12, the linear system in equation A1, of N  equations 

in M  unknowns, can be rewritten as 

GBcpg )(  .           (A14) 

Equation A14 represents a system of N  linear equations in H  unknowns. 

In our approach, named Polynomial Equivalent Layer (PEL), we first 

solve the inverse problem of estimating the polynomial-coefficient vector c  from 

the potential-field observations. Next, we calculate the physical-property 

distribution using equation A12. Finally, we compute the desired transformation 

of the data using equation A3.  To obtain a stable estimate c , we impose the 

zeroth- and first-order Tikhonov regularization (Tikhonov and Arsenin, 1977). 
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Here, the linear inverse problem of estimating  c  is formulated as an 

optimization problem of minimizing 

2|||| c
H

f g
,                   (A15a) 

and 

2|||| RBc
r

g

f

f
 ,                   (A15b) 

subject to  

 2||)(|| dpg ,         (A15c) 

where ||.||  is the Euclidean norm,   is the expected mean square of the noise 

realizations in the data, and R  is an ML  matrix representing a set of L  first-

order differences (Aster et al., 2004). The zeroth-order Tikhonov regularization 

(equation A15a) imposes that all coefficients estimates (vector c ) must be as 

close as possible to zero. The first-order Tikhonov regularization (equation 

A15b) imposes a smoothing constraint on estimated physical properties of the 

equivalent sources located at the boundary of adjacent windows. Finally, gf  

and rf  are normalizing factors defined below. 

By solving this constrained optimization problem (equation A15), we 

obtain the normal equation for the estimate 
c , which is 

dGBcRBRBIGBGB
TTTT

r

ggTT

f

f

H

f
 )]([ 10  ,   (A16) 

where I  is an identity matrix of order H  and   is the regularizing parameter 

that balances the relative importance between the data-misfit function (equation 

A15c) and the two constraints (equations A15a and A15b). The constants 0  

and 1  (in equation A16) are real-positive numbers controlling the importance of 
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the two constraints given by equations A15a and A15b, respectively. The 

normalizing factors gf  and rf are the traces of the matrices GBGB
TT  and 

RBRB
TT , respectively. 

 

Equation A16 represents a system of H  linear equations in H  

unknowns, where H  is the total number of polynomial coefficients forming all 

equivalent-source windows. This number of coefficients is much smaller than 

both the number of equivalent sources M  and the number of data N . Thus, the 

PEL requires much less computational effort than the classical equivalent-layer 

approach, even in the data-space formulation, which requires the solution of a 

system of N  equations in N  unknowns (equation A4). In our PEL algorithm, 

the full MN  matrix of Green’s functions G  and the full HM  matrix B  

(equation A13) are not stored; rather only the small HH   matrix  GBGB
TT  

(equation A16) is directly computed and stored. In our approach, the elements 

of the matrices  G  and B  are computed on demand. We compute only the row 

of G  and the column of B  needed to calculate an element of the matrix GB . 

The same procedure is adopted to compute the HH  matrix RBRB
TT  

(equation A16). Once the vector dGB
TT  and the matrices GBGB

TT  and 

RBRB
TT  are computed, they are stored and then several reruns of the PEL 

program may be performed by setting different values for the inversion control 

constants ( 0,  and 1 , equation A16). The choice of these constants will be 

discussed later.  
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Computational efficiency of the PEL 

  

 The application of the equivalent-layer technique for processing potential-

field data sets requires overcoming two main obstacles. The first one is the 

construction of the linear system. The second obstacle is the computational 

effort required to solve the resulting linear system. The PEL approach 

overcomes the first obstacle, mainly because of the sparseness of the matrix B   

(equation A13). The second obstacle is overcome by the PEL because it leads 

to a linear system of equations with dimensions based on the number of 

coefficients H  within all equivalent-source windows, where H  is much smaller 

than the number of parameters M  and the data N . To illustrate the efficiency 

of the PEL when compared with the classical equivalent layer approach, we 

analyze below the total number of floating-point operations (flops) by solving the 

corresponding linear systems through Cholesky’s decomposition.  

Following Boyd and Vandenberghe (2004), we define a flop as an 

addition, subtraction, multiplication, or division of two floating-point numbers. In 

the classical equivalent-layer approach, the number of flops sm  required to 

solve the linear system (equation A5) by Cholesky’s decomposition is 

23
3

1 2NNms  .                  (A17a) 

The construction of the linear system and the evaluation of the auxiliary 

operations (equation A6) requires cm  flops, where 

NMMNmc 22  ,                  (A17b) 

in which 2MN  and NM2  are the flops to evaluate T
GG  and equation A6, 

respectively. Thus, obtaining *p  by using the classical equivalent-layer 
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approach posed in the data-space formulation (equations A5 and A6) requires 

cs mm   flops. 

 Conversely, solving the resulting linear system in the PEL approach 

(equation A16) from Cholesky’s decomposition requires sh  flops, where 

23
3

1 2HHhs  .                       (A18a) 

By taking advantage of the sparseness in B  (equation A13), the number of flops 

ch  required to construct the linear system and evaluate the auxiliary operations 

is given by 

MPNHNHHNMh sc 222 2  ,               (A18b) 

where HNM s2 , NH 2 , NH2  and, MP2  are the number of flops required to 

evaluate the terms GB , GBGB
TT , dGB

TT , and the physical-property 

distribution (the parameter vector p  in equation A12), respectively. Notice that 

the use of zeroth-order Tikhonov regularization in the classical equivalent-layer 

approach (equation A4) and in the PEL approach (equation A16) demands, 

respectively,  N  and H addition operations; this is equivalent to add  N   flops 

to cm  (equation A17b) and H  flops to ch  (equation A18b). Because H  is much 

smaller than N  ( NH  ), the use of zeroth-order Tikhonov regularization in the 

PEL requires much less computational effort than in the classical equivalent-

layer approach. On the other hand, the classical equivalent-layer approach 

(equations A2 and A4) does not use the first-order Tikhonov regularization. 

Thus, one might think that its use in the PEL (equation A16) would increase the 

number of flops ch  (equation A18b) because the demand of evaluating the term 

RBRB
TT . This is not true because the sparseness of matrices B  and R  leads 

to a negligible increase of the ch  flops (equation A18b). Notice that the PEL 
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requires the additional step of calculating the physical-property distribution 

(equation A12) after solving the linear system of equations to estimate the 

polynomial coefficients (equation A16). This must be done before computing the 

desired transformation of the data (equation A3). This additional step does not 

increase the computational cost significantly, because computing the physical-

property distribution (equation A12) only requires a sparse matrix-vector 

multiplication. To sum up, even using an additional regularizing function 

(equation A15b) and introducing an extra step in the processing workflow 

(equation A12), our equivalent-layer approach (PEL) requires a lower 

computational effort when compared to the classical equivalent-layer approach 

even using the N -dimensional-data-space formulation (equation A4). 

 We stress that the use of Cholesky’s decomposition to solve the resulting 

linear system of equations for both the PEL and the classical equivalent-layer 

approach is only taken as an example.  Further optimization of the PEL 

approach is still possible by solving the linear system through a preconditioned 

conjugate gradient method. Regardless the algorithm used to solve the linear 

system in the equivalent-layer problem, the H -dimensional system of equations 

to be solved by the PEL is always smaller than the N -dimensional system of 

equations required by the classical data-space approach. Ergo, solving HH   

systems is much more efficient, in terms of time and memory requirements, 

than solving NN   systems. 
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Figure A1 – Schematic representation of the equivalent layer. (a) Observed potential-field 

anomaly (black contour lines) measured at a set of N  observation points (gray dots) located at 

coordinates ),( , iii zyx , Ni ,,1 . (b) The equivalent layer is a thin slab in the subsurface 

which contains M  fictitious equivalent sources (black dots) distributed in a grid at constant 

depth z0. These sources are located at coordinates ),,( 0zyx jj
 , Mj ,,1 , and they can be 

point masses (in the case of gravity data) or dipoles (in the case of magnetic data). This 

equivalent layer is divided into  Q  equivalent-source windows (dashed rectangles). 
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PRACTICAL PROCEDURES 

 

The practical procedures to use the PEL require the choice of two sets of 

variables. The first one is related to the geometry of the PEL and consists in 

choosing: (1) the depth to the equivalent layer ( 0z ), (2) the degree   of the 

polynomials describing the physical-property distribution within each equivalent-

source window, (3) the size of the equivalent-source windows, (4) the number of 

equivalent-source windows Q , and (5) the number sM  of equivalent sources 

forming each equivalent-source window. The second set of variables to be 

assigned is the inversion control constants ( 0,  and 1 , equation A16). 

 

Choice of the geometry of the PEL  

 

Compared with the fast Fourier transform filtering technique, methods 

that employ the equivalent-layer technique for processing potential-field data 

usually do not require gridded data. Likewise, our formulation (PEL) does not 

require gridded data. Conversely, a common restriction of methods that employ 

the equivalent-layer technique concerns the vertical distance between the 

equivalent layer and the surface containing the potential-field observations. 

Some authors investigated this restriction empirically by using gridded data and 

established that the vertical distance between the equivalent layer and the 

surface containing the potential-field observations must be between two and six 

times the grid spacing of the observations (Dampney, 1969; Leão and Silva, 

1989). The applications of the PEL have not shown a strong dependence with 
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respect to the vertical coordinate 0z  of the equivalent layer.  In practice, the 

equivalent layer in our formulation can be placed at a constant-vertical position 

0z  varying from about 150 to 300 m below the average height of the potential-

field observations. Conversely, the dependence of the PEL on the size of the 

equivalent-source window and on the degree   of the polynomials is more 

critical. Moreover, the chosen size of the equivalent-source window will be 

strongly dependent on the choice of the degree   of the polynomials. Both 

choices must be grounded on the complexity of the potential-field anomalies. If 

the potential-field anomaly is characterized by long wavelength, we may use a 

large equivalent-source window and a high degree of the polynomial (e.g.,    = 

3). Conversely, if the potential-field anomaly contains short-wavelength and 

high-amplitude components, we may use a small equivalent-source window and 

a low degree  of the polynomial (e.g.,    = 1). This relation is illustrated later in 

the applications to synthetic and real data sets. A conservative practice when 

applying the PEL is to choose a small equivalent-source window and a low 

degree   of the polynomial. This conservative option is recommended when 

the potential-field anomaly contains both long- and short-wavelength spectral 

contents. Additionally, we stress that this conservative choice works well even 

in the case of smooth anomalies with long-wavelength components only. 

Regardless of the chosen size of the equivalent-source window and degree   

of the polynomials, the estimated physical-property distribution of the PEL must 

produce a predicted data that fit the potential-field observations. 

The division of the equivalent layer into Q  equivalent-source windows 

consists of the following steps. 
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1) The interpreter must establish the smallest horizontal length sL  of a data 

square which contains a potential-field response with a short-wavelength. This 

square represents the area of an equivalent-source window. 

 

2) The number of equivalent-source windows xQ  and yQ  in the x  and y  

directions, respectively, are defined as 

 




 )/( sxx LLQ ,          (A19) 

and 






 )/( syy LLQ ,          (A20) 

where xL  and yL  are the maximum horizontal lengths of the whole surveyed 

area in the x  and y  directions, respectively, and 




  is the ceiling function 

(Graham et. at., 1988), which is defined as the least integer greater than or 

equal to its argument. 

 

3) The number of equivalent-source windows Q  is defined as  

yx QQQ  .           (A21) 

 

4) Within each equivalent-source window, the number of equivalent sources in 

the x  and y  directions is the same and equal to 












 QNm  ,          (A22) 

where N  is the number of potential-field observations. 
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5) Finally, the number of equivalent sources forming each equivalent-source 

window is defined as 

2mM s  .           (A23) 

 

Choice of the inversion control constants  

 

The choice of the values of inversion control constants ( 0,  and 1 , 

equation A16) is required to obtain a stable physical-property distribution via 

PEL. In practice, the value assigned to the regularizing parameter   is the unit.  

The values assigned to 0  and  1  are selected in such a way that the 

estimated physical-property distribution is stable and fits acceptably the 

observed data. If the values of 0  and  1   are poorly assigned, the estimated 

physical-property distribution within the equivalent layer does not fit the data.   

We adopted the following practical procedure to choose 0  and 1 . 

Starting with small tentative values of  0   and  1  , we estimate the physical-

property distribution within the equivalent layer through the PEL approach 

(equations A16 and A12). If this estimate yields an unacceptable data fit, the 

value of 0  is maintained, the value of 1  is increased (by multiples of 10) and 

the PEL algorithm is rerun (equation A16) to estimate a new physical-property 

distribution (equation A12).  In the following numerical applications, 1  is 

defined in the range of  710    1    110  and  0 is kept  fixed at  a very small 

value such as 1510 .   

These constants can be easily tuned through trial and error because, as 

pointed out before, our equivalent-layer method (PEL) is computationally 
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efficient by solving a small H -dimensional system of equations. Furthermore, 

after computing the vector dGB
TT  and the matrices GBGB

TT , and RBRB
TT  

(equation A16),  they are stored and then several reruns of the  PEL algorithm 

may be performed by setting different values for the inversion control constants 

( 0  and 1 , equation A16). 
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APPLICATION TO SYNTHETIC DATA 

 

 We illustrate the use of the PEL approach in processing synthetic gravity 

and magnetic data produced by simulated bodies. In applying the PEL 

approach to synthetic gravity data, we perform an upward continuation of the 

data set. In the application to synthetic magnetic data, the PEL approach is 

used to obtain the reduced-to-the-pole field. 

 

Synthetic-gravity data set 

 

We simulate a set of N  = 10,000 noise-corrupted gravity observations 

(black lines and gray-scale map in Figure A2a), computed on a plane at z  = -

150 m. The observations are produced by multiple sources (not shown) and are 

simulated on unevenly spaced stations. We corrupted the theoretical anomaly 

with zero-mean Gaussian pseudorandom noise with a standard deviation of 0.1 

mGal. We set up a PEL with M  = 10,000 equivalent sources (point masses) 

distributed on a regular grid at constant depth 0z  = 200 m. We divide this 

equivalent layer into Q  = 100 equivalent-source windows arranged in a grid of 

10   10 windows, each containing sM  = 100 equivalent sources. The area of 

an equivalent-source window is shown projected onto the data as the white 

open rectangle in Figure A2a. We used third-order polynomials ( = 3) with P  = 

10 coefficients each (equation A7), totaling H  = 1000 unknown coefficients 

which describe all Q  polynomials that compose the equivalent layer. By setting 

15

0 10  and  7

1 10 ,  the estimated H  coefficients ( 
c  in equation A16) 



29 

 

are used to compute an estimated density distribution (p , in equation A12) in 

the equivalent layer. This layer produces a predicted gravity data set at z = -150 

m (in dashed white lines) which fits the simulated gravity data (in black lines and 

gray-scale map) as shown in Figure A2a. Figure A2b shows that the gravity 

data continued to a constant-vertical coordinate z  = -500 m using the estimated 

PEL (dashed white lines) agree very well with the true data computed at the 

same continuation height (black lines and gray-scale map). Histograms of the 

data misfits (insets of Figures A2a and A2b) corroborate the acceptance of the 

data fitting. In both histograms, most of the data misfits are smaller than the one 

standard deviation of the observational uncertainty being consistent with a 

normal distribution. 

In this test, the efficiency of PEL approach comes from solving a 1000 x 

1000 system versus a 10,000 x 10,000 system required by the classical 

equivalent-data approach in the data space. By using the Cholesky’s 

decomposition as the algorithm for solving the linear systems, the number of 

flops required by the classical approach to solve the linear system (equation 

A17a) is approximately 994 times greater than that required by the PEL 

(equation A18a). Additionally, the construction of the linear systems (equations 

A17b and A18b) requires approximately 83 times more flops for the classical 

approach than that for the PEL. 

 In the previous section, we presented the practical procedures of 

choosing i) the degree   of the polynomials describing the physical-property 

distribution within each equivalent-source window and ii) the size of the 

equivalent-source window. According to the criterion described in the previous 

section, if the potential-field anomaly is dominated by long-wavelength spectral 
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content (a smooth anomaly) there are two options. First, using a large 

equivalent-source window and a high degree   of the polynomial, as in the 

application to synthetic-gravity data set presented above (Figures A2a and b). 

