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SUMMARY

We have presented a joint inversion of all gravity-gradient tensor components to estimate
the shape of an isolated 3-D geological body located in subsurface. The method assumes the
knowledge about the depth to the top and density contrast of the source. The geological body
is approximated by an interpretation model formed by an ensemble of vertically juxtaposed
3-D right prisms, each one with known thickness and density contrast. All prisms forming
the interpretation model have a polygonal horizontal cross-section that approximates a depth
slice of the body. Each polygon defining a horizontal cross-section has the same fixed number
of vertices, which are equally spaced from 0° to 360° and have their horizontal locations
described in polar coordinates referred to an arbitrary origin inside the polygon. Although the
number of vertices forming each polygon is known, the horizontal coordinates of these vertices
are unknown. To retrieve a set of juxtaposed depth slices of the body, and consequently, its
shape, our method estimates the radii of all vertices and the horizontal Cartesian coordinates
of all arbitrary origins defining the geometry of all polygons describing the horizontal cross-
sections of the prisms forming the interpretation model. To obtain a stable estimate that fits the
observed data, we impose constraints on the shape of the estimated body. These constraints are
imposed through the well-known zeroth- and first-order Tikhonov regularizations allowing,
for example, the estimate of vertical or dipping bodies. If the data do not have enough in-depth
resolution, the proposed inverse method can obtain a set of stable estimates fitting the observed
data with different maximum depths. To analyse the data resolution and deal with this possible
ambiguity, we plot the £,-norm of the residuals (s) against the estimated volume (v,,) produced
by a set of estimated sources having different maximum depths. If this s x v, curve (s as a
function of v,,) shows a well-defined minimum of s, the data have enough resolution to recover
the shape of the body entirely. Conversely, if the observed data do not have enough resolution,
some estimates with different maximum depths produce practically the same minimum value
of s on the s x v, curve. In this case, the best estimate among a suite of estimates producing
equally data fits is the one fitting the gravity-gradient data and producing the minima of both
the source’s bottom depth and volume. The histograms of the residuals can be used to quantify
and remove systematic errors in the data. After removing these errors, we confirmed the ability
of our method to recover the source geometry entirely (or its upper part only), if the data have
sufficient (or insufficient) in-depth resolution. By inverting the gravity-gradient data from a
survey over the Vinton salt dome (Louisiana, USA) with a density contrast of 0.55 gcm 3, we
estimated a massive cap rock whose maximum depth attains 460 + 10 m and its shallowest
portion is elongated in the northeast—southwest direction.
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2009; Gordon et al. 2012). This first approach has frequently been

I INTRODUCTION used to interpret multiple anomalous sources with complex shapes

The vertical component of the gravity field has long been used
to retrieve the shape of 3-D (or 2-D) geological sources. Two ap-
proaches for the reconstruction of bodies from vertical component
of the gravity anomaly have usually been adopted.

The first and most straightforward approach adopts the interactive
gravity forward modelling (e.g. Oezsen 2004; Caratori-Tontini ez al.

and closely separated (either vertically and laterally) from each
other by short distances.

The second approach to obtain the shape of anomalous sources is
based on linear or non-linear gravity inversion. This approach can
be used to directly estimate either the density-contrast distribution
or the geometry of the anomalous sources. Many gravity-inversion
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methods have been developed for estimating density-contrast distri-
bution and some examples are given in Last & Kubik (1983), Guillen
& Menichetti (1984), Barbosa & Silva (1994), Li & Oldenburg
(1998), Portniaguine & Zhdanov (1999), Bertete-Aguirre et al.
(2002), Silva & Barbosa (2006), Farquharson (2008), Lelievre &
Oldenburg (2009), Silva Dias et al. (2009), Fregoso & Gallardo
(2009) and Silva Dias et al. (2011). In these gravity-inversion meth-
ods, the Earth’s subsurface is discretized into a grid of cubic cells
(2-D or 3-D) and the density-contrast distribution is estimated to re-
trieve the sources’ shapes. Other class of gravity-inversion methods
to retrieve the shape of anomalous sources estimates a set of geo-
metric parameters which approximates the anomalous source shape.
Usually, these gravity-inversion methods assume the knowledge
about the density contrast and may be grouped into two categories.
The first one estimates the depths to a lower (or upper) boundary
of a geological body by assuming the knowledge of the other one
boundary estimates, while the second category estimates the coordi-
nates of the boundary surface entirely enclosing a geological body.
Most of gravity-inversion methods in the first category have been
developed to produce depth-to-basement estimates. Examples for
depth-to-basement estimation include the spectral and non-spectral
inversion methods (see Barbosa & Silva 2011 for a complete re-
view). The spectral inversion methods for depth-to-basement esti-
mation use the Parker’s (1973) forward method to rapidly compute
the potential field anomaly of an arbitrary interface separating two
homogeneous media. By assuming the knowledge about the aver-
age depth of the basement, Guspi (1993) followed spectral inversion
to successfully obtain the depth-to-basement estimates for a vari-
ety of density contrasts. The non-spectral inversion methods for
depth-to-basement estimation discretize the sedimentary pack into
a regular grid of rectangular prisms with prescribed densities, fixed
tops and unknown thicknesses which represent the depths to the
basement. Examples of successful inversion of gravity data to esti-
mate basement relief by using non-spectral information are given in
Richardson & Maclnnes (1989), Barbosa et al. (1997, 1999), Silva
etal. (2006), Martins et al. (2010, 2011) and Silva et al. (2010). The
methods belonging to this category gave rise to plethora of gravity-
inversion algorithms. Conversely, the second category that retrieves
the shape of geological sources by estimating the coordinates of
the boundary surface entirely enclosing a geological body has led
to few gravity-inversion methods (e.g. Silva et al. 2000; Moraes &
Hansen 2001; Silva & Barbosa 2004; Wildman & Gazonas 2009;
Luo 2010; Oliveira Jr. et al. 2011).

Recently, gravity-gradient data have been used to interpret 3-D
(or 2-D) geological sources. Some interpretation methods using
gravity-gradient data follow a well-known automatic aeromagnetic
interpretation method called Euler deconvolution. These gravity-
gradient interpretation methods are suitable to locate the depth and
horizontal positions of geological bodies. Zhang et al. (2000) mod-
ified the conventional Euler deconvolution method for gravity ten-
sor gradient data. Other examples of gravity-gradient interpretation
methods in this direction are based on eigenvectors of the gravity
tensor and on Euler deconvolution (e.g. Mikhailov ez al. 2007; Beiki
& Pedersen 2010).

More recently, few gravity-gradient data inversions have been
developed not only to locate but also to delineate geological bod-
ies. To date, most of the available gradient-inversion methods esti-
mate a 3-D density-contrast distribution by assuming a piecewise
constant function defined on a user-specified grid of cells (e.g. Li
2001; Zhdanov et al. 2004). Such methods demand large amount
of prior information about the source; otherwise, the inversion pro-
duces a rough image of the source distribution whose maximum and

minimum estimated values occur at the boundary of the discretized
region. Besides, the linear gravity-gradient inversions for estimat-
ing a 3-D density-contrast distribution have the disadvantage of
dealing with intractable large-scale 3-D inversion with hundreds of
thousands of parameters and tens of thousands of data. This dis-
advantage requires computational strategies to handle with large
amount of computer memory and processing time, like that pro-
posed by Uieda & Barbosa (2012). These authors fix the value of
some user-specified cells (named seeds) and propagate its physical
properties to adjacent cells in an iterative growing scheme.