Second, using a small equivalent-source window and a low degree of the 

polynomial, following a conservative practice. To illustrate this conservative 

practice, we reproduced the previous application to synthetic-gravity data, only 

this time dividing the equivalent layer into Q  = 400 equivalent-source windows 

arranged in a grid of 20   20 windows, each containing sM  = 25 equivalent 

sources. The white open rectangle in Figure A2c represents the projection of 

the area of the equivalent-source window onto the data. Additionally, we used 

first-order polynomials (  = 1) with P  = 3 coefficients, totaling H  = 1200 

unknown coefficients which describe all Q  polynomials within the equivalent 

layer. This estimated equivalent layer produces a predicted gravity data set 

(dashed white lines) which fits the simulated gravity data (black lines and gray-

scale map). The gravity data continued to a constant-vertical coordinate z  = -

500 m using the estimated PEL (dashed white lines in Figure A2d) fit the true 

data computed at the same continuation height (black lines and gray-scale map 

in Figure A2d) equally well when compared with the previous result (Figure 

A2b). This shows the excellent performance of our method in upward-continuing 

the gravity data to an elevation of -500 m by using a conservative choice of both 

the size of the equivalent-source window and the degree   of the polynomials.  

Histograms of the data misfits (insets of Figures A2c and A2d) resemble bell-

shaped distributions confirming that the simulated measurement errors are 

normally distributed. In this test we set 15

0 10  and  7

1 10 , 
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Regarding the computational performance, the PEL leads to 

computational efficiency by dealing with a 1200  x 1200  system versus a  

10,000 x 10,000 one. By solving the resulting linear systems through Cholesky’s 

decomposition, the number of flops required by the classical approach to solve 

and build the linear system is 576 times and 67 times greater than that required 

by the PEL, respectively. Thus, we verify that the PEL still provides a significant 

increase in performance, even if using a conservative choice of the size of the 

equivalent-source window and of the degree   of the polynomials. 

 

Efficiency versus data-misfit measure 

 As pointed out in the methodology section, PEL greatly reduces the 

linear system of equations to be solved by representing the physical-property 

distribution within the equivalent layer as a set of piecewise-polynomial 

functions.  By taking a fixed size of equivalent-source window, the smaller the 

degree   of the polynomial the smaller the number of the coefficients to be 

estimated ( 
c  in equation A16), hence the smaller the H -dimensional system of 

equations to be solved by PEL and the faster the inversion will be. Then, it 

would be always desirable to use low-degree polynomials. This is true (or not), 

depending on whether the estimated physical-property distribution yields an 

acceptable (or unacceptable) data fit.  

As discussed in the practical procedures section, PEL depends on the 

choice of the size of the equivalent-source window and on the choice of the 

degree   of the polynomials. For a chosen size of the equivalent-source 

window, we can access the optimum degree   of the polynomials. The 

optimum value for   is the smallest one still producing an acceptable data fit. 
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This criterion ensures a maximum computational efficiency and a satisfactory 

data fitting.  Thus, there is a trade-off between the computational efficiency and 

the data-misfit measure obtained by assigning different values of  , for a given 

fixed size of the equivalent-source window in applying PEL approach.    

Here, we analyze the trade-off between the data-misfit measure and the 

computational efficiency of our equivalent-layer approach (PEL) by assigning 

different degrees   of the polynomials, for a given fixed size of the equivalent-

source window. Figure A3 shows two curves plotted against  : 1) the data-

misfit measure (dashed line) and 2) the computational efficiency (solid line) of 

our equivalent-layer approach (PEL). These curves were computed by 

assuming the same size of the equivalent-source window shown in Figure A2a 

(white open rectangle). The computational efficiency of our equivalent-layer 

approach (PEL) is computed by the ratio  HN  which represents a 

compression ratio of the linear system.  We pointed out in the methodology 

section that small values of H  lead to a great reduction of the size of the linear 

system to be solved through PEL (equation A16).  For increasingly higher 

values of  ,  the values of H  increase and the computational efficiency of PEL 

becomes increasingly lower. Hence, the computational efficiency of PEL ( HN ) 

decreases with increasing  .   

The optimum value for  , for a given fixed size of the equivalent-source 

window,  is the smallest one still producing an acceptable data fit. This choice 

ensures the best computational efficiency of PEL in addition to fitting the 

geophysical observations. In Figure A3, the optimum value of    is 3 which is 

the value used in Figures A2a and A2b.  The data-misfit measure is computed 

as the square of the Euclidean norm of the residual between the observed and 
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fitted data divided by the number of observations. Depending on the size of the 

equivalent-source window used, values from   different of the optimum value 

produce a poor data fit increasing the data-misfit measure. Values of   smaller 

than an optimum value (e.g.,   < 3 in Figure A3) produce a poor data fit, 

increasing the data-misfit measure. This occurs because the size of the 

equivalent-source window is large and the low-degree polynomial used is not 

able to estimate a physical-property distribution (equations A16 and A12) that 

fits acceptably the data. Hence, the estimate of a physical-property distribution 

within the equivalent layer is roughly represented by piecewise  th-order 

polynomial functions defined on a set of equivalent-source windows.  

Conversely, values of   larger than an optimum value (e.g.,   > 3 in Figure 

A3) produce a poor data fit, increasing the data-misfit measure. This behavior 

occurs in PEL, because the inverse problem becomes ill-posed and, 

consequently, the tuning of the inversion control constants ( 0  and 1 , 

equation A16) becomes difficult. Figure A3 illustrates the best trade-off between 

data-misfit measure (dashed line) and computational efficiency (solid line) of 

PEL in which    = 3 is the optimal balance of these two terms.  
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Synthetic-magnetic data set 

 

In this test, we simulate a complex magnetic response containing short- 

mid- and long-wavelength spectral contents.  Because of this wide range of 

spectral contents, we must use a polynomial with a low degree (  = 1) and a 

small equivalent-source window whose size is able to contain the shortest 

wavelength of the simulated anomaly. As pointed out, the size of the equivalent-

source window can be easily chosen. Here, we illustrate how we can check if 

this size was suitably chosen. To this end, we apply the PEL by setting large- 

and small-equivalent-source windows which illustrate, respectively, unsuitable 

and suitable windows. 

Figure A4 shows the noise-corrupted total-field anomaly (black contour 

lines) produced by a set of synthetic bodies (not shown). We corrupted the 

theoretical anomaly with zero-mean Gaussian pseudorandom noise with a 

standard deviation of 5 nT. We simulated an airborne magnetic survey covering 

an area with an extent of 10,000 km in the x - and y -directions (north-south 

and east-west, respectively). The flight height is 150 m above the ground 

surface. The simulated flight pattern contains 50 flight-lines along north-south 

direction with line spacing of 200 m and 2 tie-lines along east-west direction 

with line spacing of 4000 m. Based on an average 270 km/h aircraft speed, the 

sampling frequency is 10 Hz and the number of data points per flight-line is 

1333. The number of observations along the north-south and east-west are, 

respectively, 66,650 and 2666, totaling 69,316 observations. The simulated 

geomagnetic field has 45° declination and -3° inclination. The simulated bodies 

(not shown) are magnetized uniformly, with a magnetization declination of -10° 
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and inclination of 2°. Notice that the spectral content of the magnetic response 

ranges from short to long wavelengths. At the northwestern (A) and 

easternmost (B) portions of the total-field anomaly map (Figure A4 in black 

contour lines), the magnetic responses are characterized predominantly by 

short- and long-wavelength spectral contents, respectively. Whereas, the 

magnetic response at the southernmost portion (C) contains mid-wavelength 

anomalies.   

 

Large-equivalent-source window 

We set up a PEL with M  = 74,529 equivalent sources (magnetic dipoles) 

distributed on a regular grid at constant depth 0z  = 200 m. These magnetic 

dipoles have the same magnetization direction of the simulated body. This 

equivalent layer is divided into Q  = 169 equivalent-source windows arranged in 

a grid of 13    13 windows, each one containing sM  = 441 equivalent sources 

arranged in a grid of 21   21 dipoles. The black open rectangle in Figure A4a 

shows the area of an equivalent-source window projected onto the data set. We 

used first-order polynomials (  = 1) with P  = 3 coefficients (equation A7), 

totaling H  = 507 unknown coefficients which describe all Q  polynomials 

composing the equivalent layer. In this test we set 15

0 10  and  1

1 10 . 

After estimating the H  coefficients (equation A16), we compute the 

magnetization-intensity distribution in the equivalent-source layer (equation 

A12) as show in Figure A5a. We also compute the predicted total-field anomaly 

(not shown) yielded by the magnetization-intensity distribution (Figure A5a) 

obtained through the PEL using a large equivalent-source window. Figure A4a 
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shows the differences (color-scale map) between the simulated noise-corrupted 

(black contour lines) and predicted (not show) total-field anomalies at z  = -150 

m.  For most of the area, these differences are around zero nT. Larger 

differences (smaller than -60 nT or greater than 60 nT) coincide exclusively with 

the region where the magnetic responses are characterized mainly by short-

wavelength spectral contents (region A in Figure A4a). In this test, this poor 

data fit produced by the PEL occurs because of the low-degree polynomial 

combined with the large-equivalent-source window. This combination leads to a 

rough estimate of physical-property distribution (Figure A5a) within the 

equivalent layer.  Because of this unacceptable anomaly fit, the choice of the 

size of the equivalent-source window (black open rectangle in Figure A4a) is 

considered unsuitable and the transformation of the data will not be done. In 

this case, the size of the equivalent-source window must be reduced until an 

acceptable data fit is obtained. 

 

Small-equivalent-source window 

We set up a PEL with M  = 75,625 equivalent sources (magnetic dipoles) 

distributed on a regular grid at constant depth 0z  = 200 m. These magnetic 

dipoles have the same magnetization direction of the simulated body. This 

equivalent layer is divided into Q  = 625 equivalent-source windows arranged in 

a grid of 25    25 windows, each one containing sM  = 121 equivalent sources 

arranged in a grid of 11   11 dipoles. The black open rectangle in Figure A4b 

shows the area of an equivalent-source window projected onto the data set. We 

set 15

0 10  and 1

1 10 . We used first-order polynomials (  = 1) with P  = 
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3 coefficients (equation A7), totaling H  = 1875 unknown coefficients which 

describe all Q  polynomials composing the equivalent layer. After estimating the 

H  coefficients, we compute the magnetization-intensity distribution in the 

equivalent-source layer (Figure A5b). By setting a small-equivalent-source 

window in applying PEL, the differences (color-scale map in Figure A4b) 

between the simulated noise-corrupted (black contour lines in Figure A4b) and 

predicted (not show) total-field anomalies at z  = -150 m are much smaller than 

those obtained by setting a large-equivalent-source window (color-scale map in 

Figure A4a).  This excellent data fit produced by the PEL (color-scale map in 

Figure A4b) is due to the combination of both the low-degree polynomial and 

the small-equivalent-source window. This combination allows estimating a 

smoother magnetization-intensity distribution (Figure A5b) within the equivalent 

layer as compared with the distribution estimated by setting a large-equivalent-

source window (Figure A5a).  Histograms of the data misfits shown as insets of 

Figures A4a and A4b quantifies the poor and acceptable data fits produced by 

the PEL using large- and small-equivalent-source windows, respectively. 

Because the data fitting is acceptable, the estimated magnetization-

intensity distribution must be accepted and then the desired transformation of 

the data can be done.  Hence,  we used the equivalent layer estimated using 

the PEL to compute the reduced-to-the-pole anomaly (dashed white lines in 

Figure A6), which shows a close agreement with the true anomaly at the pole 

(black lines and gray-scaled  map in Figure A6). The histogram of the data 

misfits (inset of Figure A6) quantifies this agreement. The PEL approach solves 

a reduced system of equations (1875 x 1875 system) while the classical 

equivalent-data approach should solve a large system (69,316 x 69,316 
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system). By using Cholesky’s decomposition as the algorithm for solving the 

linear systems, the number of flops required by the classical approach to solve 

the linear system (equation A17a) is approximately 50,354 times greater than 

that required by the PEL (equation A18a). The construction of the linear system 

(equations A17b and A18b) requires approximately 1319 times more flops for 

the classical approach than for the PEL. 
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Figure A2 – Tests with synthetic gravity data. (a) Simulated noise-corrupted (black lines and 

gray-scale map) and predicted (dashed white lines) gravity anomalies at z  = -150 m; the latter 

is obtained by the estimated PEL using  large-equivalent-source windows and third-order 

polynomials (  = 3). (b) Simulated noise-free (black lines and gray-scale map) and upward- 

continued (dashed white lines) anomalies at z  = -500 m. The latter is obtained using the PEL 

estimated from the anomaly shown in a with large-equivalent-source windows and third-order 

polynomials (  = 3). (c) Simulated noise-corrupted (black lines and gray-scale map) and 

predicted (dashed white lines) gravity anomalies at z  = -150 m. The latter is obtained through 

the PEL estimated using small-equivalent-source windows and first-order polynomials (  = 1). 

(d) Simulated noise-free (black lines and gray-scale map) and upward-continued (dashed white 

lines) anomalies at z  = -500 m. The latter is obtained by using the PEL estimated from the 

anomaly shown in c with small-equivalent-source windows and first-order polynomials (  = 1). 

The equivalent-source windows used in a-b and c-d are projected, respectively, onto a and c 

(outlined white rectangles). Histograms of the data misfits are shown as insets in a-d with their 

corresponding means   and standard deviations   . 
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Figure A3 – The trade-off between the data-misfit measure and the computational efficiency of 

PEL by assigning different degrees   of the polynomials. The data-misfit measure (dashed 

line) and the computational efficiency (solid line) of PEL were computed by assuming the same 

size of the equivalent-source window shown in Figure A2a (white open rectangle). 

       

Figure A4 – Tests with synthetic magnetic data. (a) and (b) Simulated noise-corrupted (black 

lines) total-field anomaly at z  = -150 m characterized by short- (region A), mid- (region C), and 

long- (region B) wavelength  spectral contents. The predicted total-field anomalies at z  = -150 

m (not shown) are obtained by the estimated PEL (shown in Figure A5) using first-order 

polynomials (  = 1) and large (a) and small (b) equivalent-source windows. Color-scale maps 

in a and b show the differences between the simulated and predicted total-field anomalies. The 

equivalent-source windows used in a and b are projected onto the data set (outlined black 

rectangles). Histograms of the data misfits are shown as insets in a and b with their 

corresponding means   and standard deviations  . 
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Figure A5 – Tests with synthetic magnetic data. Computed magnetization-intensity distributions 

obtained by PEL with first-order polynomials (  = 1) and large (a) and small (b) equivalent-

source windows. The equivalent-source windows used in (a) and (b) are depicted in Figure A4a 

and 4b, respectively. 
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Figure A6 – Test with synthetic magnetic data. Noise-free total-field anomaly at the pole (black 

lines and gray-scale map) produced by the same set of simulated bodies described in Figure A4 

and reduced-to-the-pole anomaly (dashed white lines) predicted by the estimated PEL shown in 

Figure A5b by using equivalent-source windows shown in Figure A4b. The inset shows the 

histogram of the residuals between the true noise-free anomaly at the pole and the reduced-to-

the-pole anomaly predicted by the PEL with its mean   and standard deviation  . 
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APPLICATION TO REAL DATA 

 

 We apply our method (PEL) to process an aeromagnetic data set over the 

Goiás Magmatic Arc, in central Brazil. This region is mainly made up of 

metaplutonic rocks exposed between volcano-sedimentary sequences 

(Pimentel et al., 2000). The aeromagnetic data set covers the southern portion 

of the Goiás Magmatic Arc at the Arenópolis Arc (Figure A7a) and was acquired 

at an average vertical coordinate of z  = -746 m. The geomagnetic field has -19° 

declination and -21.5° inclination and we assume that the source has a total 

magnetization vector with -19° declination and -40° inclination based on Dutra 

and Marangoni (2009). The data set used contains N  = 78,146 observations. 

We set up a PEL with M  = 81,000 equivalent sources (dipoles) with -19° 

declination and -40° inclination and distributed on a regular grid at constant 

vertical coordinate 0z  = -400 m. We divide this equivalent layer into Q  = 810 

equivalent-source windows arranged in a grid of 27   30 windows, each one 

with sM  = 100 dipoles. The area of an equivalent-source window is projected 

onto the data set being outlined by the white open rectangle in Figure A7a. We 

used first-order polynomials (  = 1) with P  = 3 coefficients (equation A7). 

Therefore, the number of unknown coefficients describing the magnetization 

intensities of the dipoles is H  = 2430. We set 15

0 10  and  
7

1 10 . Figure 

A7a shows that the predicted total-field anomaly (dashed white lines) obtained 

by the PEL fits the observed total-field anomaly (black lines and gray-scale 

map). The histogram of the data misfit (inset of Figure A7a) resembles a bell-

shaped distribution confirming that the measurement errors are normally 
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distributed with a small standard deviation.  Next, we use the estimated PEL to 

compute the reduction to the pole of the aeromagnetic data at a z  coordinate -

1300 m. Figure A7b shows the observed total-field anomaly upward-continued 

and reduced to the pole. We verify that our approach performed a meaningful 

reduction to the pole because the resulting reduced-to-the-pole anomaly (black 

lines and gray-scale map in Figure A7b) is predominantly positive.  

 In this test, the PEL is computationally efficient because it deals with a 

2430 x 2430 system instead of a 78,146 x 78,146 one. By solving the resulting 

linear systems through Cholesky’s decomposition, the number of flops required 

by the classical approach (equation A17a) is approximately 33,179 times 

greater than that required by the PEL (equation A18a). The construction of the 

linear system (equations A17b and A18b) requires approximately 992 times 

more flops for the classical approach than for the PEL. 

        

Figure A7 – Real test from Arenópolis Arc (Brazil). (a) Observed (black lines and gray-scale 

map) and predicted (dashed white lines) total-field anomalies. The latter is obtained by the 

estimated PEL (not shown). The inset on the right shows the histogram of the data misfit with its 

mean   and standard deviation  . The equivalent-source window used are projected onto the 

data set (outlined white rectangle).The study area (black square) is shown as an inset in the 

map of Brazil.  (b) Transformed data produced by applying the upward continuation and the 

reduction to the pole via the estimated PEL to the anomaly shown in a. 
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CONCLUSIONS 

 

 We have presented a new fast method for processing large sets of 

potential-field data via the equivalent-layer technique. The novelty of our 

method consists in dividing the equivalent layer into a regular grid of equivalent-

source windows, whose physical-property distributions are described by 

bivariate polynomials. Thus, we assumed that the physical-property distribution 

within the equivalent layer can be described by a piecewise-polynomial function. 

After setting the size of equivalent-source window and the degree of the 

polynomial, our method estimates the polynomial coefficients, for each window, 

by using a regularized potential-field inversion. Next, the physical-property 

distribution within an equivalent layer is obtained by means of a transformation 

which maps the estimated polynomial coefficients into the physical-property 

distribution. Finally, the transformation of the data is performed by pre-

multiplying the determined physical-property distribution by the matrix of 

Green’s functions associated with the desired transformation. 

 The proposed polynomial representation of the physical-property 

distribution within the equivalent layer leads to a drastic reduction of the linear 

system of equations that needs to be solved for estimating this physical-

property distribution compared with the classical equivalent-layer technique. 

This occurs because, in the classical equivalent-layer technique, the inverse 

problem of estimating the physical-property distribution within the equivalent 

layer is posed in the data space. In this case the inverse problem leads to a 

linear system of equations with dimensions based on the number of data, N . In 

contrast, the inverse problem of our method leads to a linear system of 
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equations with dimensions based on the total number of polynomial coefficients 

within all equivalent-source windows, which is significantly smaller than N . 

Conversely, the PEL requires an additional step of converting the estimated 

coefficients into the physical-property distribution within an equivalent layer. 

However, this does not imply a meaningful increase of the computational cost. 

This occurs because the transformation for mapping the estimated polynomial 

coefficients into the physical-property distribution is a linear function which 

involves only a sparse matrix-vector multiplication. 

  Applications to both synthetic and real data sets show that our method 

produces effective equivalent-source layers for performing any linear 

transformation of potential-field data without a huge computational load and a 

long processing time as compared with the classical approach. One might think 

that the choices of the size of the equivalent-source window and of the degree   

of the polynomials would be a difficult task. However, a simple criterion that may 

be used is that the shorter the wavelength components of the potential-field 

anomaly, the smaller the size of the equivalent-source window and the lower 

the degree of the polynomial should be.  A conservative choice is to use a small 

equivalent-source window and a low degree polynomial. A simple and effective 

way to check if the choices of the size of the equivalent-source window and the 

degree of the polynomial were correctly done consists in verifying if the 

estimated physical-property distribution via the PEL yields an acceptable data 

fit. If the data fitting is poor, the estimated physical-property distribution via PEL 

must be rejected and a smaller size of the equivalent-source window and (or) 

another degree of the polynomial must be tried.  This procedure is repeated 

until an acceptable data fit is obtained. Thus, a poor fit of the observed data 
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may be used as a criterion to evaluate the optimum size of the equivalent-

source window and the optimum degree of the polynomial. 

 Further improvements in the methodology of the PEL could be attained by 

combining the division of the equivalent layer into a non-regular set of 

equivalent-source windows with the use of different degrees of the polynomials. 

This improvement could be implemented accordingly to the spectral content of 

the potential-field anomaly. The number of equivalent-source windows should 

be greater and the degree of the polynomial function should be lower where the 

data are characterized by short-wavelength components. Another improvement 

in the PEL methodology could be accomplished by using a moving-data-window 

scheme that is shifted over the whole data set. When inverting the observations 

inside a small data window by using a small equivalent-source located below 

the data window, only the transformed field near the center of the data window 

can be computed. Yet another improvement in the PEL methodology could be 

formulated by setting up an equivalent layer with a continuous distribution of the 

physical property which varies horizontally according to a piecewise-polynomial 

function. Hence, the potential-field forward problem could be numerically 

computed through Gaussian quadrature, for example. 

 Further computational efficiency of the PEL algorithm might be achieved by 

using different methods for solving the linear system. Here, we have used 

Cholesky’s decomposition, however other algorithms could be employed such 

as the preconditioned conjugate gradient method.  

 Additionally, in the case of full-tensor gradiometry, our method could be 

used for processing all components together in a joint scheme, since all 

observations derive from common sources. The application of our polynomial 
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equivalent layer is extremely fast, making feasible the processing of the large 

data sets, often encountered in airborne surveys, through the equivalent-layer 

technique. However, our method fails to provide a significant performance 

increase when processing a small number of sparsely spaced potential-field 

observations, as is routinely encountered in localized ground based surveys. 

The practical implementation of the proposed polynomial equivalent layer is 

straight forward and does not require supercomputers or data compression 

algorithms. 
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SUMMARY 
 

  We have developed a non-linear method for inverting gravity-gradient 

data to estimate the shape of an isolated 3-D geologic body located in 

subsurface. The method assumes the knowledge about the depth to the top 

and density contrast of the source. The geologic body is approximated by an 

interpretation model formed by an ensemble of vertically juxtaposed 3-D right 

prisms, each one with known thickness and density contrast. All prisms forming 

the interpretation model have a polygonal horizontal cross-section that 

approximates a depth slice of the body. Each polygon defining a horizontal 

cross-section has the same fixed number of vertices, which are equally spaced 

from 0° to 360° and have their horizontal locations described in polar 

coordinates referred to an arbitrary origin inside the polygon. Although the 

number of vertices forming each polygon is known, the horizontal coordinates 

of these vertices are unknown. To retrieve a set of juxtaposed depth slices of 

the body and, consequently, its shape, our method estimates the radii of all 

vertices and the horizontal Cartesian coordinates of all arbitrary origins defining 

the geometry of all polygons describing the horizontal cross-sections of the 

prisms forming the interpretation model. To obtain a stable estimate that fits 

the observed data, we impose constraints on the shape of the estimated body.  

These constraints are imposed through the well-known zeroth- and first-order 

Tikhonov regularizations allowing, for example, the estimate of vertical or 

dipping bodies. Although the proposed inverse method can obtain a stable 

estimate that fits the observed data, different estimates with different maximum 

depths can produce equally acceptable data fits. To deal with this ambiguity, 

we use a criterion based on the relationship between the  -1 norm of the 

residuals ( s ) and the volume of the estimates ( pv ) obtained by using 

interpretation models with different maximum depths. By plotting each pv  

against s , we construct the svp   curve. The best estimate is the one 

producing the minimum of s  and fitting the data. A well-defined minimum of s  

indicates that the data have enough resolution to recover the shape of the 

body entirely. Conversely, if the observed data do not have enough resolution, 

some estimates with different maximum depths produce, practically, the same 
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minimum value of s . In this case, the best estimate among a suite of estimates 

producing equally data fits is the one fitting the gravity-gradient data and 

producing the minima of both the source’s bottom depth and volume. The 

histograms of the residuals can be used to quantify systematic errors in the 

data, allowing a data preprocessing to remove these errors. After removing 

these errors, we confirmed the ability of our method to recover the source 

geometry entirely (or its upper part only), if the data have sufficient (or 

insufficient) resolution. By inverting the data from a survey over the Vinton salt 

dome (Louisiana, USA) with a density contrast of 0.55 g/cm³, we estimated a 

massive cap rock whose maximum depth attains 460 ± 10 m and its shallowest 

portion is elongated in the northeast-southwest direction. 
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1. INTRODUCTION 

 

The vertical component of the gravity field has long been used to retrieve 

the shape of 3-D (or 2-D) geological sources.  Two approaches for the 

reconstruction of bodies from vertical component of the gravity anomaly have 

been usually adopted.  

The first and most straightforward approach adopts the interactive gravity 

forward modeling (e.g., Oezsen 2004; Caratori-Tontini et al. 2009; Gordon et al. 

2012). This first approach has been frequently used to interpret multiple 

anomalous sources with complex shapes and closely separated (either 

vertically and laterally) from each other by short distances.  

The second approach to obtain the shape of anomalous sources is 

based on linear or non-linear gravity inversion. This approach can be used to 

directly estimate either the density-contrast distribution or the geometry of the 

anomalous sources. Many gravity-inversion methods have been developed for 

estimating density-contrast distribution and some examples are given in Last & 

Kubik (1983), Guillen & Menichetti (1984), Barbosa & Silva (1994), Li & 

Oldenburg (1998),  Portniaguine & Zhdanov (1999), Bertete-Aguirre et al. 

(2002); Silva & Barbosa (2006), Farquharson (2008), Lelièvre & Oldenburg 

(2009), Silva Dias et al. (2009), Fregoso & Gallardo (2009), Silva Dias et al. 

(2011). In these gravity-inversion methods, the Earth’s subsurface is discretized 

into a grid of cubic cells (2-D or 3-D) and the density-contrast distribution is 

estimated to retrieve the sources’ shapes. Other class of gravity-inversion 

methods to retrieve the shape of anomalous sources estimates a set of 

geometric parameters which approximates the anomalous source shape. 
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Usually, these gravity-inversion methods assume the knowledge about the 

density contrast and may be grouped into two categories. The first one 

estimates the depths to the lower (or upper) boundary of a geologic body by 

assuming the knowledge of the upper (or lower) boundary, while the second 

category estimates the shape of the boundary surface entirely enclosing a 

geologic body.  Most of gravity-inversion methods in the first category have 

been developed to produce depth-to-basement estimates. Examples for depth-

to-basement estimation include the spectral and non-spectral inversion methods 

(see Barbosa & Silva 2011 for a complete review). The spectral inversion 

methods for depth-to-basement estimation use the Parker’s (1973) forward 

method to rapidly compute the potential-field anomaly of an arbitrary interface 

separating two homogeneous media. By assuming the knowledge about the 

average depth of the basement, Guspí (1993) followed spectral inversion to 

successfully obtain the depth-to-basement estimates for a variety of density 

contrasts. The non-spectral inversion methods for depth-to-basement 

estimation discretize the sedimentary pack into a regular grid of rectangular 

prisms with prescribed densities, fixed tops and unknown thicknesses which 

represent the depths to the basement. Examples of successful inversion of 

gravity data to estimate basement relief by using non-spectral information are 

given in Richardson & MacInnes (1989), Barbosa et al. (1997, 1999), Martins et 

al. (2010, 2011) and Silva et al. (2010).  The methods belonging to this category 

gave rise to plethora of gravity-inversion algorithms.  Conversely, the second 

category, that retrieves the shape of geologic sources by estimating the 

coordinates of the boundary surface entirely enclosing a geologic body, has led 

to few gravity-inversion methods (e.g., Silva et al. 2000; Moraes & Hansen 



 57 

2001; Silva & Barbosa 2004; Wildman & Gazonas, 2009; Luo 2010; and 

Oliveira Jr et al. 2011). 

Recently, gravity gradient data have been used to interpret 3-D (or 2-D) 

geological sources. Some interpretation methods using gravity gradient data 

follow a well-known automatic aeromagnetic interpretation method called Euler 

deconvolution.  These gravity-gradient interpretation methods are suitable to 

locate the depth and horizontal positions of geologic bodies. Zhang et al. (2000) 

modified the conventional Euler deconvolution method for gravity tensor 

gradient data. Other examples of gravity-gradient interpretation methods in this 

direction are based on eigenvectors of the gravity tensor and on Euler 

deconvolution (e.g., Mikhailov et al. 2007; Beiki & Pedersen 2010). 

More recently, few gravity-gradient data inversions have been developed 

not only to locate but also to delineate geological bodies. To date, most of the 

available gradient-inversion methods estimate a 3-D density-contrast 

distribution by assuming a piecewise constant function defined on a user-

specified grid of cells (e.g., Li 2001; Zhdanov et al. 2004; Uieda & Barbosa 

2012). Such methods take advantage of the rapid linear optimization problems. 

However, these methods have the disadvantage of dealing with intractable 

large-scale 3-D inversion with hundreds of thousands of parameters and tens of 

thousands of data. This disadvantage requires computational strategies to 

handle with large amount of computer memory and processing time. Besides, 

the linear gradient-inversion methods for estimating a 3-D density-contrast 

distribution demand large amount of prior information about the source; 

otherwise the inversion produces rough image of the source distribution whose 
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maximum and minimum estimated values occur at the boundary of the 

discretized region. 

To our knowledge, up to now, only one published method solves a non-

linear gravity-gradient data inversion to retrieve the shape of anomalous source 

by estimating a set of geometric parameters which approximates the anomalous 

source shape. This non-linear inversion is proposed by Barnes & Barraud 

(2012) to estimate the upper surface of salt bodies by incorporating the total 

variation regularization and depth estimates from the interpretation of 2-D 

seismic. However, there is as yet no non-linear inversion of gravity-gradient 

data that retrieves the shape of geologic sources by estimating the boundary 

surface that encloses the geologic body entirely.  

This paper follows this latter non-linear inversion of gravity-gradient data 

that estimates the source’s boundary entirely. To the authors’ knowledge, this 

approach for inverting gradient data has never been performed.  Specifically, 

we adopted the same strategy used in Oliveira Jr et al. (2011), the so-called 

Radial inversion. This non-linear inversion of gravity-gradient data eliminates 

most of the above-mentioned disadvantages of linear inversion methods for 

estimating a 3-D density-contrast distribution. Like Oliveira Jr et al. (2011), we 

approximate the 3-D source by a set of vertically stacked right prisms whose 

thicknesses and density contrasts are known and their horizontal cross-sections 

are described by unknown polygons. The polygon sides of all prisms 

approximately describe the edges of horizontal depth slices of the 3-D geologic 

source. By using polar coordinates to describe the polygon vertices of each 

prism, our method estimates the radii associated with each polygon vertex for a 

fixed number of equally spaced central angles from 0o to 360 o, and the 
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horizontal Cartesian coordinates of an arbitrary origin located within the top of 

the prism. We used a wide variety of regularizing constraints to obtain stable 

solutions. Here, we generalize the Oliveira Jr et al.’s (2011) criterion for 

determining the optimum depth-to-bottom estimate of the anomalous source 

which is based on the relationship between the estimated total-anomalous mass 

and the  -1 norm of the data-misfit. Our criterion is based on the curve between 

the volume of the estimated source versus the  -1 norm of the data-misfit 

obtained by using multiple inversions, using different tentative maximum depths 

for the set of assumed juxtaposed 3-D prisms. Finally, tests on synthetic gravity-

gradient data and on field data collected over the Vinton salt dome, southwest 

Louisiana, USA, confirm the potential of our approach. 
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2. METHODOLOGY 

 

            Assume that a 3-D source is confined in the interior of a finite region   

(Fig. B1) in the x - y - z  space beneath the earth’s surface with its x -axis 

pointing north, y -axis pointing east, and z -axis pointing down. The 3-D source 

is either outcropping or buried, but with a known depth to the top 0z . We also 

assume a known density contrast between the 3-D source and the host rocks. 