To our knowledge, few published methods solve a non-linear
gravity-gradient data inversion to retrieve the shape of an anomalous
source by estimating a set of geometric parameters which approxi-
mates the anomalous source shape. In the 2-D case, this non-linear
inversion is proposed by Ditmar (2002). In the 3-D case, Barnes &
Barraud (2012) estimate the upper surface of salt bodies by incorpo-
rating the total variation regularization and depth estimates from the
interpretation of 2-D seismic. However, there is as yet no non-linear
inversion of gravity-gradient data that estimates the 3-D boundary
surface enclosing the geological body entirely. This paper follows
this latter non-linear inversion of gravity-gradient data. Specifi-
cally, we adopted the same strategy used in Oliveira Jr. ef al. (2011),
the so-called Radial Inversion. This non-linear inversion of gravity-
gradient data eliminates most of the above-mentioned disadvantages
of linear inversion methods for estimating a 3-D density-contrast
distribution. Like Oliveira Jr. et al. (2011), we approximate the 3-D
source by a set of vertically stacked right prisms with known thick-
nesses and density contrasts. Each prism has a polygonal horizontal
cross-section whose vertices are described by polar coordinates re-
ferred to an origin within the polygon. The horizontal Cartesian
coordinates of this origin and the radii of the vertices describing the
horizontal cross-sections of all prisms are the parameters to be esti-
mated by the non-linear joint inversion of all gravity-gradient tensor
components. We used a wide variety of regularizing constraints to
obtain stable solutions. Here, we developed a new criterion for ana-
lyzing the data resolution and determining the estimate having both
the optimum depth to the bottom and the optimum volume. Our
criterion is based on the curve between the volume and the £,-norm
of the data-misfit produced by a set of estimated sources with dif-
ferent tentative maximum depths. The mathematical approach used
here differs from that used by Oliveira Jr. et al. (2011) and makes
it feasible to be applied to multiple potential-field data sets. Finally,
tests on synthetic gravity-gradient data and on field data collected
over the Vinton salt dome, southwest Louisiana, USA, confirm the
potential of our approach.

2 METHODOLOGY

Let g*# the N*#-dimensional vector whose ith element is the o8-
component gfﬂ of the gravity-gradient tensor (grey scale maps in
the upper part of Fig. 1a) measured at the point (x;, y;, z;). Let us
assume that these N*? observed gravity-gradient data are produced
by a 3-D outcropping source (or a buried source, but with a known
depth to the top at zo) confined beneath the Earth’s surface (dark
grey volume in the lower part of Fig. 1a). We assume that the density
contrast p between the geological source and the host rocks is either
constant or variable along the vertical direction. To obtain the 3-D
source shape, we approximate the volume of the source by a set of
L vertically juxtaposed 3-D prisms (light grey prisms, identified by
P¥, k=1,...,L, in Fig. la), like Oliveira Jr. et al. (2011).
The density contrast of each prism, ok, k=1,..., L,is assumed
constant and known. Each prism has a constant and known
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Figure 1. Schematic representation of the interpretation model. (a) Observed
by the 3-D source (dark grey volume) limited by the closed surface S. The interpretation model is formed by L juxtaposed prisms P¥,
grey). (b) The kth prism P¥ with thickness dz and M* vertices described by polar coordinates (rj.‘ 05, =1,
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2"V and g’¥ components of the gravity gradient tensor (grey scale maps) produced

k=1,...,L, (light

M k=1,..., L (white dots), referred to

an arbitrary origin O¥ (grey dot) with horizontal Cartesian coordinates xé‘ and y(’)‘ (black dot).

thickness dz and a horizontal cross-section described by a polygon
with a fixed number M*, k=1,..., L, of vertices (white dots in
Fig. 1b) equally spaced from 0° to 360°, whose sides approximately
describe the edges of horizontal depth slices of the source. The
vertices of the polygon are described in polar coordinates referred
to an arbitrary origin O* (grey dot in Fig. 1b) within the polygon.
The radii of the vertices (r j=1,..., M k =1,...,L) and
the horizontal Cartesian coordmates (x0 and Ve, k=1,...,L)of
the arbitrary origins O, k =1, ..., L, of the ensemble of the L
vertically stacked prisms are arranged in the M-dimensional vector
m, M =2L + zMA which will be estimated from the observed

gravity- gradlent data set. For convenience, we used the same number
of vertices M*, k = 1, ..., L, for all prisms forming the interpreta-
tion model.

The observed data gf‘ﬂ can be approximated by the sum of the
gravitational effect predicted by the L vertically stacked 3-D prisms
(light grey prisms in Fig. la) setting up the interpretation model,
that is:

L
d*¥(m) = X:ff"S (x5, v, 08, 05 28, dz), i=1,...

k=1

where r* and 6 are the M*-dimensional vectors containing, respec-
tively, the radii r} and angular coordinates 6§ = (j — 1)27 /M,
j=1,....,M" k=1,..., L, of the kth prism’s vertices (Fig. 1b).
The non-linear function /7 (r%, x£, vk, 0%, p*, z*, dz) is based on
Plouff (1976, eq. 9) to calculate the predicted oB-component of
the gravity-gradient tensor, at the ith observation point (x;, y;, z;),
produced by the kth prism P¥ (Fig. 1b), which has the depth to the
top given by z¥ = zy + (k — 1)dz.

Let ¥*(m) be the data-misfit function which measures the
squared £,-norm of the difference between the observed and pre-
dicted a-component of the gravity gradient tensor, that is,

Y’ (m) =

|| d*(m) — 2

Nep

where d*#(m) is the N*#-dimensional vector whose ith element d;" s
is given by eq. (1) and w* is a normalizing factor defined as

w = Ner

== 3)
le1,

The role of these weights (eq. 3) is to deal with data sets with
different orders of magnitude.
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The total data-misfit function W(m) is defined as the sum of
the individual data-misfit functions (eq. 2) for each one of the oS-
components of the gravity tensor, that is,

W(m) = ¥ (m) + ¥ (m) + ¢ (m) + ¥ (m)
+ ¥*(m) + ¥ (m). @

The total data-misfit function given in eq. (4) holds when all
components of the gravity-gradient tensor are considered. If some
component is not considered, the practical procedure is to set up
the respective normalizing factor (eq. 3) as zero. For example, if
the xy- and yy-components are not considered, the interpreter must
assign null values to the normalizing factors w*’ and w*” (eq. 3).

The non-linear inverse problem of estimating the parameter vec-
tor m that minimizes the total data-misfit function W(m) (eq. 4)
is an ill-posed problem because the solution is neither unique nor
stable. To transform this problem into a well-posed problem, we
formulate a constrained non-linear inversion to obtain a 3-D shape
of a geological body by minimizing

6

F(m) = ¥(m)+p Y o'p'(m), (5a)
=1

subject to

Muyin; < Mj < Mpaxj, ]=157M (Sb)

In the inequality constraints (eq. 5b), the m i, ; and m,,y ; are ex-
pressing the lower and upper bounds, respectively, to the jth element
m; of the parameter vector m. These bounds (7yin; and M,y ;)
both on the radii of all vertices of all prisms (rj’.‘, j=1,..., M,
k=1,...,L) and on the horizontal Cartesian coordinates of all
arbitrary origins (xf, y&, k =1, ..., L) are defined element by ele-
ment by the interpreter based on either the horizontal extent of the
gravity gradient data or the geological knowledge about the studied
area. In eq. 5(a), 1 is the regularizing parameter and o* defines the
weight of the ¢th constraining function ¢‘(m), £ =1,..., 6, pro-
posed by Oliveira Jr. et al. (2011). These six constraining functions
(from now on named constraints) are defined on parameter space as
follows:

(1) ¢'(m): Smoothness constraint on the adjacent radii defining
the horizontal section of each prism—This constraint imposes that
adjacent radii within each prism must be close to each other. So, this
constraint forces the estimated prisms to present a circular shape.

(2) ¢>(m): Smoothness constraint on the adjacent radii of ad-
jacent prisms—This constraint imposes that adjacent radii within
vertically adjacent prisms must be close to each other. Then, this
constraint forces all estimated prisms to present a similar shape.

(3) ¢*(m): The source’s outcrop constraint—In the case of out-
cropping sources, this constraint imposes that the estimated hori-
zontal cross-section of the shallowest prism must be close to the
known outcropping boundary.

(4) ¢*(m): The source’s horizontal location constraint—In the
case of outcropping sources, this constraint imposes that the esti-
mated horizontal Cartesian coordinates of the arbitrary origin within
the shallowest prism must be as close as possible to the known
horizontal Cartesian coordinates of the outcropping portion of the
source.