This density contrast can be constant or variable along the z -direction. An 

arbitrary but unknown closed surface S is assumed to separate the 3-D source 

from the host rocks. To estimate the surface S, we approximate the volume of 

the source (dark grey volume in Fig. B1a) by a set of L  vertically stacked 3-D 

prisms (light grey prisms, identified by LkPk ,...,1,  , in Fig B1a). The density 

contrast within each prism, Lkk ,...,1,  , is assumed constant and known. All 

prisms have constant and known thicknesses dz , but their horizontal cross-

sections are described by arbitrary and unknown polygons. Notice that the 

horizontal coordinates of the polygon vertices approximately represent the 

edges of horizontal depth slices of the 3-D geological source 3-D. The top of 

the kth prism kP  is described by kM  vertices (white dots in Fig. B1b) with 

Cartesian coordinates ),,( 1

kk

j

k

j zyx , ,,,1 kMj   Lk ,,1 , where kz1  is given 

by dzkz )1(0  , Lk ,,1 , and where 0z  is a pre-specified depth to the top of 

the true geologic source which is presumably known by the interpreter. Like 

Oliveira Jr et al. (2011), instead of use Cartesian coordinates, we describe the 

horizontal location of the vertices of the kth prism kP  by using the polar 
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coordinates ,,,1),, kk

j

k

j Mjr ( Lk ,,1   (white dots in Fig. B1c). The 

set of polar coordinates describing the vertices of the kth prism 
kP  is referred 

to an arbitrary origin kO  (grey dot in Fig. B1c), whose horizontal Cartesian 

coordinates are given by ),( 00

kk yx , Lk ,,1 . We assume a fixed number of 

vertices kM , Lk ,,1 , for each prism based on the interpreter’s knowledge 

about the complexity of true source (dark grey volume in Fig. B1a). 

Additionally, we establish that the vertices are equally spaced from 0° to 360°. 

Thus, given the number of vertices kM , the set of angular coordinates 

describing the vertices of the k th prism kP  is automatically obtained by 

kk

j j   )1( , kMj ,,1 ,         (B1) 

where 
k

k

M




2
 , .,,1 Lk    

Like Oliveira Jr et al. (2011), our inversion method retrieves the shape of 

a 3-D source by estimating the horizontal Cartesian coordinates ),( 00

kk yx  of all 

unknown origins kO , ,,,1 Lk   and the radii k

jr , kMj ,,1 , Lk ,,1 , of 

the vertices describing all prisms forming the interpretation model. In contrast 

with Oliveira Jr et al. (2011), our approach inverts gravity gradient data set.  

These horizontal Cartesian coordinates ),( 00

kk yx  and radii k

jr  are 

arranged in the M –dimensional parameter vector m , which will be estimated 

from the observed gravity gradient data set. The number M of unknown 

parameters is given by 



L

k

kMLM
1

2 . For convenience, the parameter 

vector is partitioned as 

,][ 1 TTLTkT
mmmm         (B2) 
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where the superscript T stands for a transpose, and 
k

m  is the 1)2( kM   

vector given by 

TkkTkk yx ][ 00rm  ,  Lk ,,1 ,          (B3) 

where Tk

M

kk
krr ][ 1 r  is the kM -dimensional vector containing the radii of 

the kM  vertices of the kth prism kP . 

Let 


g  be an N -dimensional vector whose i th element 
ig  is the 

 -component of the gravity gradient tensor measured at the i th observation 

point ),,( iii zyx , where   and   belong to the set of x -, y -, and z -directions 

of a right-sided Cartesian coordinate system (Fig. B1). This observed data 
ig  

can be approximated by the sum of the effect predicted by the L  vertically 

stacked 3-D prisms (light grey prisms in Fig B1a) setting up the interpretation 

model, i.e.: 

 ),,,,( 00

1

kkkkk
L

k

ii yxfd 
θr



 ,   Ni ,,1 ,      (B4) 

where k
θ  is the kM -dimensional vector whose j th element is given in eq. B(1). 

The nonlinear function  ),,,,( 00

kkkkk

i yxf 
θr   represents the  predicted  -

component of the gravity gradient tensor, computed at the i th observation point 

( iii zyx ,, ), produced by the kth prism kP (Fig. B1c), which has the depth to the 

top kz1 , the thickness dz , the density contrast 
k , and whose polygonal cross-

section is described by the variables k
r , k

θ , kx0  and ky0 . The i th nonlinear 

function ),,,,( 00

kkkkk

i yxf 
θr , Ni ,,1 , is the product between the 

gravitational constant, the density k , and a volume integral that has a closed 

form given by Plouff (1976, equation 9). 
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Let )(m be the data-misfit function which measures the squared 2 -

norm of the difference between the observed and predicted  -component of 

the gravity gradient tensor, i.e.,  

2

2
)(  gdm  w ,             (B5) 

where 
d  is the N -dimensional vector whose i th element 

id  is given by 

eq. B(4) and w  is a normalizing factor defined as  

2






g

N
w  .           (B6) 

The total data-misfit function  m  is defined as the sum of the individual data-

misfit functions for each one of the  -components of the gravity tensor, i.e., 

)()()()()()()( mmmmmmm
zzyzyyxzxyxx   .     (B7) 

The data-misfit function given in eq. B(7) holds when the six components of the 

gravity-gradient tensor are considered. If some component is not considered, 

the practical procedure is to set up the respective normalizing factor (eq. B6) as 

zero. For example, if the xy - and the yy - components are not considered, the 

interpreter must assign null values to the normalizing factors xyw  and yyw  (eq. 

B6).  

The nonlinear inverse problem of estimating the parameter vector m  that 

minimizes the total data-misfit function )(m  (eq. B7) is an ill-posed problem 

because the solution is neither unique nor stable. To transform this problem into 

a well-posed problem, we formulate a constrained nonlinear inversion to obtain 

a 3-D shape of a geologic body by minimizing 





LC

1

)()()(



mmm  ,          (B8a) 
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subject to 

.,...,1               ,maxmin Mjmmm
jj j 

      (B8b) 

In eq. B8a,   is the regularizing parameter. In the inequality constraints (eq. 

B8b), the 
j

mmin  and 
j

mmax  are expressing the lower and upper bounds, 

respectively, to the j th element jm  of the parameter vector m . These bounds 

j
mmin  and 

j
mmax , both on the radii of all vertices of all prisms ( k

jr , kMj ,,1 , 

Lk ,,1 )  and on the horizontal Cartesian coordinates of all arbitrary origins 

( kx0 , ky0 , Lk ,,1 ) are defined element by element by the interpreter based on 

either the horizontal extent of the gravity gradient data or the geological 

knowledge about the studied area. In eq. B(8a), )(m  is the  th constraining 

function in a set of LC  constraining functions that were proposed by Oliveira Jr 

et al. (2011). All these constraining functions (from now on named constraints) 

are defined on parameter space.  The chosen constraints for our method are: 

 

 Constraint 1  - )(1
m : 

 
Smoothness constraint on the adjacent radii defining the horizontal section of 

each prism. Mathematically, this constraint represents the first-order Tikhonov 

regularization (Tikhonov & Arsenin, 1977) on the radii within a prism of the 

interpretation model. This constraint imposes that each horizontal cross-section 

of the estimated 3-D source must be approximately circular.  

 

 Constraint 2  - )(2
m : 

Smoothness constraint on the adjacent radii of the vertically adjacent prisms. 

Mathematically, this constraint represents the first-order Tikhonov regularization 
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on the radii of vertically adjacent prisms of the interpretation model. This 

constraint imposes that the horizontal cross-section of the estimated 3-D source 

must have an approximately constant form along the vertical direction3-D. 

 

 Constraint 3  - )(3
m : 

Source’s outcrop constraint. By assuming an outcropping source, this constraint 

incorporates prior knowledge about the outcropping source’s boundaries 

separating the geological body from the host rock. This constraint imposes that 

the estimated boundary of the shallowest prism of the interpretation model must 

be as close as possible to the known boundary of the outcropping body. 

 

 Constraint 4 - )(4
m : 

Source’s horizontal location constraint. By assuming an outcropping source, this 

constraint imposes that the estimated horizontal Cartesian coordinates of the 

arbitrary origin within the shallowest prism of the interpretation model must be 

as close as possible to the known horizontal Cartesian coordinates of a point on 

the outcropping body. 

 

 Constraint 5  - )(5
m : 

Smoothness constraint on the horizontal positions of the arbitrary origins of the 

vertically adjacent prisms. Mathematically, this constraint represents the first-

order Tikhonov regularization on the horizontal Cartesian coordinates of the 

arbitrary origins of the vertically adjacent prisms of the interpretation model. 

This constraint imposes a smooth horizontal displacement between vertically 

adjacent prisms, forcing the estimated 3-D source to be vertical. 
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 Constraint 6 - )(6
m : 

Minimum Euclidean norm constraint on the radii defining the horizontal cross-

section of each prism. Mathematically, this constraint represents the zeroth-

order Tikhonov regularization (Tikhonov & Arsenin,  1977) on the all radii 

forming the interpretation model. This constraint imposes that all estimated radii 

within each prism must be close to null values. 

Estimating the vector m̂  (the caret denotes estimate) by solving the 

constrained nonlinear inverse problem defined in eq. B(8) is accomplished by 

Marquardt’s (1963) method, incorporating the Gauss-Newton approximation of 

the Hessian matrix at each iteration. This algorithm is fully described in Silva et 

al. (2001) and Silva Dias et al. (2007). Finally, the inequality constraints (eq. 

B8b) are introduced through a homeomorphic transformation (Barbosa et al. 

1999).  

To obtain a stable solution which retrieves the shape of geological 

source, we adopted the same practical procedure described in Oliveira Jr et al. 

(2011). It follows that we obtain a set of Q  estimates Qmm ˆ,,ˆ
1  ,  each one 

estimated by inverting gravity gradient observations corrupted with different 

Gaussian pseudorandom noise sequences with zero mean and a specified 

standard deviation. Then, we compute the sample mean vector m~  and the 

sample standard deviation vector σ~ . Here, m~  is an 1M  vector whose i th 

element im~ , Mi ,,1 , is the sample mean of a set of Q  estimates of the i th 

elements of km̂ , Qk ,,1 , and σ~  is an 1M  vector whose i th element i
~ , 

Mi ,,1 , is the sample standard deviation of a set Q  estimates of the i th 

elements of km̂ , Qk ,,1 . The sample mean vector m~  is assumed to be a 
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stable solution of the source shape (parameter vector m )  if all sample standard 

deviations ),...,1,~( Mii   are smaller than 4 percent (checar) of its 

corresponding sample mean ),...,1,~( Mimi  . 

 

 

 

Figure B1. Schematic representation of the interpretation model. (a)  Observed 
xyg  and 

yyg  

components of the gravity gradient tensor (grey scale maps) produced by the 3-D source (dark 

grey volume) limited by the closed surface S. The interpretation model is formed by  L  

juxtaposed prisms 
kP , Lk ,,1 , (light grey). (b) Polygonal cross-section of the kth prism 

kP  with thickness dz  and being described by 
kM  vertices (white dots) with the Cartesian 

coordinates ),,( 1

kk

j

k

j zyx , 
kMj ,,1 , Lk ,,1 . (c) Representation of the 

kM  vertices 

forming the polygonal cross-section of the kth prism 
kP  by polar coordinates ),( k

j

k

jr  , 

kMj ,,1  , Lk ,,1   (white dots), referred to an arbitrary origin 
kO  (grey dot) with 

horizontal Cartesian coordinates 
kx0  and 

ky0  (black dot). 
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3. CRITERION FOR ESTIMATING THE TRUE (OR MINIMUM) 

DEPTH TO THE BOTTOM OF THE SOURCE 

 

In section 2, we established an interpretative model formed by an 

ensemble of L  prisms (Fig. B1a), with a constant and known thickness dz .  

The shallowest prism has the depth to the top equal to 0z , that presumably 

coincides with the top of the true geologic source. These variables ( L , dz  and 

0z ) define the maximum depth to the bottom maxz  of the estimated body by:  

)(0max dzLzz  .           (B9) 

After setting up the interpretation model, our method obtains a stable estimate 

m~  of the 3-D shape of the source by applying the practical procedure 

described in the section 2. For a fixed maximum depth to the bottom of the 

interpretation model maxz , we obtain a stable estimate m~  that fits the data. 

However, by assigning different depths maxz  to the bottom for the interpretation 

model, the method produces different stable estimates m~  that fit the data as 

well. To overcome this dependence of the estimate on the correct choice of the 

maximum bottom depth maxz , we developed a new criterion for estimating an 

optimum maximum depth to the bottom of the interpretation model. This 

optimum maximum depth can be the true depth to the bottom of the source if 

(and only if) the observed gravity gradient data have enough in-depth 

resolution to reconstruct the source. If not, the developed new criterion 

estimates the minimum depth to the bottom needed for the interpretation model 

to produce an acceptable data fit. This new criterion generalizes the criterion 

developed by Oliveira Jr et al. (2011) to determine a optimum maximum depth 
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to the bottom of the source.  Here, this new criterion is based on the 

relationship between the volume pv  of the estimated source (predicted volume) 

and the 1 -norm s  of the residuals between the observed and predicted 

gravity gradient data. 

 

3.1. Relationship between the predicted volume pv  and the 1 -norm s  of 

the residuals 

 

In this sub-section we present the theoretical relationship between the 

volume pv  of an estimate (predicted volume) and the 1 -norm s  of the 

residuals between the observed and the predicted data. First, let 
ig , 

zzyzyyxzxyxx ,,,,, , be the  -component of the gravity tensor field 

measured at the i th observation point ),,( iii zyx . Consider that 
ig  is produced 

by a 3-D geologic source located at subsurface, with constant density contrast 

  and defined by a volume 0v  (continuous black line in Fig. B2). Let’s suppose 

that this geologic source is approximated by an estimated homogeneous source 

with the same constant density contrast   and with a predicted volume pv  

(dashed black line in Fig. B2). This approximation of the true geologic source 

produces, at the same i th observation point, a predicted component of the 

gravity tensor )( pi vd , zzyzyyxzxyxx ,,,,, , that can be described by 



pv

ipi dvGvd ),()( ξ'ξ
  ,        (B10) 

where ),( ξ'ξ iG , zzyzyyxzxyxx ,,,,, , is the Green’s function associated 

with the  -component of the gravity tensor, iξ  is the position vector of the i th 
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observation point and the integration is conducted with respect to the variable 

ξ'  denoting the position vector of an elementary volume inside pv . By assuming 

that )( 0vdg ii

   and vvvp  0 , where v  is a small enough volume, then 

the predicted data )( pi vd  can be considered as an approximation of the 

observed data 
ig . This approximation can be represented by a Taylor’s 

expansion of first order about 0v , leading to 

)()( 00 vvvdd pidv
d

i   ,         (B11) 

where 
ipii gvdd  )(  and )( 0vdidv

d   is the first-order derivative of the  -

component of the gravity tensor evaluated at 0v . Eq. B(11) shows that the linear 

relationship between 
id  and pv , calculated at a fixed observation point 

),,( iii zyx , depends on the derivative )( 0vdidv
d  . If )( 0vdidv

d   is positive, the 

linear relationship between 
id  and pv  has a positive angular coefficient. If 

)( 0vdidv
d   is negative, the linear relationship between 

id  and pv  has a 

negative angular coefficient. The relationship between 
id  and pv  can be 

illustrated by using the 2-D sketches shown in Fig. B3. In Fig. B3(a), the 

predicted data set (dashed lines) represents a situation in which the predicted 

volume pv  is smaller than the true volume 0v . In opposition, the predicted data 

set shown in Fig. B3(b) (dashed lines) represents a situation in which the 

predicted volume pv  is greater than the true volume 0v . The Fig. B3(c) 

exemplifies the linear relationship between 
id  and pv  calculated at the 

position I  of the 2-D sketches shown in Figs. B3(a) and (b). Similarly, the Fig. 

B3(d) exemplifies the linear relationship between 
id  and pv  calculated at the 
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position II  of the 2-D sketches shown in Figs. B3(a) and (b). In Figs. B3(c) and 

(d), the region A represents the situation illustrated in Fig. B3(a), where the 

volume pv  is smaller than the true volume 0v . Conversely, the region B 

represents the situation illustrated in Fig. B3(b), where the volume pv  is greater 

than the true volume 0v . This dependence of the signal of the angular 

coefficient of the linear relationship between pv  and 
id , calculated at the i th 

observation point ),,( iii zyx , disappears if we plot the predicted volume pv  

against || 
id  (instead of 

id ). The resulting curve shows a symmetric “<” 

shape whose minimum || 
id  occurs when the predicted volume pv  is equal to 

the true volume 0v  (Fig. B3e). This can be shown by calculating the absolute 

value of 
id  and substituting it into eq. B(11). The resulting equation is given 

by 

||0

 iip dvv  , for 0vvp                  (B12a)  

or 

||0

 iip dvv  , for 0vvp  ,                (B12b) 

where 1

0 |)(|  vdidv
d

i

 . Eqs. B12(a) and B12(b) show, respectively, two 

straight lines with positive and negative angular coefficients. These lines 

intercept each other at 0||  
id  and 0vvp   (Fig. B3e). 

If we calculate the || 
ip dv   curve (eqs. B12a and B12b) for each 

observation point ),,( iii zyx , Ni ,,1 , and stack them, the resulting curve still 

shows the symmetric “<” shape. This stack is equivalent to plot the predicted 

volume pv  against the 1 -norm s  of the residuals between the predicted data 
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)( pi vd  and the observed gravity gradient data 
ig , Ni ,,1 . This norm is 

given by 





N

i

id
N

s
1

||
1  .          (B13) 

By substituting the 1 -norm s  into eq. B(11) we obtain 

 svvp  ˆ
0 , for 0vvp                  (B14a) 

or 

 svvp  ˆ
0 , for 0vvp  ,                (B14b) 

where 

1

1

0 |)(|
1ˆ












 

N

i

idv
d vd

N

 ,        (B14c) 

and zzyzyyxzxyxx ,,,,, . Eqs. B14(a) and B14(b) represent two straight lines 

with, respectively, positive and negative angular coefficients. These lines 

intercept each other at 0s , where 0vvp  . In comparison with the 

|| 
ip dv   curve (eqs. B12a and B12b), which is calculated at a fixed 

observation point ),,( iii zyx , the two straight lines forming the svp   curve 

(eqs. B14a and B14b) have different angular coefficients, however the minimum 

s  still occurs when the predicted volume pv  is equal to the true volume 0v  

(Fig. B3f). By combining all components of the gravity tensor, we define a new 

1 -norm of the residuals between the observed and predicted gravity gradient 

data given by 

zzzzyzyzyyyyxzxzxyxyxxxx swswswswswsws  ,      (B15) 



 73 

where w , zzyzyyxzxyxx ,,,,, , is given by eq. B(6). Subsequently, by 

substituting the 1 -norm of the residuals s  into the Taylor’s expansion given in 

eq. B(11), we obtain 

svvp  ̂0 , for 0vvp                   (B16a) 

or 

svvp  ̂0 , for 0vvp  ,                 (B16b) 

where 

1

ˆˆˆˆˆˆ
ˆ













zz

zz

yz

yz

yy

yy

xz

xz

xy

xy

xx

xx wwwwww


 ,     (B16c) 

and the angular coefficients ̂ , zzyzyyxzxyxx ,,,,, , are given by eq. 

B(14c). As pointed out before in section 2, if the interpreter does not use all 

components of the gravity tensor, he must set the corresponding scale factor 

w , zzyzyyxzxyxx ,,,,, , as zero. In comparison with the || 
ip dv   curve 

(eqs. B12a and B12b and Fig. B3e) and the svp   curve (eqs. B14a and 

B14b), the two straight lines forming the svp   curve (eqs. B16a and B16b) 

have different angular coefficients, however the minimum s  still occurs when 

the predicted volume pv  is equal to the volume 0v . The svp   curve is 

schematically illustrated in Fig. B3(f). 

 In the next section we present the relationship between the svp   curve 

(eqs. B16a and B16b) and the depth to the bottom maxz  (eq. B9) of the 

interpretation model. In addition, we provide the practical procedure for 

construct an estimated svp   curve. 
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3.2. Relationship between the svp   curve and the depth to the bottom maxz  

of the interpretation model and practical procedure for constructing the 

estimated svp   curve 

 

Let’s assume that the gravity tensor anomaly is caused by an isolated 

body with a constant density contrast with the host rocks and having a known 

depth to the top. In this case, we can expect that, when maxz  approximates the 

true depth to the bottom of the source, the predicted volume pv  approximates 

the true volume 0v  and then the predicted gravity tensor data fits the observed 

gravity tensor data. In this situation, a minimum value of the 1 -norm of the 

residuals s  (eq. B15) is expected. 

If maxz  is smaller than the true depth to the bottom of the source, the 

maximum absolute value of the predicted gravity tensor data will underestimate 

the maximum absolute value of the observed gravity tensor data (as shown in 

Fig. B3a). In this case, the theoretical relationship between pv  and s  is the 

straight line approximation described by eq. B16b, which is similar to the 

straight line with negative angular coefficient shown in Fig. B3(f). Conversely, If 

maxz   is greater than the true depth to the bottom of the source, the maximum 

absolute value of predicted gravity tensor data will overestimate the maximum 

absolute value of the observed gravity tensor data (as shown in Fig. B3b). In 

this case, to the theoretical relationship between pv  and s  is the straight line 

approximation described by eq. B16a, which is similar to the straight line with 

positive angular coefficient shown in Fig. B3(f). Finally, if maxz  coincides with the 

true depth to the bottom of the source, the predicted gravity tensor data will be 
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approximately equal to the observed gravity tensor data and a minimum value 

of the  -1 norm of the residuals s  given in eq. B15 is expected. This minimum 

value of s  is schematically shown in Fig. B3(f). In this way, by varying the 

thickness of all prisms forming the interpretation model ( dz , in eq. B9) and, 

consequently, varying the maximum depth to the bottom of the interpretation 

model ( maxz , in eq. B9) we construct an estimated svp   curve similar to the 

theoretical svp   curve (Fig. B3f). The tentative value for maxz  producing the 

smallest data-misfit measure s  on the estimated  svp   curve is an optimum 

estimate of the depth to the bottom of the source. 

In this work, we compute the volume pv  of the estimated source as the 

sum of the volume of each prism forming the interpretation model. The volume 

of the k th prism, Lk ,,1 , is given by the product between the thickness dz  

and the area ka  of the horizontal cross section of the k th prism. This area can 

be computed as the sum of the area between each pair of adjacent radius 

within the k th prism. So, the area ka  can be given by 









 







1

1

11 )~~()~~(
2

1
)sin(

k

k

M

j

k

j

k

j

kk

M

kk rrrra  ,       (B17) 

where kk M 2 , Lk ,,1 , is the angle between two adjacent radius within 

the k th prism and k

jr~ , kMj ,,1 , Lk ,,1 , is a stable estimate of the radial 

coordinate of the j th vertex forming the k th prism. Finally, the volume pv  of 

the estimated source is given by 





L

k

k

p adzv
1

,          (B18) 

where ka  is given by eq. B(17). 
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In practice, we compute the estimated svp   curve as follows. First, we 

establish the depth to the top 0z , the number of prisms L , a small value for the 

thickness dz  of all prisms and, by using the eq. B(9), we calculate the depth to 

the bottom maxz  of the interpretation model. So, by assuming the correct density 

contrast   of the geologic source, we estimate a stable parameter vector m~  by 

using the proposed inverse method (eq. B8). After that, by using the  -

components, zzyzyyxzxyxx ,,,,, , of the gravity tensor predicted by the 

estimated source,  we compute the  -1 norm of the residuals s  given in eq. 

B15. Finally, we compute the volume pv  of the estimated source by using the 

eq. B18 and plot pv  against s , producing the first point of the estimated svp   

curve. This procedure is repeated for increasingly larger values of bottom depth 

maxz  of the interpretation model. 

In the next section we illustrate the practical use of the estimated svp   

curve for compute the true (or minimum) depth to the bottom of the 

interpretative model and, consequently, of the source. However, in practice, the 

estimated svp   curve does not have the perfect symmetric “<” shape shown in 

Fig. B3(f). This departure of the estimated svp   curve from the theoretical 

svp   curve (eqs. B16a and B16b) can be attributed to i) large differences 

between the predicted volume pv  and the true volume 0v , which violates the 

Taylor’s expansion described by the eq. B(11); ii) the inadequacy of the 

interpretation model in retrieving the true geological body and then the 

estimated source does not fit acceptably the observed data; iii) the presence of 

noise in the observed data and; iv) the lack of in-depth resolution of the gravity 
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gradient data, which is inherent in the nature of potential-field data. These 

effects will be shown in synthetic tests. 

 

 

 

 

 

 

 

Figure B2. 2-D sketch of the true and predicted volumes. The gravity gradient components 

produced by a homogeneous geologic source with volume 0v  (continuous black line) are 

measured at the observation point ),,( iii zyx . The gravity gradient components produced by a 

homogeneous estimated source with volume pv  (dashed black line) are computed at the same 

observation point ),,( iii zyx . The difference between the true ( 0v ) and the predicted  ( pv )  

volumes is displayed as  grey area. 
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Figure B3. Sketches of the linear relationships and the “<” shape of the svp   curve. Two-

dimensional illustration of a case in which the true ( 0v ) and predicted ( pv ) volumes, 

respectively, of the true and estimated sources are: (a)  pv  < 0v  and  (b), pv  > 0v .  Observed 

(solid line) and predicted (dashed line) gravity gradient components shown in (a) and (b); the 

former component is produced by a homogeneous geologic body with volume 0v  and the latter  

component is produced by an estimated source with volume pv .   Linear relationships between 


id  and pv  calculated, respectively, at the positions (c) I  and (d) II . The positions I and II 

are pinpointed in (a) and (b).   The regions A and B displayed in (c) and (d) represent, 

respectively, the situations in which pv  < 0v  and pv  > 0v . (e) || 
ip dv   curve calculated at 

the i th position of the observation. (f) svp   curve exhibiting its characteristic “<” shape. 
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4. NUMERICAL VALIDATION AND APPLICATION OF THE 

ESTIMATED svp   CURVE FOR DETERMINING THE TRUE 

(OR MINIMUM) DEPTH TO THE BOTTOM OF THE SOURCE 

 

Here, we present two tests with synthetic data in order to validate the 

theoretical statements about the svp   curve and illustrate the practical use of 

the estimated svp   curve for determine the true (or minimum) depth to the 

bottom maxz  (eq. B9) of the interpretation model and, consequently, the true (or 

minimum) depth to the bottom of the source. In the first test, the symmetric “<” 

shape of the svp   curve (schematically shown in Fig. B3(f) and mathematically 

described in eqs. B16a and B16b) is confirmed and the synthetic gravity 

gradient data are able to resolve both the true depth to the bottom of the source 

and its true volume. In the second synthetic test, we illustrate the situation in 

which the gravity gradient data cannot resolve both the true source’s bottom 

and its true volume; however, in this case, the svp   curve can determine the 

minimum depth-to-the-bottom and the minimum volume needed for the 

interpretation model to produce an acceptable data fit. 

 

4.1. Validation of the theoretical statements about the svp   curve 

 

We conducted a numerical analysis to validate the theoretical behavior of 

the svp   curve and its utility in completely retrieving the geometry of the true 

source, with correct source’s bottom and volume. For this purpose, we 
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computed, on plane 0z  m, the synthetic noise-free (not shown) and noise-

corrupted data (grey scale maps in Fig. B4) of the xx -, xy -, xz -, yy -, yz - and 

zz - components of the gravity gradient tensor. The synthetic data are corrupted 

with a pseudorandom Gaussian noise with zero mean and standard deviation of 

3.0 Eötvös and are produced by a single homogeneous source with a density 

contrast   of 1.0 g/cm3 relative to the background and a volume of 0.8 km3 (red 

prisms in Figs. B5a-c). The source has maximum horizontal dimension of 2400 

m and top and base at 150 and 450 m, respectively. 

We applied the proposed inverse method to both synthetic noise-free 

(not shown) and noise-corrupted data (grey scale maps in Fig. B4). In both 

applications, we used an interpretation model formed by an ensemble of L = 5 

prisms, all of them with the true density contrast k  = 1.0 g/cm³ ( Lk ,,1 ) and 

the same number of polygon vertices kM  = 16 ( Lk ,,1 ), which describes the 

horizontal cross-sections. We also assumed the knowledge about the actual 

depth to the top of the simulated source, hence we set the depth to the top of 

the interpretation model as 0z  = 150 m. The five prisms which make up the 

initial approximation used in both applications have the same horizontal 

Cartesian coordinates of the arbitrary origins of kx0  = 0.0 m and ky0  = 0.0 m for 

all 5,,1k .  All vertices forming these prisms have the same radii k

jr = 1000 

m, 16,,1j , 5,,1k . 

By varying only the depth to the bottom maxz  of the interpretation model, 

we applied the proposed inverse method to the synthetic noise-corrupted data 

(grey scale maps in Fig. B4) and produced five estimates. The value of maxz  

varies from 350 m to 550 m, in steps of 50 m, which lead to an uncertainty of  ± 
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25 m in the estimated depth to the bottom. We used all the constraining 

functions described in the Section 2, except for the third and fourth constraints 

(named source’s outcrop constraint and source’s horizontal location constraint, 

respectively). In all these inversions, the lower and upper bounds for all radii 

forming all prisms of the interpretation model are 500 m and 1300 m, 

respectively. Similarly, the lower and upper bounds for all horizontal Cartesian 

coordinates kx0  and ky0 , Lk ,,1 , are -1000 m and 1000 m, respectively. Figs. 

B5(b) and (c) show perspective views of the estimated 3-D source (blue prisms) 

with maxz  = 450 m. This estimate produces the predicted components of the 

gravity gradient tensor shown in Fig. B4 (black contour maps) and has a 

predicted volume pv  of 0.8 km³. The used initial approximation is shown in Fig. 

B5(a) (blue prisms). Each one of the five estimates obtained with the proposed 

method produces a  -1 norm of the residuals s  (eq. B15) and a predicted 

volume pv  (eq. B18) forming a point on the estimated svp   curve represented 

in Fig. B6 by open circles. On this curve, the estimated 3-D source shown in 

Fig. B5 is associated with the minimum s , which in turn is obtained by using a 

maximum depth maxz  = 450 m for the interpretation model. This estimated svp   

curve (open circles in Fig. B6), which is obtained from the synthetic noise-

corrupted data (grey scale maps in Fig. B4), suggests that the proposed method 

can retrieve the geometry of the simulated source (red prisms in Fig. B5) 

completely.  This fact is confirmed by Figs. B5(b) and (c), which shows an 

estimate (blue prism) that retrieves the geometry of the simulated source 

completely. Notice that, in this synthetic test, the best depth-to-the-bottom (450  

± 25 m) and source volume (0.8 km3) estimates are equal to the true ones.  
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By applying the proposed method to the noise-free data (not shown), we 

produced a similar svp   curve (black dots in Fig. B6) by varying the maxz  from 

350 m to 550 m, in steps of 50 m. In contrast with the estimated svp   curve 

obtained by using synthetic noise-corrupted data (open circles in Fig. B6), this 

curve (black dots in Fig. B6) exhibits a perfect symmetric “<” shape. Likewise, 

the minimum of s  on both estimated  svp   curves  (black dots and open circles 

in Fig. B6)  are associated with maxz  = 450 m  and volume pv  = 0.8 km³.  The 

estimated sources (blue prisms) using the maximum depth maxz = 450m, for both 

noise-free (not shown) and noise-corrupted (Figs. B5b and c) data, recover very 

well the geometry of the true simulated source (red prisms in Fig. B5). 