(5) ¢°(m): Smoothness constraint on the horizontal position of
the arbitrary origins of adjacent prisms—This constraint imposes
that the estimated horizontal Cartesian coordinates of vertically ad-
jacent prisms must be close to each other. Hence, this constraint

forces smooth horizontal displacements between all vertically adja-
cent prisms.

(6) ¢°(m): Minimum Euclidian norm constraint on the adjacent
radii within each prism—This constraint imposes that all estimated
radii within each prism be close to null values.

Estimating the vector m (the caret denotes estimate) by solv-
ing the constrained nonlinear inverse problem defined in eq. (5)
is accomplished by Marquardt’s (1963) method, incorporating the
Gauss—Newton approximation of the Hessian matrices at each it-
eration. This algorithm is fully described in Silva et al. (2001)
and Silva Dias et al. (2007) and the inequality constraints (eq. 5b)
are introduced through a homeomorphic transformation (Barbosa
et al. 1999). Finally, in order to improve the convergence of the
non-linear optimization, we adopt a preconditioning strategy. This
preconditioning is equivalent to multiply, at each iteration, the misfit
functions ¥*#(m) (eq. 2), o = xx, Xy, xz, yy, yz, zz, by the ratio
of the total number of parameters M to the trace of the Hessian
matrix of the function ||d*#(m) — g*/|3.

To obtain a stable solution which retrieves the shape of the source,
we adopted the same practical procedure described in Oliveira
Jr. et al. (2011). It follows that we obtain a set of O estimates
my, ..., My, each one estimated by inverting gravity-gradient ob-
servations corrupted with different Gaussian pseudo-random noise
sequences with zero mean and a specified standard deviation. Then,
we compute the sample mean vector m and the sample standard
deviation vector 6. Here, m is an M x 1 vector whose ith element
m;, i = 1,..., M,is the sample mean of a set of QO estimates of the
ith elements of iy, k = 1,..., Q,and é isan M x 1 vector whose
ith element 6;, i = 1, ..., M, is the sample standard deviation of
a set O estimates of the ith elements of iy, £k =1,..., Q. The
sample mean vector m is assumed to be a stable solution of the
source’s shape if all sample standard deviations (6;,i = 1, ..., M)
are smaller than an interpreter-specified value. This value depends
on the noise level and (or) spatial distribution of the observations. In
this work, we empirically established that the sample mean vector
m is a stable solution of the source’s shape if all sample standard
deviations (6;,7i = 1, ..., M) are smaller than 4 per cent of its cor-
responding sample mean.

3 CRITERION FOR DETERMINING
THE ESTIMATE HAVING THE
OPTIMUM DEPTH TO THE BOTTOM

In Section 2, we established an interpretative model formed by an
ensemble of L prisms (Fig. 1a), with a known density contrast and
a constant and known thickness dz. The shallowest prism has the
depth to the top equal to z, that presumably coincides with the top
of the true geological source. These variables (L, dz and z,) define
the maximum depth to the bottom z,,,x of the estimated body by

Zmax = Zo + (L : dZ) (6)

After setting up the interpretation model with a fixed depth to
the bottom z,,, (eq. 6), our method obtains a stable estimate m of
the 3-D shape of the source by applying the practical procedure de-
scribed in Section 2. If the data have enough in-depth resolution, the
method produces a stable estimate m that completely recovers the
geometry of the true source and fits the data. Otherwise, the method
can produce different stable estimates m that fit the data as well,
each one with different depths z .« for the interpretation model. To
analyse the data resolution and overcome this non-uniqueness, we
developed a new criterion for determining the best one among a set
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of estimates having different maximum depths. This estimate can
retrieve the true depth to the bottom of the source if the observed
gravity-gradient data have enough in-depth resolution. Otherwise,
the estimated source retrieves the minimum depth to the bottom
required to recover the upper part of the source and to produce an
acceptable data fit. This data-resolution analysis and the posterior
choice of the estimate having the optimum maximum depth is done
by new criterion based on the relationship between the estimated
volume and the ¢,-norm of the residuals produced by a set of esti-
mated sources with different maximum depths.

This criterion for determining the optimum depth-to-bottom es-
timate of the source differs from the one developed by Oliveira Jr.
et al. (2011) because the latter was deduced from Gauss’ theorem
and can be applied in gravity data only. By handling with gravity-
gradient data, we cannot use Gauss’ theorem, and thus we cannot use
the Oliveira Jr. ef al’s (2011) criterion. Here, the new mathematical
development of the criterion for determining the optimum depth-
to-bottom estimate of the source makes it feasible to be applied
not only to gravity-gradient data but also to multiple potential-field
data (i.e. gravity, gravity-gradient, magnetic and magnetic-gradient
data). In this way, this new criterion is more robust than the one
developed by Oliveira Jr. ef al. (2011).

3.1 Relationship between the predicted volume v,
and the ¢,-norm s of the residuals

In this subsection, we present the theoretical relationship between
the volume v, of an estimated source (the predicted volume) and
the £,-norm s of the residuals between the observed and the pre-
dicted data. First, let g;w, aff = xx,xy,xz,yy, yz, zz, be the aff-
component of the gravity tensor field measured at the i th observation
point (x;, y;, z;). Consider that gfﬁ is produced by a 3-D geological
source located at subsurface, with constant density contrast p and
defined by a volume v, (continuous black line in Fig. 2). Let us
suppose that this geological source is approximated by an estimated
homogeneous source with the same constant density contrast p and
with a predicted volume v, (dashed black line in Fig. 2). This ap-
proximation of the true geological source produces, at the same ith
observation point, a predicted component of the gravity-gradient

® (X;, Vi» Z;)

true volume vy ——
predicted volume Vp ===

Figure 2. 2-D sketch of the true and predicted volumes. The gravity-
gradient components produced by a homogeneous geological source with
volume vg (continuous black line) are measured at the observation point
(xi, vi, zi). The gravity-gradient components produced by a homogeneous
estimated source with volume v, (dashed black line) are computed at the
same observation point (x;, y;, z; ). The difference between the true (vo) and
the predicted (v,) volumes is displayed as grey area.
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tensor d,f’ﬁ(vp), af =xx,xy,xz,yy, yz, zz, that can be described
by

@) =0 [[[ e €. )

Up

where G4 (§,, &), af = xx, xy, xz, yy, yz, zz, s the Green’s func-
tion associated with the oS-component of the gravity gradient ten-
sor, &, is the position vector of the ith observation point and the
integration is conducted with respect to the variable & denoting the
position vector of an elementary volume inside v,. By assuming
that g’ = d*(vy) and v, = vy + Av, where Av (grey region in
Fig. 2) is a small enough volume, then the predicted data d" o »)
can be considered as an approximation of the observed data g,‘.’ﬂ .
This approximation can be represented by a Taylor’s expansion of
first order about vy, leading to

8 % L) (v, = ) )
dv

where Ad” =d*(v,) — g and Ld"(vy) is the first-order
derivative of the a8-component of the gravity gradient tensor eval-
uated at vg. Eq. (8) shows that the linear relationship between Ad;" ;
and v,, calculated at a fixed observation point (x;, y;, z;), depends
on the derivative < d" P (o). If L #(vy) is positive, the linear re-
lationship between Ad;” # and v » has a positive angular coefficient
and vice versa. The relationship between Ad;’ # and v, can be il-
lustrated by using the 2-D sketches shown in Fig. 3. In Fig. 3(a),
the predicted data (dashed lines) represent a situation in which the
predicted volume v, is smaller than the true volume vy. In opposi-
tion, the predicted data shown in Fig. 3(b) (dashed lines) represent
a situation in which the predicted volume v, is greater than the true
volume vy. Fig. 3(c) exemplifies the linear relationship between
Ad” and v, calculated at the position / of the 2-D sketches shown
in Figs 3(a) and (b). Similarly, Fig. 3(d) exemplifies the linear re-
lationship between Ad;” and v, calculated at the position 77 of
the 2-D sketches shown in Figs 3(a) and (b). In Figs 3(c)
and (d), the region A represents the situation illustrated in Fig. 3(a),
where the volume v, is smaller than the true volume v,. Conversely,
the region B represents the situation illustrated in Fig. 3(b), where
the volume v, is greater than the true volume vy. This depen-
dence of the signal of the angular coefficient of the linear relation-
ship between v, and Ad;'ﬂ , calculated at the ith observation point
(xi, yi, zi), disappears if we plot the predicted volume v, against
(Ad P )? (instead of Ad}” b ). The resulting curve is a parabola whose
minimum (Adf"s )? occurs when the predicted volume v, is equal to
the true volume vy (Fig. 3e). This is because by squaring both sides
of eq. (8), we have

(ALY = B (v, — vy)’, ©9)

where g = [%d;’ﬁ(vo)]z. This equation shows that (Ad™”)? = 0
at v, = v, (Fig. 36),

If we calculate, for each observation point (x;,y;,z;), i =
1,..., N, the (Ad™")> x v, curve (Ad”)? as function of v,) by
using eq. (9) and stack them, the resulting curve is still a parabola.
This stack is equivalent to plot the predicted volume v, against the
£,-norm of the residuals between the predicted data d[“ﬂ (vp) and the
observed gravity-gradient data gf’ﬁ ,i=1,..., N, This norm can
be given by

Nuﬁ

s — Nlaﬁ > (ad”)

i=1

2

(10)
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gn/f observed data aff ) observed data

predicted data —--- ,’é'\‘ predicted data —---
1 L \

Adiaﬂn Adia/jn
B A
Vo vy Vo V:
VA B
(c) (d)
(ad s
Vo v; Vo v;

(e) ()

Figure 3. Sketches of the linear relationships and the parabolic shape of
the s x v, curve. The observed gravity-gradient component shown in (a)
and (b) (solid line) is produced by a homogeneous geological source with
volume vy. (a) Predicted gravity-gradient component (dashed line) produced
by an estimated source with volume v, < vg. (b) Predicted gravity-gradient
component (dashed line) produced by an estimated source with volume v, >
vo. (¢) and (d) show the linear relationship between Adf’ B and v, calculated,
respectively, at the positions / and // pinpointed in (a) and (b). The regions
A and B displayed in (c) and (d) represent, respectively, the situations in
which v, < vg (a) and v, > vo (b). (¢) and (f) show, respectively, the
(Aaf,fw)2 x v, and the s x v, curves calculated at an ith observation point.
The characteristic parabolic shape of these curves does not depend on the
position where they are calculated.

By substituting eq. (9) into eq. (10), we obtain

s~ P (v, — vo)z, (11)

pap _ (L NP g qep _
where B = {7 ; [5d;" ()]}, aB =xx,xy,xz, ¥y, yz, 2z.

Mathematically, eq. (11) is a parabola whose minimum (s*¢ = 0)
occurs at v, = vy. In comparison with the (Adf‘ 4 ) x v, curve
(eq. 9), which is calculated at a fixed observation point (x;, i, z;),
the s*¥ x v, curve (eq. 11), with s*# as a function of v,, has a dif-
ferent curvature; however, the minimum s still occurs when the
predicted volume v, is equal to the true volume v,.

By combining all components of the gravity tensor, we define
the ¢,-norm of the residuals between the observed and predicted

gravity-gradient data as
§ = WS 4 wTsY 4 w s 4 ws? 4w + wZ:SZZ, (12)

where w*, af = xx, xy, xz, yy, vz, zz, is given by eq. (3). Note
that this ¢,-norm (eq. 12) is equal to the total data-misfit function
W(m) (eq. 4). Subsequently, by substituting the ¢,-norm of the
residuals s** (eq. 11) into eq. (12), we obtain

s R B(v[7 — )%, (13)

Where B — wXXBX.\’ + waB.\’y + wXZﬁXZ + wyyBV_V + wyZByZ _|_
w* B, with B, aff = xx, Xy,xz,yy,yz,zz, being the cur-
vatures in eq. (11). As pointed out before in Section 2, the
normalizing factor w*? is assigned a null value if the corresponding
aBf-component of the gravity gradient tensor is not used (or
unavailable). In comparison with the (Adf"g )> x v, curve (eq. 9 and
Fig. 3e) and the s*/ x v, curve (eq. 11), the s x v, curve (eq. 13
and Fig. 3f) has a different curvature; however, the minimum s still
occurs when the predicted volume v, is equal to the true volume v;.
The s x v, curve (s as a function of v,) is schematically illustrated

in Fig. 3(f).

3.2 Relationship between the s x v, curve and the depth to
the bottom z,,.x Of the interpretation model and practical
procedure for constructing the estimated s x v, curve

Let us assume that the gravity tensor anomaly is caused by an iso-
lated body with a constant density contrast with the host rocks and
having a known depth to the top. In this case, we can expect that
when z,,,, is smaller than the true depth to the bottom of the source,
the absolute values of the predicted gravity tensor data will under-
estimate the absolute values of the observed gravity tensor data (as
shown in Fig. 3a). Conversely, If z,, is greater than the true depth
to the bottom of the source, the absolute values of predicted gravity
tensor data will overestimate the absolute values of the observed
gravity tensor data (as shown in Fig. 3b). Finally, if z,,, coincides
with the true depth to the bottom of the source, the predicted grav-
ity tensor data will be approximately equal to the observed gravity
tensor data and a minimum value of the £,-norm of the residu-
als s given in eq. (12) is expected. This minimum value of s is
schematically shown in Fig. 3(f). In this way, by varying the thick-
ness of all prisms forming the interpretation model (dz, in eq. 6),
and consequently, varying the maximum depth to the bottom of
the interpretation model (z,.x, in €q. 6), we construct an estimated
s x v, curve similar to the theoretical s x v, curve (Fig. 3f). The
tentative value for z,,,, producing the smallest data-misfit measure
s on the estimated s x v, curve is an optimum estimate of the depth
to the bottom of the source.

In practice, we compute the estimated s x v, curve as follows.
First, we establish the depth to the top z(, the number of prisms L, a
small value for the thickness dz of all prisms and by using eq. (6), we
calculate the depth to the bottom z,,,x of the interpretation model. By
assuming the correct density contrast p of the geological source,
we estimate a stable parameter vector m by using the proposed
inverse method (eq. 5). Next, by using the «8-components, «ff =
XX,Xy,xz,yy, yz, zz, of the gravity-gradient tensor predicted by
the estimated source, we compute the ¢,-norm of the residuals s
given in eq. (12). Finally, we plot s against the volume v, of the
estimated source, producing the first point of the estimated s x v,
curve. This procedure is repeated for increasingly larger values of
the thickness dz of all prisms forming the interpretation model, and
consequently, for increasingly larger values of bottom depth z,x
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of the interpretation model. In practice, the estimated s x v, curve
does not have the perfect parabolic shape shown in Fig. 3(f). This
departure of the estimated s x v, curve from the theoretical s x v,
curve (eq. 13) can be attributed to (i) large differences between
the predicted volume v, and the true volume v,, which violates
the Taylor’s expansion described by eq. (8); (ii) the inadequacy
of the interpretation model in retrieving the true geological body
and then the estimated source does not fit acceptably the observed
data; (iii) the presence of noise in the observed data and; (iv) the
loss of in-depth resolution of the gravity-gradient data, which is
inherent in the nature of potential-field data. Among these causes
for the discrepancies between the estimated and theoretical s x v,
curves, the last one can be used in our favour for identifying if
the data have enough in-depth resolution. If they do, the method
can recover completely the geometry of the true source; otherwise,

Horizontal coordinate x (km) Horizontal coordinate x (km)

Horizontal coordinate x (km)

Horizontal coordinate y (km)

3-D radial gravity gradient inversion 7

the method produces an estimate having the minimum depth to the
bottom required to fit the data. The practical use of the estimated
s x v, curve will be shown in synthetic tests.