Notice that the estimated svp   curve obtained by using the noise-free 

data (black dots in Fig. B6) confirms the linear relationships between the 

estimated source volume pv  and the  -1 norm of the residuals s , which were 

described in the section 3. This curve clearly shows one straight line with a 

negative angular coefficient and other with a positive angular coefficient. The 

intersection point of these straight lines occurs very close to s  = 0 (black dots in 

Fig. B6), which represents a perfect fitting of the data. In this particular case, the 

estimated svp   curve are perfectly consistent with the theoretical behaviour of 

the svp   curve because we are dealing with an ideal synthetic test. This ideal 

test is characterized by the following factors: (1) the noise-free data set, (2) the 

adequacy of the interpretation model to retrieve the simulated source, and (3) 

the sufficient resolution of the gravity gradient data set to resolve the simulated 

source. Conversely, the estimated svp   curve obtained by using the noise-

corrupted data (open circles in Fig. B6) is slightly different from the theoretical 
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behaviour of the svp   curve (see section 3).  Likewise, this curve (open circles 

in Fig. B6) exhibits the linear relationships between pv  and  s , one with a 

negative and the other with a positive angular coefficient. In contrast with the 

theoretical behaviour of the svp   curve, the straight lines making up the 

estimated svp   curve (open circles in Fig. B6) do not intersect each other at s = 

0 and do not exhibit a perfect symmetric “<” shape.  In this case, the 

intersection point of the straight lines departs from s  = 0 Eötvös because of the 

presence of noise in data. 

 We can clearly see well-defined minima of the  -1 norm of the residuals 

s  in the estimated svp   curves (Fig. B6) associated with maxz = 450 m, both for 

noise-free (black dots) and noise-corrupted (open circles) data. These results 

validate the theoretical basis for determining not only the best estimate of the 

depth to the bottom of a source, but also the best estimate of its volume, as 

described in Section 3. The criterion to choose the best depth-to-the-bottom 

estimate as the tentative value for the maximum depth maxz  producing the 

minimum of the  -1 norm of the residuals s  is numerically confirmed in this 

synthetic test. We also validate the criterion to choose as the best source’s 

volume estimate the one associated with the minimum of s . In both simulated 

cases (noise-free and noisy-data, curves in Fig. B6), the best depth-to-the-

bottom ( maxz = 450 ± 25 m) and source’s volume ( pv = 0.8 km3) estimates are 

equal to the true ones. Additionally, we conclude that the two gravity-gradient 

data sets (noise-free and noisy data) have enough resolution to completely 

retrieve the true volume and the true depth to the bottom of the simulated body. 

These results confirmed numerically that our criterion for determining both the 
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source’s bottom and its volume, based on a well-defined minimum value of the 

 -1 norm of the residuals s  on the svp   curve, is empirically sound.   

 

4.2. The use of the estimated svp   curve for determine the true (or 

minimum) depth to the bottom of the source 

 

In the previous synthetic test, the estimated svp   curves (Fig. B6) show 

well-defined minima of s  indicating that the synthetic gravity-gradient data have 

enough resolution to completely retrieve the geometry of the simulated source, 

assuming the correct knowledge about its top and density contrast. In this 

section, we illustrate with synthetic gravity-gradient data the situation in which 

the data do not have enough resolution to completely recover the geometry of 

the simulated source. Here, we analyzed the validation and the utility of the 

sv p   curve in recovering, at most, the lower-bound estimates of the source’s 

depth to the bottom and of the source’s volume. The results of this analysis are 

compared with a case in which the svp   curve can determine correctly both the 

true source’s depth to the bottom and the true source’s volume. 

For these purposes, we computed, on plane 0z  m, three synthetic data 

sets of the xx -, xy -, xz -, yy -, yz - and zz - components of the gravity gradient 

tensor which were corrupted with a pseudorandom Gaussian noise with zero 

mean and standard deviation of 2.0 Eötvös. These data sets were produced by 

dipping bodies with density contrast   of 1.0 g/cm3 and depth to the top of 50 

m. These bodies differ from each other by the depths to their bottoms. Fig. B7 

shows grey scale maps of the six components of the gravity gradient tensor 

which were produced by the shallow-bottomed body (depth to the bottom at 350 
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m) shown in Fig. B9 (red prisms). Fig. B8 shows grey scale maps of xx -, yy - 

and zz - components of the gravity gradient tensor which were produced by the 

deep-bottomed body (depth to the bottom at 1000 m) shown in Fig. B10 (red 

prisms). The other components produced by the deep-bottomed body, as well 

as, the synthetic data set produced by the intermediate-bottomed body (depth 

to the bottom at 550 m) are not shown. 

 We applied the proposed inverse method to all synthetic noise-corrupted 

components of the gravity-gradient tensor produced by the three simulated 

sources. In all applications, we used an interpretation model formed by an 

ensemble of L = 7 prisms, all of them with the true density contrast k  = 1.0 

g/cm³ ( 7,,1k ) and the same number of polygon vertices kM  = 8 ( 7,,1k ), 

which describe the horizontal cross-sections. We also assumed the knowledge 

about the actual depth to the top of the simulated sources, hence we set the 

depth to the top of the interpretation model as 0z  = 50 m. The seven prisms 

which make up the initial approximations used in all applications have the same 

horizontal Cartesian coordinates kx0  = 120 m and ky0  = -80 m, 7,,1k , of the 

arbitrary origins. All vertices forming these seven prisms have the same radii 

k

jr = 50 m, for all 8,,1j , 7,,1k . In all inversions we used all the 

constraining functions described in the Section 2, except for the fourth and sixth 

constraints (named source’s horizontal location and minimum Euclidean norm 

constraints, respectively). Here, the lower and upper bounds for all radii forming 

all prisms of the interpretation model are 0 m and 300 m, respectively. Similarly, 

the lower and upper bounds for all horizontal Cartesian coordinates of the 

arbitrary origins are -600 m and 600 m, respectively. 
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Fig. B11 shows the estimated svp   curves A, B and C, which are 

produced by inverting the synthetic gravity-gradient data produced, respectively, 

by the shallow- (red prisms in Fig. B9), deep- (red prisms in Fig. B10) and 

intermediate-bottomed (not shown) sources. Each svp   curve contains six 

black dots, each one associated with an estimated 3-D source producing a pv  

(the predicted volume given by eq. B18) and an s  (the  -1 norm of the data-

misfit measure given by eq. B15). In each one of the three estimated curves, 

the six estimates are obtained by varying the depth to the bottom maxz  of the 

interpretation model. In the estimated svp   curve  A, the maxz  varies from 200 

m to 450 m, in steps of 50 m, which lead to an uncertainty of ± 25 m in the 

depth-to-the-bottom estimate of the simulated shallow-bottomed source. In the 

estimated svp   curve  B, the maxz  varies from 400 m to 1400 m, in steps of 200 

m, which lead to an uncertainty of  ± 100 m in the depth-to-the-bottom estimate 

of the simulated deep-bottomed source. In the estimated svp   curve C, the 

maxz  varies from 250 m to 750 m, in steps of 50 m, which lead to an uncertainty 

of ± 25 m in the depth-to-the-bottom estimate of the simulated intermediate-

bottomed source.  

The minima of s  on the estimated svp   curves A, B and C (Fig. B11) do 

not occur at zero Eötvös because the presence of noise in data. By comparing 

the estimated svp   curves produced by the shallow- (curve A in Fig. B11) and 

deep- (curve B in Fig. B11) bottomed sources, we verify contrasting patterns. 

The svp   curve produced by the shallow-bottomed source (curve A in Fig. B11) 

has a well-defined minimum of s , while the minimum of s  on the svp   curve 
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produced by the deep-bottomed source (curve B in Fig. B11) is ill defined. This 

difference occurs because, under the imposed constraints, the gravity gradient 

data produced by the shallow-bottomed source (red prisms in Fig B9) have 

enough resolution to estimate both the true depth to the bottom and the true 

volume of the simulated source. In contrast, the gravity gradient data produced 

by the simulated deep-bottomed source (red prisms in Fig B10) are unable to 

resolve both the maximum depth to the source bottom and the correct volume 

of the source.  

In accordance with the proposed theory (Section 4.1), the well-defined 

minimum value of s  on the svp   curve A (Fig. B11) is produced by an estimate 

(blue prisms in Figs. B9b and c) that recovers completely the shape of the 

simulated shallow-bottomed source (red prisms in Fig B9). This estimate 

produces predicted gravity gradient components (black contour lines in Fig. B7), 

that fit the synthetic noise-corrupted data (grey scale maps in Fig. B7) having a 

bottom depth of maxz  = 350 ± 25 m and a predicted volume of pv  = 0.012 km³, 

both of them coinciding with the true ones. The initial approximation used in this 

inversion is shown in Fig. B9(a).  

Similarly to the estimated svp   curve A, the estimated svp   curve C 

(Fig. B11) is produced by applying our inverse method to the synthetic noise-

corrupted data produced by the intermediate-bottomed body (not shown). 

Although the minimum of s  on the curve C is not so well-defined as in curve A, 

we stress that this minimum is produced by an estimated 3-D source (not 

shown) that recover very well the geometry of the simulated intermediate-

bottomed body (not shown). This estimate has a bottom depth maxz  = 550 m 
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and a predicted volume of pv  = 0.020 km³, both of them coinciding with the true 

ones. Moreover, this estimate also produces gravity gradient components (not 

shown) fitting the synthetic noise-corrupted data (not shown). 

In contrast with the estimated svp   curve A, the estimated svp   curve B 

(Fig. B11) exhibits an ill-defined minimum of s , which indicates that the 

synthetic gravity-gradient data (grey scale maps in Fig. B8) produced by the 

deep-bottomed body (red prisms in Fig. B10) do not have enough resolution for 

retrieve the geometry of the simulated body completely. The svp   curve B (Fig. 

B11) reveals multiple minima of s , which are associated with maxz  greater than 

or equal to 800 m. Figs. B10(b) and (c) show two perspective views of the 

estimated deep-bottomed source (blue prisms) using the maximum depth of 

maxz  = 800 m for the interpretation model. This estimated source (blue prisms in 

Figs. B10b and c) is obtained by using the initial approximation (blue prisms) 

shown in Fig. B10(a). Figs. B10(e) and (f) show two perspective views of the 

estimated deep-bottomed source (blue prisms) using the maximum depth of 

maxz  = 1000 m for the interpretation model. This estimated source (blue prisms 

in Figs. B10e and f) is obtained by using the initial approximation (blue prisms) 

shown in Fig. B10(d). These estimates (blue prisms in Figs. B10b-c and Figs. 

B10e-f) produce, practically, the same values of s  on the svp   curve B (Fig. 

B11) and might be equally accepted because their corresponding predicted 

gravity gradient components (black contour lines in Figs. B8a-c and Figs. B8d-f) 

produce equally acceptable data fits. Although the estimate shown in Figs. 

B10(b) and (c) (blue prisms) retrieves the geometry of the simulated body until 

the depth 800 m, it has a depth to the bottom ( maxz  = 800 m) smaller than the 
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true one (1000 m) and a volume ( pv  = 0.031 km³) smaller than the true one 

(0.038 km³). On the other hand, although the estimate shown in Figs. B10(e) 

and (f) (blue prisms) has correct depth to the bottom ( maxz  = 1000 m) and 

correct volume ( pv  = 0.038 km³), it does not recover the geometry of the 

simulated body at depths greater than 800 m. 

These results confirm that estimated svp   curves presenting well-defined 

minima of s  (e.g., the curves A and C in Fig. B11) can be used to determine 

estimates that recover very well the shape of the true bodies, with the corrects 

bottom depth and volume (e.g., the blue prisms in Figs. B9b and c). These 

estimates, associated with the well-defined minimum of s  on the estimated 

svp   curve, produce gravity-gradient components yielding acceptable data fits 

(e.g., black contour lines in Fig. B7). On the other hand, we concluded that 

estimated svp   curves presenting ill-defined minima of s  (e.g., the curve B in 

Fig. B11) can be used to determine, at most, the lower-bounds for the depth to 

the bottom and the volume of the true body. This is illustrated by the results 

obtained with the deep-bottomed body (red prism in Fig. B10). In this case, the 

estimated svp   curve (curve B in Fig. B11) can be used to determine the 

estimate (blue prisms in Figs. B10b and c) having the minimum depth to the 

bottom ( maxz  = 800 m) and minimum volume ( pv  = 0.031 km³) needed to 

produce predicted gravity gradient components (e.g., black contour lines in 

Figs. B8a-c) that fit the synthetic noise-corrupted data (grey scale maps in Fig. 

B8). Notice that the estimated 3-D source (blue prisms in Figs. B10b and c) 

retrieves the geometry of the upper part of the true body (red prisms in Fig. 

B10) completely. This result confirmed numerically that our criterion for 
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determining the lower bounds for both the source’s bottom and its volume, 

based on an ill-defined minimum value of s  on the svp   curve, is empirically 

sound. 

 

Figure B4. Test with synthetic data. Synthetic noise-corrupted  (grey scale maps) and predicted 

(black contour maps)  of the (a) xx -, (b) xy -, (c) xz -, (d) yy -, (e) yz - and (f) zz - components of 

the gravity gradient tensor. The synthetic components are produced by the simulated body 

shown in Fig. B5 (red prisms). The predicted components are produced by the estimated body 

shown in Figs. B5(b) and (c) (blue prisms). 
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Figure B5. Test with synthetic data. Perspective views of the simulated body  (red  prisms) with 

depth to the bottom of  450 m and volume of 0.8 km³. Perspective views in blue prisms of the 

(a) initial approximation,  (b) and (c) estimated body. The estimated body in (b) and (c) is 

obtained by inverting the noise-corrupted data shown in Fig. B4 (grey scale maps) and 

assuming an interpretation model with depth to the bottom maxz  = 450 m. The estimated body 

has a predicted volume pv  = 0.8 km³ and produces the predicted gravity gradient data shown in 

Fig. B4 (black contour maps). 
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Figure B6. Test with synthetic data. Estimated svp   curves obtained by inverting the noise-

free (black dots) and noise-corrupted (open circles) data produced by the simulated body shown 

in Fig. B5 (red prisms). These curves are produced by varying the maximum depth to the 

bottom maxz  of the interpretation model from 350 m to 550 m, in steps of 50 m. The estimated 

body producing the well-defined minimum s  on the svp   curve (open circles) obtained with 

the noise-corrupted data (grey scale maps in Fig. B4) is shown in Figs. B5(b) and (c). 
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Figure B7. Test with synthetic data produced by dipping bodies. The grey scale maps represent 

the noise-corrupted (a) xx -, (b) xy -, (c) xz -, (d) yy -, (e) yz - and  (f) zz - components of the 

gravity gradient tensor produced by the simulated shallow-bottomed body shown in Fig. B9 (red 

prisms). The black contour maps are the predicted data produced by the estimated body (blue 

prisms) shown in Figs. B9(b) and (c). 
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Figure B8. Test with synthetic data produced by dipping bodies. The grey scale maps represent 

the noise-corrupted (a) and (d) xx -, (b) and (e) yy - and (c) and (f) zz - components of the 

gravity gradient tensor produced by the simulated deep-bottomed body shown in Fig. B10 (red 

wire-frame body). The black contour maps shown in (a)-(c) and (d)-(f) are, the xx -, yy - and 

zz - components of the predicted data produced by the estimated bodies (blue prisms) shown in 

Figs. B10(b) and (c) and Figs. B10(e) and (f), respectively. The other components of gravity 

gradient data are not shown. 
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Figure B9. Test with synthetic data produced by dipping bodies. Perspective views of the 

simulated shallow-bottomed body (red prisms) with depth to the bottom of 350 m and volume 

0.012 km³. Perspective views in blue prisms of the (a) initial approximation and (b) and (c) 

estimated body. The estimated body (b) and (c) is obtained by inverting the noise-corrupted 

data shown in Fig. B7 (grey scale maps) and assuming an interpretation model with depth to the 

bottom maxz  = 350 m. The estimated body has a predicted volume pv  = 0.012 km³ and 

produces the predicted gravity gradient data shown in Fig. B7 (black contour maps). 
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Figure B10. Test with synthetic data produced by dipping bodies. Perspective views of the 

simulated deep-bottomed body (red prisms) with depth to the bottom of 1000 m and volume 

0.038 km³,. Perspective views in blue prisms of the (a) and (d) initial approximations and (b)-(c) 

and (e)-(f) estimated bodies. The estimated bodies shown in (b)-(c) and (e)-(f) are obtained by 

inverting the noise-corrupted data shown in Fig. B8 (grey scale maps). The maximum depths to 

the bottoms assumed for interpretation models to obtain the estimates shown in (b)-(c) and (e)-

(f) are, respectively, maxz  = 800 m and maxz  = 1000 m. The estimated body (blue prisms) in (b)-

(c) has a predicted volume pv  = 0.031 km³ and produces the predicted gravity gradient data 

shown in Figs. B8(a)-(c) (black contour maps). The estimated body (blue prisms) in (e)-(f) has a 

predicted volume pv  = 0.038 km³ and produces the predicted gravity gradient data shown in 

Figs. B8(d)-(f) (black contour maps). 
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Figure B11. Test with synthetic data produced by dipping bodies. The estimated svp   curves 

A, B and C are obtained by inverting the noise-corrupted data produced, respectively, by the 

shallow- (red prisms in Fig. B9), intermediate- (not shown) and deep- (red prisms in Fig. B10) 

bottomed bodies. The estimated body (blue prisms in Figs. B9b and c) producing the well-

defined minimum of s  on the curve A has a depth to the bottom maxz  = 350 m and a predicted 

volume pv  = 0.012 km³. The estimated bodies producing the two pinpointed ill-defined minima 

of s  on the curve B are shown in Figs. B10(b)-(c) and B10(e)-(f) (blue prisms). The estimated 

body shown in Figs. B10(b)-(c) has a depth to the bottom maxz  = 800 m and a predicted volume 

pv  = 0.031 km³. The estimated body shown in Figs. B10(e)-(f) has a depth to the bottom maxz  = 

1000 m a predicted volume pv  = 0.038 km³. The estimated body (not shown) producing the 

well-defined minimum s  on the curve C has a depth to the bottom maxz  = 550 m and a 

predicted volume pv  = 0.020 km³. 
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5. APPLICATION TO SYNTHETIC DATA 

 

We evaluate the performance of the proposed method by simulating two 

geologic settings based on a real geologic environment. The first one is based 

on the forward modeling of a gravity-gradient survey over the Vinton salt dome, 

USA, reported by Ennen & Hall (2011). The second geologic setting is based on 

the prior geologic information about the Vinton salt dome and the surrounded 

rocks. 