4 APPLICATIONS TO SYNTHETIC DATA

4.1 Numerical validation of the estimated s x v, curve for
determining the true (or minimum) depth to the bottom of
the source

To validate the theoretical behaviour of the s x v, curve and its
utility in completely retrieving the geometry of the true source, with
correct source’s bottom and volume, we computed the synthetic
noise-free (not shown) and noise-corrupted data (grey scale maps
in Fig. 4) of the xx-, xy-, xz-, yy-, yz- and zz-components of

(Edtvés)

Horizontal coordinate y (km)

Figure 4. Synthetic noise-corrupted (grey scale maps) and predicted (black contour maps) (a) xx-, (b) xy-, (¢) xz-, (d) yy-, (¢) yz- and (f) zz-components
of the gravity-gradient tensor. The synthetic components are produced by the simulated body shown in Fig. 5 (red prisms) and the predicted components are

produced by the estimated body shown in Figs 5(b) and (c) (blue prisms).
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Figure 5. Perspective views of the simulated body (red prisms) with depth to the bottom of 450 m and volume of 0.8 km?. Perspective views in blue prisms of
the (a) initial approximation, (b) and (c) estimated body. The estimated body in (b) and (c) is obtained by inverting the noise-corrupted data shown in Fig. 4
(grey scale maps) and assuming an interpretation model with depth to the bottom zmax = 450 m. The estimated body has a predicted volume v, = 0.8 km? and

produces the predicted gravity gradient data shown in Fig. 4 (black contour maps).

the gravity-gradient tensor. In this test, each component contains
N*# = 681, af = xx,xy, xz, yy, yz, 2z, observations irregularly
distributed on plane z = 0 m. The synthetic data are corrupted with
an uncorrelated pseudo-random Gaussian noise with zero mean
and standard deviation of 3.0 E6tvés. These data are produced by a
single homogeneous source with a density contrast p of 1.0 gcm™>
relative to the background and a volume of 0.8 km? (red prisms
in Figs Sa—c). The source has maximum horizontal dimension of
2400 m and top and bottom at 150 and 450 m, respectively.

We applied the proposed inverse method to both synthetic noise-
free (not shown) and noise-corrupted data (grey scale maps in
Fig. 4). In both applications, we used an interpretation model formed
by an ensemble of L = 5 prisms, all of them with the true den-
sity contrast p¥ = 1.0gem™ (k =1, ..., 5) and the same number
of polygon vertices M* = 16 (k =1, ..., 5), which describes the
horizontal cross-sections. We also assumed the knowledge about
the actual depth to the top of the simulated source; hence, we set
the depth to the top of the interpretation model as z; = 150 m.
The five prisms which make up the initial approximation used
in both applications have the same horizontal Cartesian coordi-
nates of the arbitrary origins of xf = 0.0m and y} = 0.0m for all
k=1,...,5. All vertices forming these prisms have the same radii
r}f: 1000m, j =1,...,16,k=1,...,5.

By varying only the depth to the bottom z,,,,« of the interpretation
model, we applied the proposed inverse method to the synthetic

noise-corrupted data (grey scale maps in Fig. 4) and produced five
estimates. The value of z,,, varies from 350 to 550 m, in steps
of 50 m, which lead to an uncertainty of £25m in the estimated
depth to the bottom. We used all the constraining functions de-
scribed in Section 2, except for the third and fourth constraints
(named source’s outcrop constraint and source’s horizontal loca-
tion constraint, respectively). In all these inversions, the lower and
upper bounds for all radii forming all prisms of the interpreta-
tion model are 500 and 1300 m, respectively. Similarly, the lower
and upper bounds for all horizontal Cartesian coordinates x§ and
v, k=1,...,5, are —1000 and 1000 m, respectively. Figs 5(b)
and (c) show perspective views of the estimated 3-D source (blue
prisms) with z,,,x = 450 m, which produces the predicted compo-
nents of the gravity-gradient tensor shown in Fig. 4 (black contour
maps) and has a predicted volume v, of 0.8km?®. The used ini-
tial approximation is shown in Fig. 5(a) (blue prisms). Each one
of the five estimates obtained with the proposed method produces
a £,-norm of the residuals s (eq. 12) and a predicted volume v,
forming a point on the estimated s x v, curve represented in Fig. 6
by open circles. On this curve, the estimated 3-D source shown
in Fig. 5 is associated with the minimum s, which, in turn, is ob-
tained by using a maximum depth z,,,x = 450m for the interpre-
tation model. This estimated s x v, curve (open circles in Fig. 6),
which is obtained by inverting the noise-corrupted data (grey scale
maps in Fig. 4), suggests that the proposed method can retrieve
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Figure 6. Estimated s x v, curves obtained by inverting the noise-free
(black dots) and noise-corrupted (open circles) data produced by the sim-
ulated body shown in Fig. 5 (red prisms). These curves are produced by
varying the maximum depth to the bottom zn,x of the interpretation model
from 350 m to 550 m, in steps of 50 m. The estimated body producing the
well-defined minimum s on the s x v, curve (open circles) obtained with
the noise-corrupted data (grey scale maps in Fig. 4) is shown in Figs 5(b)
and (c).

the geometry of the simulated source (red prisms in Fig. 5) com-
pletely. This fact is confirmed by Figs 5(b) and (c), which show
two views of the estimated source (blue prisms) that retrieves the
geometry of the simulated source (red prisms) completely. Note that
in this synthetic test, the best depth-to-the-bottom (450 &+ 25 m) and
source volume (0.8 km?) estimates are equal to the true ones.

By applying the proposed method to the noise-free data (not
shown), we produced a similar s x v, curve (black dots in Fig. 6)
by varying the z,,x from 350 to 550 m, in steps of 50 m. Similarly to
the estimated s x v, curve obtained by using noise-corrupted data
(open circles in Fig. 6), this curve (black dots in Fig. 6) exhibits
a well-defined parabolic shape. The only difference is the disloca-
tion along the s axis, showing the robustness of the method to the
presence of noise. Likewise, the minimum of s on both estimated
s x v, curves (Fig. 6) are associated with zy, = 450 m and vol-
ume v, = 0.8km>. The estimated sources (blue prisms) using the
maximum depth z,,,, = 450 m, for both noise-free (not shown) and
noise-corrupted (Figs 5b and c¢) data, recover very well the geometry
of the true simulated source (red prisms in Fig. 5).

Note that the estimated s x v, curves obtained by using both
noise-free data (black dots in Fig. 6) and noise-corrupted data (open
circles in Fig. 6) confirm the quadratic relationship between the es-
timated source volume v, and the £,-norm of the residuals s, which
were described in Section 3. Even considering the departure from
s = 0 E6tvos caused by the presence of noise in data, these curves
clearly show parabolic shapes whose minimum s occur when the
bottom depth of the interpretation model coincides with the true
depth to the bottom of the source. In this particular case, the consis-
tency of the estimated s x v, curves with the theoretical parabolic
shape of the s x v, curve can be attributed to the fact that we are
dealing with an ideal synthetic test. This ideal test is character-
ized by the following factors: (1) the adequacy of the interpretation
model to retrieve the simulated source and (2) the sufficient res-
olution of the gravity-gradient data set to resolve the simulated
source.

3-D radial gravity gradient inversion 9
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Figure 7. The estimated s x v, curves A, B and C are obtained by inverting
the noise-corrupted gravity-gradient data produced, respectively, by the sim-
ulated shallow-, deep- and intermediate-bottomed bodies (not shown). The
well-defined minima s on the curves A and C disclose the enough resolution
of the data sets to retrieve completely the simulated shallow (with depth to the
bottom at 350 m and volume 0.012km?) and intermediate (with depth to
the bottom at 550 m and volume 0.020 km?) bottomed bodies, respectively.
The ill-defined minimum s on the curve B discloses the insufficient resolu-
tion of the data set to retrieve completely the simulated deep-bottomed body
(with depth to the bottom at 1000 m and volume 0.038 km?).

These results confirm numerically the theoretical basis of the
criterion for estimating not only a source having the optimum depth
to the bottom, but also having the optimum volume, as described
in Section 3. In both simulated cases (noise-free and noisy data),
the estimated source producing the minimum s on the s x v, curve
(Fig. 6) has the depth to the bottom (z.x = 450 £ 25 m) and the
volume (v, = 0.8 km?*) equal to the true ones.

To illustrate the utility of the s x v, curve in recovering, at most,
the lower-bound estimates of the source’s depth to the bottom and of
the source’s volume, we simulated three synthetic gravity-gradient
data sets (not shown). Each data set is produced by a single outcrop-
ping dipping source. Here, these three sources (not shown) have the
same horizontal dimensions and the same physical property (den-
sity 1.0 gcm™3). The only difference between them is the depth to
the bottom. These three simulated sources are: shallow (with depth
to the bottom at 350 m and volume 0.012 km?), intermediate (with
depth to the bottom at 550 m and volume 0.020 km?) and deep (with
depth to the bottom at 1000 m and volume 0.038 km?) bottomed dip-
ping sources. By inverting each data set, we obtain the estimated
s x v, curves A, B and C (Fig. 7). The well-defined minima of s on
thes x v, curves A and C (Fig. 7), which are produced, respectively,
by the shallow- and intermediate-bottomed sources (not shown), re-
veal that the gravity-gradient data produced by these sources have
enough resolution to estimate both the true depth to the bottom and
the true volume of these simulated sources. In contrast, the s x v,
curve B (Fig. 7) produced by the deep-bottomed source (not shown)
reveals multiple minima of s, which are associated with z,,,, greater
than or equal to 800 m. In this case, the estimated s x v, curve B
(Fig. 7) can be used to determine an estimated source having the
minimum depth to the bottom (z,,,x = 800 m) and the minimum vol-
ume (v, = 0.031 km?) needed for producing an acceptable gravity-
gradient data fit. Thus, the ill-defined minimum of s on the s x v,
curve B indicates that in comparison with the gravity-gradient data
produced by the shallow- and intermediate-bottomed bodies, the
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Figure 8. Synthetic noise-corrupted (grey scale maps) and predicted (black contour maps) (a) xx-, (b) xy-, (c) xz-, (d) yy-, (e) yz- and (f) zz-components of
the gravity-gradient tensor. The synthetic components are produced by the simulated salt-dome cap rock shown in Fig. 9 (red wire-frame body). The predicted
components are produced by the estimated body (blue prisms) shown in Figs 9(b) and (c).

gravity-gradient data produced by the deep-bottomed body do not
have enough in-depth resolution. The estimated s x v, curve B
(Fig. 7) shows that it is not possible to retrieve the geometry of
the deep-bottomed body at depths greater than 800 m. This result
confirmed numerically that our criterion for determining the lower
bounds for both the source’s bottom and its volume, based on an
ill-defined minimum value of s on the s x v,, curve, is sound.

We stress that all of the above results were obtained by assuming
the knowledge about the depth to the top and density contrast of the
simulated sources.

4.2 Simulating a real-world scenario

We computed the xx-, xy-, xz-, yy-, yz- and zz-noise-corrupted
components of the gravity-gradient tensor (grey scale maps in

Fig. 8) produced by a synthetic body simulating a salt-dome cap
rock. This simulated gravity-gradient survey follows the same
flight pattern of an airborne gravity-gradient survey over the Vin-
ton salt dome, USA (Ennen & Hall 2011). In this test, each
component contains 3196 observations, totalling 19176 mea-
surements. To simulate experimental errors, each component of
the gravity-gradient tensor is corrupted with an uncorrelated
pseudo-random Gaussian noise with zero mean and a differ-
ent standard deviation o in Eotvos (Table 1). We also simu-
late systematic errors by shifting each component of the gravity-
gradient tensor by a different constant b in Eotvos (Table 1).
The simulated cap rock extends in depth from 160 to 460 m, with
density contrast p of 0.55 gem™ and volume 0.366 km? (red wire-
frame body in Fig. 9). The simulated body is based on an interpre-
tation of the Vinton salt dome, reported by Ennen & Hall (2011).
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Table 1. Test with synthetic data produced by a simu-
lated salt-dome cap rock. Each component of the gravity-
gradient tensor shown in Fig. 8 (grey scale maps) is cor-
rupted with zero-mean Gaussian pseudo-random noise
with a standard deviation o, simulating experimental
errors. Additionally, to each component of the gravity-
gradient tensor is added a constant b, simulating system-
atic errors.

Gravity-gradient component o (Eotvos) b (Eotvos)

XX 4.0 2.6
Xy 2.5 0.1
Xz 5.1 —-20
yy 4.0 3.6
yz 4.7 —-0.7
zz 6.8 —6.2

We applied our method by using an interpretation model formed
by an ensemble of L = 10 prisms, all of them with the true density
contrast p¥ = 0.55gem™ (k=1,...,10) and the same number
of polygon vertices M* = 16 (k =1, ..., 10), which describe the
horizontal cross-sections of each polygon. We also assumed the
knowledge about the actual depth to the top of the simulated source;
hence, we set the depth to the top of the interpretation model as
zop = 160m. The 10 prisms making up the initial approximation
have the same horizontal Cartesian coordinates x§ = 1150 m and
& = 1606m, k=1, ..., 10, of the arbitrary origins. The radii
forming the shallowest prism (!, j =1, ..., 16) are equal to 100
m; the radii forming the second prism (r‘%, j=1,...,16) are equal
to 200 m. The sizes of radii of the third prism up to the 10th prism
are increased successively by adding 100 m, until the radii of the
deeper prism (r}°, j = 1, ..., 16) attain 1000 m.

We construct the estimated s x v, curve (Fig. 10) by producing
15 estimated sources, each one with a fixed maximum depth z,,
of the interpretation model. The z,,,, varies from 320 to 580 m, in
steps of 20 m leading to an uncertainty of 10 m in the estimated
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Figure 10. Estimated s x v, curve obtained by inverting the noise-
corrupted data (grey scale maps in Fig. 8) produced by the simulated salt
dome cap rock shown in Fig. 9 (red wire-frame body). This curve is pro-
duced by varying the depth to the bottom zpax of the interpretation model
from 320 to 580 m, in steps of 20 m. The estimated body with zy,x = 440 m
produces the well-defined minimum s on the estimated s x v, curve and it
is shown in Figs 9(b) and (c).

depth to the bottom. Each one of these eight estimates produces
a pair of s and v, (black dots in Fig. 10) on the estimated s x v,
curve. This curve presents a well-defined minimum of s, associated
with z,x = 440m of the interpretation model. Fig. 9 shows the
initial approximation (blue prisms in Fig. 9a) and two perspective
views of the estimated salt-dome cap rock (blue prisms in Figs 9b
and c) using the maximum depth z,,,,x = 440 m to set up the inter-
pretation model. Although this estimated salt-dome cap rock is as-
sociated with a well-defined minimum of s on the estimated s x v,
curve (Fig. 10), it produces a predicted data (black contour maps in
Fig. 8) that do not fit acceptably the noise-corrupted gravity-gradient
data (grey scale maps in Fig. 8). This aspect is confirmed by the
histograms (Fig. 11) of the residuals between the predicted (black

Depth z (km)

0.42

Horizontal coordinate y (km)

Figure 9. Perspective views of the simulated salt-dome cap rock (red wire-frame body) with depth to the bottom at 460 m and volume 0.372 km?. Perspective
views in blue prisms of the (a) initial approximation, (b) and (c) estimated body. The estimated body in (b) and (c) is obtained by inverting the noise-corrupted
data shown in Fig. 8 (grey scale maps) and assuming an interpretation model with depth to the bottom zmax = 440 m. The estimated body has a predicted
volume v, = 0.337 km? and produces the predicted gravity-gradient data shown in Fig. 8 (black contour maps).
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Figure 11. Histograms of the residuals between the predicted (black contour maps in Fig. 8) and the noise-corrupted (grey scale maps in Fig. 8) xx-, xy-,
xz-, yy-, yz- and zz-components of the gravity-gradient tensor. The sample mean p and the sample standard deviation o are shown in each histogram. The
residuals are transformed in a dimensionless variable Z by subtracting the residual value from the sample mean p and then dividing the difference by the

sample standard deviation o. P(Z) is the frequency curve of the variable Z.