 

5.1. Cap rock model based on Ennen & Hall (2011) forward modeling 

 

We computed, at z  = -80 m, the xx -, xy -, xz -, yy -, yz - and zz - noise-

corrupted components of the gravity-gradient tensor (grey scale maps in Fig. 

B12) produced by a synthetic body simulating a salt-dome cap rock. To 

simulate experimental errors, all components of the gravity-gradient tensor are 

corrupted with a pseudorandom Gaussian noise with zero mean and a standard 

deviation of 5.0 Eötvös. The simulated body is based on the forward modeling 

of a gravity-gradient survey over the Vinton salt dome, USA, reported by Ennen 

& Hall (2011). This simulated salt-dome cap rock (red wire-frame body in Fig. 

B13) is a pyramid with skewed shape extending in depth from 160 m to 360 m, 

with density contrast   of 1.23 g/cm³ and volume 0.176 km³.  

We applied our method by using an interpretation model formed by an 

ensemble of L = 7 prisms, all of them with the true density contrast k  = 1.23 

g/cm³ ( 7,,1k ) and the same number of polygon vertices kM  = 16 

( 7,,1k ), which describe the horizontal cross-sections. We also assumed the 
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knowledge about the actual depth to the top of the simulated source, hence we 

set the depth to the top of the interpretation model as 0z  = 160 m. The seven 

prisms which make up the initial approximation have the same horizontal 

Cartesian coordinates kx0  = 1284 m and ky0  = 1739 m, 7,,1k , of the arbitrary 

origins. The radii forming the shallowest prism ( 1

jr , 16,,1j ) are equal to 100 

m; the radii forming the second prism  ( 2

jr , 16,,1j ) are equal to 200 m. The 

sizes of radii of the third prism up to the seventh prism are increased 

successively by adding 100 m, until the radii of the deeper prism ( 7

jr , 

16,,1j )  attain  700 m.  

We construct the estimated svp   curve (Fig. B14) by producing eight 

estimated sources, each one with a fixed maximum depth maxz  of the 

interpretation model. The maxz  varies from 300 m to 440 m, in steps of 20 m 

leading to an uncertainty of ± 10 m in the estimated depth to the bottom. Each 

one of the eight estimates produces a pair of s   and pv  (black dots in Fig. B14) 

on the estimated svp   curve. This curve presents a well-defined minimum of s , 

associated with maxz  = 360 m of the interpretation model. Fig. B13 shows the 

initial approximation (blue prisms in Fig. B13a) and two perspective views of the 

estimated salt-dome cap rock (blue prisms in Figs. B13b and c) using the 

maximum depth maxz  = 360 m to set up the interpretation model. Notice that this 

estimated salt-dome cap rock completely retrieves the geometry of the 

simulated source (red wire-frame body in Fig. B13) with the correct depth to the 

bottom ( maxz  = 360 m) and volume ( pv  = 0.177 km³). The predicted data (black 

contour maps in Fig. B12) produced by this new estimated salt-dome cap rock 
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fit acceptably the observed gravity-gradient data (grey scale maps in Fig. B12). 

The histograms of the residuals (Fig. B15) confirm the acceptance of the data 

fitting. These histograms resemble bell-shaped patterns indicating that the 

residuals of all components follow normal distributions. Moreover, the sample 

standard deviations   calculated from the residuals (Fig. B15) are very close to 

the standard deviation of 5.0 Eötvös  of the pseudorandom Gaussian noise 

realizations added to the synthetic data aiming at simulating experimental 

errors. These results show the good performance of our method in recovering  

the entire geometry of a salt-dome cap rock like the one modeled by Ennen & 

Hall (2011). 
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Figure B12. Test with synthetic data produced by a simulated salt-dome cap rock based on 

Ennen & Hall’s (2011) work. Synthetic noise-corrupted (grey scale maps) and predicted (black 

contour maps) of the (a) xx-, (b) xy-, (c) xz-, (d)yy-, (e)yz- and (f)zz- components of the gravity 

gradient tensor.  The synthetic components are produced by the simulated salt-dome cap rock 

shown in Fig. B13 (red wire-frame body). The predicted components are produced by the 

estimated body shown in Figs. B13(b) and (c) (blue prisms). 
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Figure B13. Test with synthetic data produced by a simulated salt-dome cap rock based on 

Ennen & Hall’s (2011) work. Perspective views of the simulated salt-dome cap rock (red wire-

frame body) with depth to the bottom at 360 m and volume 0.177 km³. Perspective views in blue 

prisms of the (a) initial approximation, (b) and (c) estimated body. The estimated body in (b) and 

(c) is obtained by inverting the noise-corrupted data shown in Fig. B12 (grey scale maps) and 

assuming an interpretation model with depth to the bottom maxz  = 360 m. The estimated body 

has a predicted volume pv  = 0.177 km³ and produces the predicted gravity-gradient data 

shown in Fig. B12 (black contour maps). 
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Figure B14. Test with synthetic data produced by a simulated salt-dome cap rock based on 

Ennen & Hall’s (2011) work. Estimated svp   curve obtained by inverting the noise-corrupted 

data  (grey scale maps in Fig. B12) produced by the simulated salt dome cap rock shown in Fig. 

B13 (red wire-frame body). This curve is produced by varying the depth to the bottom maxz  of 

the interpretation model from 300 m to 440 m, in steps of 20 m. The estimated body producing 

the well-defined minimum s  on the estimated svp   curve is shown in Figs. B13(b) and (c). 
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Figure 15. Test with synthetic data produced by a simulated salt-dome cap rock based on 

Ennen & Hall’s (2011) work. Histograms of the residuals between the predicted data (black 

contour maps in Fig. B12) and the noise-corrupted data (grey scale maps in Fig. B12). The 

sample mean μ and the sample standard deviation σ are shown in each histogram. The 

residuals are transformed in a dimensionless variable Z by subtracting the residual value from 

the sample mean μ and then dividing the difference by the sample standard deviation σ. P(Z) is 

the frequency curve of the variable Z. 
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5.2. Cap rock model based on the prior geologic information about the 

Vinton salt dome and the surrounded rocks 

 

We computed the xx -, xy -, xz -, yy -, yz - and zz - noise-corrupted 

components of the gravity-gradient tensor (grey scale maps in Fig. B16) 

produced by a synthetic body simulating a salt-dome cap rock. The data was 

calculated at coordinates following the same flight pattern of a real gravity-

gradient survey over the Vinton salt dome, USA (Ennen & Hall, 2011). To 

simulate experimental errors, each component of the gravity-gradient tensor is 

corrupted with a pseudorandom Gaussian noise with zero mean and a different 

standard deviation   in Eötvös (Table B1). We also simulate systematic errors 

by shifting each component of the gravity-gradient tensor by a different constant 

b  in Eötvös (Table B1). The simulated body is based on the geological 

knowledge about the region where the Vinton salt dome, USA, is located. The 

simulated cap rock extends in depth from 160 m to 460 m, with density contrast 

  of 0.55 g/cm³ and volume 0.366 km³ (red wire-frame body in Fig. B17).  

We applied our method by using an interpretation model formed by an 

ensemble of L = 10 prisms, all of them with the true density contrast k  = 0.55 

g/cm³ ( 10,,1k ) and the same number of polygon vertices kM  = 16 

( 10,,1k ), which describe the horizontal cross-sections. We also assumed 

the knowledge about the actual depth to the top of the simulated source, hence 

we set the depth to the top of the interpretation model as 0z  = 160 m. The ten 

prisms which make up the initial approximation have the same horizontal 

Cartesian coordinates kx0  = 1150 m and ky0  = 1606 m, 10,,1k , of the 

arbitrary origins. The radii forming the shallowest prism ( 1

jr , 16,,1j ) are 
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equal to 100 m; the radii forming the second prism  ( 2

jr , 16,,1j ) are equal to 

200 m. The sizes of radii of the third prism up to the tenth prism are increased 

successively by adding 100 m, until the radii of the deeper prism ( 10

jr , 

16,,1j )  attain  1000 m.  

We construct the estimated svp   curve (Fig. B18) by producing fifteen 

estimated sources, each one with a fixed maximum depth maxz  of the 

interpretation model. The maxz  varies from 300 m to 580 m, in steps of 20 m 

leading to an uncertainty of ± 10 m in the estimated depth to the bottom. Each 

one of these eight estimates produces a pair of s   and pv  (black dots in Fig. 

B18) on the estimated svp   curve. This curve presents a well-defined minimum 

of s , associated with maxz  = 420 m of the interpretation model. Fig. B17 shows 

the initial approximation (blue prisms in Fig. B17a) and two perspective views of 

the estimated salt-dome cap rock (blue prisms in Figs. B17b and c) using the 

maximum depth maxz  = 420 m to set up the interpretation model. Although this 

estimated salt-dome cap rock is associated with a well-defined minimum of s  

on the estimated svp   curve (Fig. B18), it produces a predicted data (black 

contour maps in Fig. B16) that do not fit acceptably the noise-corrupted gravity-

gradient data (grey scale maps in Fig. B16). This aspect is confirmed by the 

histograms (Fig. B19) of the residuals between the predicted (black contour 

maps in Fig. B16) and the simulated (grey scale maps in Fig. B16) noise-

corrupted gravity-gradient data. These histograms resemble bell-shaped 

patterns indicating that the residuals of all components follow normal 

distributions. Moreover, the sample standard deviations   calculated from the 



 107 

residuals (Fig. B19) are very close to the standard deviations   (Table B1) of 

the pseudorandom Gaussian noise realizations added to the synthetic data 

aiming at simulating experimental errors. However, the sample means   

calculated from the residuals (Fig. B19) are not close to zero, indicating that the 

predicted data do not fit the synthetic data which were corrupted by with 

pseudorandom zero-mean Gaussian noise. Notice that the absolute values of 

these sample means   (Fig. B19)  are very close to the absolute values of the 

constants b  (Table B1) that were added to the synthetic data aiming at 

simulating systematic errors. The most striking feature of theses histograms 

(Fig. B19) is that they correctly characterize both the experimental and the 

systematic errors. Hence, by using these histograms, we can correct the 

systematic errors from the data. This correction consists in adding each sample 

non-zero mean   calculated from the residuals (Fig. B19) to the corresponding 

component of the synthetic gravity-gradient data (grey scale maps in Fig. B16). 

This data preprocessing to correct systematic errors leads to a new set of 

components of the gravity-gradient data shown in Fig. B20 (grey scale maps). 

By inverting these corrected gravity-gradient data, we recalculate the estimated 

svp   (Fig. B21). This new svp   curve shows a well-defined minimum of s  

associated with maxz = 460 m of the interpretation model. Figs. B22(b) and (c) 

show the perspective views of the estimated salt-dome cap rock (blue prisms) 

using the maximum depth maxz  = 460 m to set up the interpretation model. This 

estimate is obtained by using the initial approximation (blue prisms) shown in 

Fig. B22(a). Notice that the estimated salt-dome cap rock (blue prisms in Figs. 

B22b and c) completely retrieves the geometry of the simulated source (red 

wire-frame body shown in Figs. B17 and B22), with the correct depth to the 
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bottom ( maxz  = 460 m) and a volume of pv  = 0.372 km³, which is very close to 

the true one (0.366 km³). The predicted data (black contour maps in Fig. B20) 

produced by this new estimated salt-dome cap rock fit acceptably the corrected 

gravity-gradient data (grey scale maps in Fig. B20).  The histograms of the 

residuals (Fig. B23) corroborate the acceptance of the data fitting. In contrast 

with the histograms in Fig. B19, that show sample non-zero means, the sample 

means   calculated from the new residuals (Fig. B23) are close to zero, 

indicating that the systematic errors were successfully removed from the data. 

These results show that our method is able to completely recover the geometry 

of a salt-dome cap rock, even in the presence of systematic errors in the data. 
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Figure B16. Test with synthetic data produced by a simulated salt-dome cap rock based on the 

geologic knowledge at the Vinton salt dome’s region. Synthetic noise-corrupted (grey scale 

maps) and predicted (black contour maps) of the (a) xx-, (b) xy-, (c) xz-, (d)yy-, (e)yz- and (f)zz- 

components of the gravity gradient tensor.  The synthetic components are produced by the 

simulated salt-dome cap rock shown in Fig. B17 (red wire-frame body). The predicted 

components are produced by the estimated body shown in Figs. B17(b) and (c) (blue prisms). 