contour maps in Fig. 8) and the simulated (grey scale maps in Fig. 8)
noise-corrupted gravity-gradient data. These histograms resemble
bell-shaped patterns indicating that the residuals of all components
follow normal distributions. Moreover, the sample standard devia-
tions o calculated from the residuals (Fig. 11) are very close to the
standard deviations o (Table 1) of the noise realizations added to
the synthetic data aiming at simulating experimental errors. How-
ever, the sample means p calculated from the residuals (Fig. 11)
are not close to zero, indicating that the predicted data do not fit the
synthetic data. Note that the absolute values of these sample means
w (Fig. 11) are very close to the absolute values of the constants b
(Table 1) that were added to the synthetic data simulating systematic
errors. The most striking feature of these histograms (Fig. 11) is that
they correctly characterize both the experimental and the systematic
errors. Hence, by using these histograms, we can remove the sys-
tematic errors in the data. This correction consists in adding each
sample non-zero mean p calculated from the residuals (Fig. 11)
to the corresponding component of the synthetic gravity-gradient
data (grey scale maps in Fig. 8). This procedure leads to a new set
of components of the gravity-gradient data shown in Fig. 12 (grey
scale maps). By inverting these corrected gravity-gradient data, we
recalculate the estimated s x v, (Fig. 13). This new s x v, curve
shows a well-defined minimum of s associated with z,,, = 460 m
of the interpretation model. Figs 14(b) and (c) show the perspective
views of the estimated salt-dome cap rock (blue prisms) using the
maximum depth z,,, = 460m to set up the interpretation model.
This estimate is obtained by using the initial approximation (blue
prisms) shown in Fig. 14(a). Note that the estimated salt-dome cap
rock (blue prisms in Figs 14b and c) completely retrieves the geom-
etry of the simulated source (red wire-frame body shown in Figs 9

and 14), with the correct depth to the bottom (z,,,x = 460 m) and
a volume (v, = 0.372km?), which is very close to the true one
(0.366 km®). The predicted data (black contour maps in Fig. 12)
produced by this new estimated salt-dome cap rock fit acceptably
the corrected gravity-gradient data (grey scale maps in Fig. 12). In
contrast with the histograms shown in Fig. 11, the histograms of the
residuals shown in Fig. 15 corroborate the acceptance of the data
fitting. These histograms show sample means close to zero, indi-
cating that the systematic errors were successfully removed from
the data. These results show that our method is able to completely
recover the geometry of a salt-dome cap rock, even in the presence
of systematic errors in the data.

5 APPLICATION TO REAL DATA

We applied our method to interpret the full tensor gravity gradiom-
etry (FTG) data acquired by Bell Geospace Inc. over the Vinton
salt dome, at southwestern Louisiana, USA (grey scale maps in
Fig. 16). The gravity-gradient data were terrain corrected using a
density of 2.2 gcm™ and each component contains 3196 obser-
vations, totalling 19 176. This salt dome is located in the onshore
Gulf of Mexico, which is considered an important region produc-
ing oil and gas for more than one century (Coker et al. 2007).
According to Coker et al. (2007), the Vinton salt dome is charac-
terized by a massive cap rock extending above the salt rock. This
cap rock is formed by gypsum and anhydrite which is embedded
in sediments characterized by intercalated layers of sandstone and
shale. Fig. 17 shows the density ranges of the principal rocks and
minerals (Telford ez al. 1990) present on the lithologies found in the
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Figure 12. Synthetic noise-corrupted data (grey scale maps) corrected for the effect of systematic errors (Table 1) and predicted data (black contour maps)
of the (a) xx-, (b) xy-, (¢) xz-, (d) yy-, (¢) yz- and (f) zz-components of the gravity-gradient tensor. The systematic errors are removed by adding the sample
means of the residuals (u in Fig. 11) to the original noise-corrupted data (grey scale maps in Fig. 8). The predicted components are produced by the estimated

body (blue prisms) shown in Figs 14(b) and (c).
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Figure 13. Estimated s x v, curve obtained by inverting the corrected
noise-corrupted data (grey scale maps in Fig. 12) produced by the simulated
salt-dome cap rock (red wire-frame body in Figs 9 and 14). This curve is
produced by varying the depth to the bottom zp,ax of the interpretation model
from 320 to 580 m, in steps of 20 m. The estimated body with zy,x = 460 m
(blue prisms in Figs 14b and c) produces the well-defined minimum of s on
the s x v, curve.

study area. Following Ennen & Hall (2011), we assumed that the
cap rock has a depth of the top at 160 m. Based on the density
ranges of the lithologies (Fig. 17), we assumed that the surrounding
sediments (shale and sandstone) and the salt dome have the same
density 2.2 gecm™3. This implies that the observed gravity-gradient
data (grey scale maps in Fig. 16) are predominantly caused by the
cap rock.

We applied our method to estimate the 3-D geometry of the cap
rock. Based on Ennen & Hall (2011), we tested a geological hypoth-
esis about the Vinton salt dome and adjacent rocks in which the cap
rock has the density of 2.75 gcm™3, resulting in a density contrast
of 0.55 gecm™ with the host rocks. Note that this possible density
of the cap rock is within the density ranges shown in Fig. 17. To test
this hypothesis, we applied our method by using an interpretation
model with density contrast equal to 0.55 gcm ™. The interpretation
model is formed by an ensemble of L = 10 prisms, each one with
the same number of polygon vertices M¥ =16 (k =1, ..., 10) de-
scribing the horizontal cross-sections of the polygons. Based on the
prior information, we also assumed the knowledge about the actual
depth to the top of the cap rock; hence, we set the depth to the top
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Figure 14. Perspective views of the simulated salt-dome cap rock (red wire-frame body) with depth to the bottom at 460 m and volume 0.366 km>. Perspective
views in blue prisms of the (a) initial approximation, (b) and (c) estimated body. The estimated body in (b) and (c) is obtained by inverting the corrected
noise-corrupted data (grey scale maps in Fig. 12) and assuming an interpretation model with depth to the bottom zyax = 460 m. The estimated body has a
predicted volume v, = 0.372 km? and produces the predicted gravity-gradient data shown in Fig. 12 (black contour maps).
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Figure 15. Histograms of the residuals between the predicted (black contour maps in Fig. 12) and the corrected noise-corrupted (grey scale maps in Fig. 12)
XXx-,Xy-,Xz-, yy-, yz- and zz-components of the gravity-gradient tensor. The sample mean x and the sample standard deviation o are shown in each histogram.
The residuals are transformed in a dimensionless variable Z by subtracting the residual value from the sample mean p and then dividing the difference by the

sample standard deviation o. P(Z) is the frequency curve of the variable Z.

of the interpretation model as zy = 160 m. The 10 prisms which
make up the used initial approximation have the same horizon-
tal Cartesian coordinates of x{ = 3334 150 m and y = 442 606 m,
k=1, ..., 10.Based on the synthetic application to interpret a sim-
ulated cap rock (Subsection 4.2), the radii forming the shallowest

prism (r_} ,j=1,...,16,)are equal to 100 m and the radii forming
the second prism (r]?, j=1,...,16) are equal to 200 m. The sizes
of radii of the third prism up to the 10th prism are increased suc-
cessively by adding 100 m, until the radii of the deeper prism (r}°,
j =1,...,16) attain 1000 m. We construct the estimated s x v,
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Figure 16. Interpretation of real data over the Vinton salt dome, USA. Observed (grey scale maps) and predicted (black contour maps) (a) xx-, (b) xy-, (¢) xz-,
(d) yy-, (¢) yz- and () zz-components of the gravity-gradient tensor. The observed data are terrain corrected by using a density of 2.20 gcm™3. The predicted

data are produced by an estimated body (not shown).

curve (Fig. 18) using 14 pairs of s and v, (black dots), each one
produced by an estimated 3-D source with a different maximum
depth to the bottom z,, of the interpretation model. The value
of zyx varies from 320 to 580 m, in steps of 20 m, leading to an
uncertainty of +£10m in the estimated depth to the bottom. The
estimated s x v, curve (Fig. 18) presents a well-defined minimum
of s associated with an estimated 3-D cap rock (not shown) hav-
ing maximum depth to the bottom z,,x = 440 m and a predicted
volume v, = 0.327 km®. This estimated 3-D cap rock (not shown)
produces a predicted data (black contour maps in Fig. 16) that do
not fit acceptably the observed gravity-gradient data (grey scale
maps in Fig. 16). Similar to the results shown in the Subsection
4.2, the histograms (Fig. 19) of the residuals between the predicted
and the observed gravity-gradient data confirm the unacceptable

data fittings, because the sample non-zero means p (Fig. 19), which
are calculated from the residuals. These non-zero means indicate
the presence of systematic errors in the observed data (grey scale
maps in Fig. 16). By adding each sample non-zero mean u to
the corresponding observed component of the gravity-gradient data
(grey scale maps in Fig. 16), we produce corrected components of
the gravity-gradient data (grey scale maps in Fig. 20). By invert-
ing these corrected gravity-gradient data, we repeat the procedure
for calculating a new estimated s x v, curve (Fig. 21). This curve
shows a well-defined minimum of s associated with z,,, = 460 m
of the interpretation model. The estimated 3-D cap rock (Figs 22b
and c) producing the minimum of s on the estimated s x v, curve
(Fig. 21) has a maximum depth z,,,x = 460 m and a predicted volume
v, = 0.366 km®. Fig. 22(a) shows the initial approximation used in
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Figure 17. Interpretation of real data over the Vinton salt dome, USA. The
graph shows the density ranges and the average values of the rock types and
minerals according to Telford et al. (1990). These lithologies are identified
in the study area as reported by Ennen & Hall (2011).
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Figure 18. Interpretation of real data over the Vinton salt dome, USA.
Estimated s x v, curve obtained by inverting the real data shown in Fig. 16
(grey scale maps). This curve is constructed by varying the depth to the
bottom zy,x of the interpretation model from 320 to 580 m, in steps of 20 m.
The estimated body (not shown) producing the well-defined minimum of s
on this s x v, curve has a maximum depth to the bottom zpax = 440 m and
a predicted volume v, = 0.327 km?3.

this inversion. This 3-D estimated salt-dome cap rock (Figs 22b
and c) yields acceptable data fittings, which is confirmed by the
histograms of the residuals shown in Fig. 23. The predicted data
(black contour maps) are shown in Fig. 20.

Note that the upper part of our estimated salt-dome cap rock
(Figs 22b and c) has a northeast—southwest elongated form, be-
ing consistent with the strike of the main fault in the study area
(Coker et al. 2007). We stress that this estimate represents a pos-
sible 3-D source that fits the observed gravity-gradient data over
the Vinton salt dome, within the experimental errors. So, this esti-
mate can be accepted as a possible geometry of the salt-dome cap
rock. To confirm this estimated geometry, more prior geological

information about the Vinton salt dome and the surrounded rocks
must be introduced.

6 CONCLUSIONS

We present a 3-D radial inversion of gravity-gradient data to es-
timate the shape of an isolated 3-D geological body, given its
depth to the top and density contrast. We approximate the 3-
D body by a set of vertically stacked right prisms with known
thicknesses and density contrasts. Each prism has a polygonal
horizontal cross-section whose vertices are described by polar co-
ordinates referred to an origin within the polygon. By jointly in-
verting all gravity-gradient tensor components, we retrieve the
shape of depth slices of the 3-D body by estimating the hor-
izontal Cartesian coordinates of the origins and the radii of
the vertices describing the horizontal cross-sections of all prisms.
This estimate is formulated as a non-linear constrained in-
verse problem. By inverting the same gravity-gradient data
set, our method can obtain different estimated bodies pro-
ducing equally data fits but with different maximum depths.
This ambiguity is a consequence of the inherent lack of in-depth
resolution of potential-field data. To deal with this ambiguity and
reduce the class of possible 3-D estimates compatible with the
gravity-gradient data, we used a criterion based on the relation-
ship between the ¢,-norm of the residuals s and the volume v,
of different estimates obtained by using interpretation models with
different maximum depths. The estimated v, and s produced by
each one of these estimates are plotted one against another, form-
ing an estimated s x v, curve. On this curve, the estimate pro-
ducing the minimum s and fitting the gravity-gradient data is
chosen as the optimum choice of the source’s bottom depth. If
the estimated s x v, curve is a parabolic-shaped curve show-
ing a well-defined minimum of s, the gravity-gradient data have
sufficient resolution to recover the geometry of the 3-D geolog-
ical body with both the correct volume and the correct maxi-
mum depth to the bottom. Otherwise, if the gravity-gradient data
do not have enough resolution, the estimated s x v, curve
presents multiple minima of s produced by 3-D estimated source
with different maximum depths. In this case, among these min-
ima of s producing virtually the same data fit, the one asso-
ciated with the minimum depth to the bottom of the source
and producing an acceptable data fit is chosen as the optimum
estimate.

By analyzing the histograms of the residuals, we show that
our method is able to identify systematic errors and to correct
the gravity-gradient data for these errors. If the corrected gravity-
gradient data have sufficient resolution, our method obtains a stable
estimate which recovers the geometry of the geological body com-
pletely.

In comparison with inverse methods that estimate the density-
contrast distribution within a user-specified grid of 3-D right,
juxtaposed prisms in the horizontal and vertical directions, our
method is more computationally efficient because it does not re-
quire an intractable number of parameters and consequently does
not deal with a large-scale 3-D inverse problem. Our method re-
quires neither the use of depth-weighting functions adopted as a
strategy to estimate sources at their correct depths nor the in-
troduction of compactness and homogeneity constraints on the
actual sources. On the other hand, our method is restricted to
isolated bodies and assumes the knowledge about the correct
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Figure 19. Interpretation of real data over the Vinton salt dome, USA. Histograms of the residuals between predicted (black contour maps in Fig. 16) and real
(grey scale maps in Fig. 16) xx-, xy-, xz-, yy-, yz- and zz-components of the gravity-gradient tensor. The sample mean p and the sample standard deviation o
are shown in each histogram. The residuals are transformed in a dimensionless variable Z by subtracting the residual value from the sample mean p and then
dividing the difference by the sample standard deviation o. P(Z) is the frequency curve of the variable Z.
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Figure 20. Interpretation of real data over the Vinton salt dome, USA. Real data (grey scale maps) corrected for the effect of systematic errors and predicted
data (black contour maps) of the (a) xx-, (b) xy-, (¢) xz-, (d) yy-, (e) yz- and (f) zz-components of the gravity-gradient tensor. The systematic errors are
removed by adding the sample means of the residuals (1 in Fig. 19) to the original real data (grey scale maps in Fig. 16). The predicted components are
produced by the estimated body (Figs 22b and c).
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Figure 21. Interpretation of real data over the Vinton salt dome, USA. Estimated s x v,, curve obtained by inverting the corrected real data (grey scale maps
in Fig. 20). This curve is constructed by varying the depth to the bottom zy,ax of the interpretation model from 320 to 580 m, in steps of 20 m. The estimated
body (Figs 22b and ¢) producing the well-defined minimum of s on this s x v, curve has a maximum depth to the bottom zyax = 460 m and a predicted volume

v, = 0.366 km?.
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Figure 22. Interpretation of real data over the Vinton salt dome, USA. Perspective views of the (a) initial approximation, (b) and (c) estimated body. The
estimated body in (b) and (c) is obtained by inverting the corrected real data (grey scale maps in Fig. 20) and assuming an interpretation model with depth
to the bottom zpax = 460 m. The estimated body has a predicted volume v, = 0.366 km? and produces the predicted gravity-gradient data shown in Fig. 20

(black contour maps).

depth of the top and density contrast of the 3-D geological
body.

Our method can be extended, for example, to estimate the 3-D
shape of multiple bodies producing interfering gravity-gradient
anomalies, to perform a joint inversion of gravity and gravity-
gradient data and to invert magnetic data. Additionally, in order
to overcome problems with local minima, other optimization meth-
ods combining gradient-based algorithms and heuristic strategies
could be employed.
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sion of this article:

Supporting Information for ‘3-D radial gravity gradient inver-
sion’ (http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggt307/-/DC1)
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content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
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