 110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B17. Test with synthetic data produced by a simulated salt-dome cap rock based on the 

geologic knowledge aboutv the Vinton salt dome’s region. Perspective views of the simulated 

salt-dome cap rock (red wire-frame body) with depth to the bottom at 460 m and volume 0.372 

km³. Perspective views in blue prisms of the (a) initial approximation, (b) and (c) estimated 

body. The simulated salt-dome cap rock (red wire-frame body) is based on the geologic 

knowledge at the region where the Vinton salt dome, USA, is located. The estimated body in (b) 

and (c) is obtained by inverting the noise-corrupted data shown in Fig. B16 (grey scale maps) 

and assuming an interpretation model with depth to the bottom maxz  = 420 m. The estimated 

body has a predicted volume pv  = 0.326 km³ and produces the predicted gravity-gradient data 

shown in Fig. B16 (black contour maps). 
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Figure B18. Test with synthetic data produced by a simulated salt-dome cap rock based on the 

geologic knowledge about the Vinton salt dome’s region. Estimated svp   curve obtained by 

inverting the noise-corrupted data  (grey scale maps in Fig. B16) produced by the simulated salt 

dome cap rock shown in Fig. B17 (red wire-frame body). This curve is produced by varying the 

depth to the bottom maxz  of the interpretation model from 300 m to 580 m, in steps of 20 m. The 

estimated body with maxz  = 420 m produces the well-defined minimum s  on the estimated 

svp   curve and it is shown in Figs. B17(b) and (c). 
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Figure B19. Test with synthetic data produced by a simulated salt-dome cap rock based on the 

geologic knowledge about  the Vinton salt dome’s region. Histograms of the residuals between 

the predicted data (black contour maps in Fig. B16) and the noise-corrupted data (grey scale 

maps in Fig. B16). The sample mean μ and the sample standard deviation σ are shown in each 

histogram. The residuals are transformed in a dimensionless variable Z by subtracting the 

residual value from the sample mean μ and then dividing the difference by the sample standard 

deviation σ. P(Z) is the frequency curve of the variable Z. 
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Figure B20. Test with synthetic data produced by a simulated salt-dome cap rock based on the 

geologic knowledge about the Vinton salt dome’s region. Synthetic noise-corrupted data (grey 

scale maps) corrected for the effect of systematic errors (Table B1) and predicted data (black 

contour maps) of the (a)  xx-, (b)  xy-,  (c)  xz-,  (d)  yy-,  (e)  yz- and (f)  zz- components of the 

gravity gradient tensor. The systematic errors are removed by adding the sample means of the 

residuals (   in Fig. B19) to the original noise-corrupted data shown in Fig. B16 (grey scale 

maps). The predicted components are produced by the estimated body (blue prisms in Figs 

B22b and c).  
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Figure 21. Test with synthetic data produced by a simulated salt-dome cap rock based on the 

geologic knowledge about the Vinton salt dome’s region. Estimated svp   curve obtained by 

inverting the corrected noise-corrupted data (grey scale maps in Fig. B20) produced by the 

simulated salt-dome cap rock  (red wire-frame body in Figs. B17 and B22). This curve is 

produced by varying the depth to the bottom maxz  of the interpretation model from 300 m to 580 

m, in steps of 20 m. The estimated body with maxz  = 460 m produces the well-defined minimum 

of s  on the estimated svp   curve and is shown in Figs. B22(b) and (c) (blue prisms). 
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Figure 22. Test with synthetic data produced by a simulated salt-dome cap rock based on the 

geologic knowledge about the Vinton salt dome’s region. Perspective views of the simulated 

salt-dome cap rock (red wire-frame body) with depth to the bottom at 460 m and volume  0.366 

km³. Perspective views (blue prisms) of the (a) initial approximation, (b) and (c) estimated body. 

The estimated body in (b) and (c) is obtained by inverting the corrected noise-corrupted data 

shown in Fig. B20 (grey scale maps) and assuming an interpretation model with depth to the 

bottom maxz  = 460 m. The estimated body has a predicted volume pv  = 0.372 km³ and 

produces the predicted gravity-gradient data shown in Fig. B20 (black contour maps). 
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Figure 23. Test with synthetic data produced by a simulated salt-dome cap rock based on the 

geologic knowledge about the Vinton salt dome’s region. Histograms of the residuals between 

the predicted data (black contour maps in Fig. B20) and the corrected noise-corrupted data 

(grey scale maps in Fig. B20). The sample mean   and the sample standard deviation   are 

shown in each histogram. The residuals are transformed in a dimensionless variable Z by 

subtracting the residual value from the sample mean   and then dividing the difference by the 

sample standard deviation  . P(Z) is the frequency curve of the variable Z. 
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Table B1. Test with synthetic data produced by a simulated salt-dome cap rock. Each 

component of the gravity-gradient tensor shown in Fig. B16 (grey scale maps) is corrupted with 

a pseudorandom Gaussian noise with zero mean and a standard deviation σ, simulating 

experimental errors. Additionally, a constant b is added to each component of the gravity-

gradient tensor to simulate systematic errors. 

 

gravity-gradient 

component 
σ (Eötvös) b (Eötvös) 

xx 4.00 2.60 

xy 2.50 0.14 

xz 5.10 -2.00 

yy 4.10 3.60 

yz 4.70 -0.72 

zz 6.80 -6.20 
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6. APPLICATION TO REAL DATA 

 

We applied our method to interpret the Full Tensor Gravity Gradiometry 

(FTG) data acquired by Bell Geospace Inc. over the Vinton salt dome, at 

southwestern Louisiana, USA (grey scale maps in Fig. B24). The gravity-

gradient data were terrain corrected using a density of 2.2 g/cm³. This salt dome 

is located in the onshore Gulf of Mexico, which is considered an important 

region producing oil and gas for more than one century (Coker et al., 2007; 

Ennen & Hall, 2011). According to Coker et al. (2007), the Vinton salt dome is 

characterized by a massive cap rock extending above the salt rock. This cap 

rock is formed by gypsum and anhydrite which is embedded in sediments 

characterized by intercalated layers of sandstone and shale. Fig. B25 shows the 

density ranges of the principal rocks and minerals (Telford et al. 1990) present 

on the lithologies found in the study area. Following Ennen & Hall (2011), we 

assumed that the cap rock has a depth of the top at 160 m. Based on the 

density ranges of the lithologies (Fig. B25), we assumed that the surrounding 

sediments (shale and sandstone) and the salt dome have the same density 2.2 

g/cm³. This implies that the observed gravity-gradient data (grey scale maps in 

Fig. B24) are predominantly caused by the cap rock.   

We applied our method to estimate the 3-D geometry of the cap rock. We 

tested a geologic hypothesis about the Vinton salt dome and adjacent rocks in 

which the cap rock has the density   = 2.75 g/cm³ (based on Ennen & Hall, 

2011), resulting in a density contrast of 0.55 g/cm³ with the host rocks. Notice 

that this possible density of the cap rock is within the density ranges shown in 

Fig. B25. To test this hypothesis, we applied our method by using an 
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interpretation model with density contrast equal to 0.55 g/cm³. The interpretation 

model is formed by an ensemble of L = 10 prisms, each one with the same 

number of polygon vertices kM  = 16 ( 10,,1k ) describing the horizontal 

cross-sections. Based on the prior information, we also assumed the knowledge 

about the actual depth to the top of the cap rock, hence we set the depth to the 

top of all interpretation models as 0z  = 160 m. The ten prisms which make up 

the used initial approximation has the same horizontal Cartesian coordinates of 

kx0  = 3334150 m and ky0  = 442606 m, 10,,1k . Based on the synthetic 

application to interpret a simulated cap rock (Subsection 5.2), the radii forming 

the shallowest prism ( 1

jr , 16,,1j ,) are equal to 100 m and the radii forming 

the second prism ( 2

jr , 16,,1j ) are equal to 200 m. The sizes of radii of the 

third prism up to the tenth prism are increased successively by adding 100 m, 

until the radii of the deeper prism ( 10

jr , 16,,1j ) attain 1000 m. We construct 

the estimated svp   curve (Fig. B26) formed by 15 pairs of s  and pv  (black 

dots), each one produced by an estimated 3-D source with a different maximum 

depth to the bottom maxz  of the interpretation model. The value of maxz  varies 

from 300 m to 580 m, in steps of 20 m, leading to an uncertainty of ± 10 m in 

the estimated depth to the bottom. The estimated svp   curve (Fig. B26) 

presents a well-defined minimum of s  associated with an estimated 3-D cap 

rock (not shown) having maximum depth to the bottom maxz = 440 m and a 

predicted volume pv = 0.327 km³. This estimated 3-D cap rock (not shown) 

produces a predicted data (black contour maps in Fig. B24) that do not fit 

acceptably the observed gravity-gradient data (grey scale maps in Fig. B24). 
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Similar to the results shown in the Subsection 5.2,  the histograms (Fig. B27) of 

the residuals between the predicted and the observed gravity-gradient data 

confirm the unacceptable data fittings, because of the sample non-zero means 

  (Fig. B27). These sample non-zero means   (Fig. B27) are calculated from 

the residuals and they are revealing the presence of systematic errors in the 

observed data (grey scale maps in Fig. B24). By adding each sample non-zero 

mean   (Fig. B27) to the corresponding component of the gravity-gradient data 

(grey scale maps in Fig. B24), we produce corrected components of the gravity-

gradient data (grey scale maps in Fig. B28). By inverting these corrected 

gravity-gradient data, we repeat the procedure for calculating a new estimated 

svp   curve (Fig. B29). This curve shows a well-defined minimum of s  

associated with  maxz  = 460 m of the interpretation model. The estimated 3-D 

cap rock (Figs B30b and c) producing the minimum of s  on the estimated svp   

curve (Fig. B29) has a maximum depth maxz  = 460 m and a predicted volume 

pv = 0.366 km³. Fig. B30(a) shows the initial approximation used in this 

inversion. This 3-D estimated salt-dome cap rock (Figs. B30b and c) yields 

acceptable data fittings, which are confirmed by the histograms of the residuals 

shown in Fig. B31. The predicted data (black contour maps) are shown in Fig. 

B28. 

The upper part of our estimated salt-dome cap rock (Figs. B30b and c) 

has a northeast-southwest elongated form, being consistent with the strike of 

the main fault in the study area (Coker et al., 2007). We stress that this estimate 

represents a possible 3-D source that fits the observed gravity-gradient data 

over the Vinton salt dome, within the experimental errors. So, this estimated can 
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be accepted as a possible geometry of the salt-dome cap rock. To confirm this 

estimated geometry, more prior geologic information about the Vinton salt dome 

and the surrounded rocks must be introduced. 

 

Figur

e B24. Interpretation of real data over the Vinton salt dome, USA. Observed (grey scale maps) 

and predicted (black contour maps) of the (a) xx-, (b) xy-, (c) xz-, (d) yy-, (e) yz- and (f) zz- 

components of the gravity-gradient tensor. The observed data are terrain corrected by using a 

density of 2.20 g/cm³. The predicted data are produced by an estimated body (not shown). 
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Figure B25. Interpretation of real data over the Vinton salt dome, USA. The graph shows the 

density ranges and the average values of the rock types and minerals according to Telford et al. 

(1990). These lithologies are identified in the studied geologic setting reported by Ennen & Hall 

(2011). 
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Figure B26. Interpretation of real data over the Vinton salt dome, USA. Estimated svp   curve 

obtained by inverting the real data shown in Fig. B24 (grey scale maps). This curve is 

constructed by varying the depth to the bottom maxz  of the interpretation model from 300 m to 

580 m, in steps of 20 m. The estimated body (not shown) producing the well-defined minimum 

of s  on this svp   curve has a maximum depth to the bottom maxz  = 440 m and a predicted 

volume pv  = 0.327 km³.  
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Figure B27. Interpretation of real data over the Vinton salt dome, USA. Histograms of the 

residuals between the predicted data (black contour maps in Fig. B24) and the real data (grey 

scale maps in Fig. B24). The sample mean μ and the sample standard deviation σ are shown in 

each histogram. The residuals are transformed in a dimensionless variable Z by subtracting the 

residual value from the sample mean  μ and then dividing the difference by the sample standard 

deviation σ. P(Z) is the frequency curve of the variable Z. 
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Figure B28. Interpretation of real data over the Vinton salt dome, USA. Real data (grey scale 

maps) corrected for the effect of systematic errors and predicted data (black contour maps) of 

the (a) xx-, (b) xy-,  (c) xz-,  (d) yy-,  (e) yz- and (f) zz- components of the gravity-gradient tensor. 

The systematic errors are removed by adding the sample means of the residuals (μ in Fig. B27) 

to the original real data shown in Fig. B24 (grey scale maps). The predicted components are 

produced by the estimated body (Figs. B30b and c). 
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Figure B29. Interpretation of real data over the Vinton salt dome, USA. Estimated svp   curve 

obtained by inverting the corrected real data shown in Fig. B28 (grey scale maps). This curve is 

constructed by varying the depth to the bottom maxz  of the interpretation model from 300 m to 

580 m, in steps of 20 m. The estimated body (Figs B30b and c) producing the well-defined 

minimum of s  on this svp   curve has a maximum depth to the bottom maxz  = 460 m and a 

predicted volume pv  = 0.366 km³. 
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Figure B30. Interpretation of real data over the Vinton salt dome, USA. Perspective views of the 

(a) initial approximation, (b) and (c) estimated body. The estimated body in (b) and (c) is 

obtained by inverting the corrected real data shown in Fig. B28 (grey scale maps) and assuming 

an interpretation model with depth to the bottom maxz  = 460 m. The estimated body has a 

predicted volume pv = 0.366 km³ and produces the predicted gravity gradient data (black 

contour maps in Fig. B28). 
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Figure B31. Interpretation of real data over the Vinton salt dome, USA. Histograms of the 

residuals between the predicted data (black contour maps in Fig. B28) and the corrected real 

data (grey scale maps in Fig. B28). The sample mean μ and the sample standard deviation σ 

are shown in each histogram. The residuals are transformed in a dimensionless variable Z by 

subtracting the residual value from the sample mean  μ and then dividing the difference by the 

sample standard deviation σ. P(Z) is the frequency curve of the variable Z. 
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7. CONCLUSIONS  

 

We present a new gravity-gradient inversion for estimating the shape of 

an isolated 3-D geologic body, given its depth to the top and density contrast. 

Our method approximates the geologic body by an ensemble of 3-D right 

prisms which are juxtaposed in the vertical direction. All prisms have the same 

known thickness and a polygonal horizontal cross-section defined by the same 

known fixed number of vertices, which are equally spaced from 0° to 360°. The 

horizontal positions of these vertices are described in polar coordinates referred 

to an arbitrary origin located inside the polygon. By estimating the horizontal 

Cartesian coordinates of the arbitrary origins and the radii associated with all 

vertices defining the horizontal cross-section of each prism, our method 

retrieves the geometry of depth slices of the 3-D geologic body. This estimate is 

formulated as a non-linear constrained inverse problem. By inverting the same 

gravity-gradient data set, our method can obtain different estimates produced 

by interpretation models with different maximum depths. This is a consequence 

of the fundamental ambiguity involving the product of a physical property and a 

volume in the interpretation of potential-field data. To deal with this ambiguity 

and reduce the class of possible 3-D estimates compatible with the gravity-

gradient data, we used a criterion based on the relationship between the  -1 

norm of the residuals s  and the volume pv  of different estimates obtained by 

using interpretation models with different maximum depths. The estimated pv  

and s   produced by each one of these estimates are plotted one against 

another, forming an estimated svp   curve. On this curve, the estimate 

producing the minimum s  and fitting the gravity-gradient data is chosen as the 
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optimum choice of the bottom’s depth of the source. If the estimated svp   

curve shows a well-defined minimum of s , the gravity-gradient data have 

sufficient resolution for recover the geometry of the 3-D geologic body with both 

the correct volume and the correct maximum depth to the bottom. In contrast, if 

the gravity-gradient data do not have enough resolution, the estimated svp   

curve presents multiple minima of s  produced by 3-D estimated source with 

different maximum depths. In this case, among these minima of s   producing 

virtually the same data fit, the one associated with the minimum depth to the 

bottom of the source and producing an acceptable data fit is chosen as the 

optimum estimate.  

By analyzing the histograms of the residuals between the observed and 

predicted gravity-gradient data, we show that our method is able to identify 

systematic errors and to correct the gravity-gradient data for these errors. If the 

corrected gravity-gradient data have sufficient resolution our method obtains a 

stable estimate which recovers the geometry of the geologic body completely. 

On the other hand, if the corrected gravity-gradient data have insufficient 

resolution our method obtains a stable estimate which retrieves the upper part 

of the body only. In this case, the estimated 3-D source has the minimum 

volume and the minimum depth to the bottom which is required to yield an 

acceptable data fit. 

In comparison with inverse methods that estimate the density-contrast 

distribution within a user-specified grid of 3D right, juxtaposed prisms in the 

horizontal and vertical directions, our method is more computationally efficient  

because it does not require an intractable number of parameters and 

consequently does not deal with a large-scale 3-D inverse problem. Our method 
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requires neither the use of depth-weighting functions adopted as a strategy to 

estimate sources at their correct depths nor the introduction of compactness 

and homogeneity constraints on the actual sources. On the other hand, our 

method is restricted to isolated bodies and assumes the knowledge about the 

correct depth of the top and density contrast of the 3-D geologic body. 

Our method can be extended, for example, to estimate the 3-D shape of 

multiple bodies producing interfering gravity-gradient anomalies, to perform a 

joint-inversion of gravity and gravity-gradient data and to invert magnetic data. 

Additionally, in order to overcome problems with local minima, other 

optimization methods combining gradient-based and heuristic strategies could 

be employed. 
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