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Abstract. A considerable amount of literature has been pub-
lished on the magnetic modelling of uniformly magnetized
ellipsoids since the second half of the nineteenth century.
Ellipsoids have flexibility to represent a wide range of ge-
ometrical forms, are the only known bodies which can be
uniformly magnetized in the presence of a uniform induc-
ing field and are the only finite bodies for which the self-
demagnetization can be treated analytically. This property
makes ellipsoids particularly useful for modelling compact
orebodies having high susceptibility. In this case, neglecting
the self-demagnetization may strongly mislead the interpre-
tation of these bodies by using magnetic methods. A num-
ber of previous studies consider that the self-demagnetization
can be neglected for the case in which the geological body
has an isotropic susceptibility lower than or equal to 0.1 SI.
This limiting value, however, seems to be determined empir-
ically and there has been no discussion about how this value
was determined. In addition, the geoscientific community
lacks an easy-to-use tool to simulate the magnetic field pro-
duced by uniformly magnetized ellipsoids. Here, we present
an integrated review of the magnetic modelling of arbitrar-
ily oriented triaxial, prolate and oblate ellipsoids. Our review
includes ellipsoids with both induced and remanent magne-
tization, as well as with isotropic or anisotropic susceptibil-
ity. We also discuss the ambiguity between confocal ellip-
soids with the same magnetic moment and propose a way
of determining the isotropic susceptibility above which the
self-demagnetization must be taken into consideration. Tests
with synthetic data validate our approach. Finally, we pro-
vide a set of routines to model the magnetic field produced
by ellipsoids. The routines are written in Python language as
part of the Fatiando a Terra, which is an open-source library
for modelling and inversion in geophysics.

1 Introduction

Based on the mathematical theory of the magnetic induction
developed by Poisson (1824), Maxwell (1873) affirmed that,
if U is the gravitational potential produced by any body with
uniform density ρ and arbitrary shape at a point (x,y,z),
then − ∂U

∂x
is the magnetic scalar potential produced at the

same point by the same body if it has a uniform magne-
tization oriented along x with intensity ρ. Maxwell (1873)
generalized this idea as a way of determining the magnetic
scalar potential produced by any uniformly magnetized body
in a given direction. By presuming that this uniform mag-
netization is due to induction and that it is proportional to
the resulting magnetic field (intensity) inside the body, he
postulated that the resulting field must also be uniform and
parallel to the magnetization. This uniformity is due to the
fact that the resulting field is defined as the negative gradi-
ent of the magnetic scalar potential. As a consequence of this
uniformity, the gravitational potential U at points within the
body must be a quadratic function of the spatial coordinates.
Apparently, Maxwell (1873) was the first one to postulate
that ellipsoids are the only finite bodies having a gravita-
tional potential which satisfies this property and hence can be
uniformly magnetized in the presence of a uniform inducing
magnetic field. This property can be extended to other bodies
defined as limiting cases of an ellipsoid (e.g. spheres, elliptic
cylinders). However, all the remaining non-ellipsoidal bodies
cannot be uniformly magnetized in the presence of a uniform
inducing field.

Another particularity of ellipsoids is that they are the
only bodies which enable an analytical computation of their
self-demagnetization. The self-demagnetization contributes
to a decrease in the magnitude of the magnetization along
the shortest axes of a body. This is a function of the body
shape and gives rise to shape anisotropy (Uyeda et al., 1963;
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Thompson and Oldfield, 1986; Dunlop and Özdemir, 1997;
Clark and Emerson, 1999; Tauxe, 2003). It is well estab-
lished in the literature that the self-demagnetization can be
neglected if the body has a susceptibility lower than 0.1 SI
(Emerson et al., 1985; Clark et al., 1986; Eskola and Tervo,
1980; Guo et al., 1998, 2001; Purss and Cull, 2005; Hillan
and Foss, 2012; Austin et al., 2014; Clark, 2014). On the
other hand, neglecting the self-demagnetization in geologi-
cal bodies with high susceptibilities (> 0.1 SI) may strongly
mislead the interpretation obtained from magnetic methods.
This limiting value, however, seems to be determined empir-
ically and, so far, there has been little discussion about how
it was determined.

Farrar (1979) demonstrated the importance of the ellip-
soidal model in taking into account the self-demagnetization
and determining reliable drilling directions on the Tennant
Creek field, Australia. Later, Hoschke (1991) also showed
how the ellipsoidal model proved to be highly successful in
locating and defining ironstone bodies in the Tennant Creek
field. Clark (2000) provides a good discussion about the in-
fluence of the self-demagnetization in magnetic interpreta-
tion of the Osborne copper–gold deposit, Australia. This de-
posit is hosted by ironstone bodies that have very high sus-
ceptibility. According to Clark (2000), neglecting the effects
of self-demagnetization led to errors of ≈ 55◦ in the inter-
preted dip. Recently, Austin et al. (2014) used magnetic mod-
elling and rock property measurements to show that, contrary
to previous interpretations, the magnetization of the Can-
delaria iron oxide copper–gold deposit, Chile, is not domi-
nated by the induced component. Rather, the deposit has a
relatively weak remanent magnetization and is strongly af-
fected by self-demagnetization. These examples show the
importance of the self-demagnetization and the ellipsoidal
model in producing trustworthy geological models of high-
susceptibility orebodies, which may save significant cost as-
sociated with drilling.

A vast literature about the magnetic modelling of ellip-
soidal bodies was developed in which are to be found the
names of many researchers. Nevertheless, interest in this sub-
ject has not yet died out, as is evidenced by a list of modern
papers in this field. Furthermore, the geoscientific commu-
nity lacks a free easy-to-use tool to simulate the magnetic
field produced by uniformly magnetized ellipsoids. Such a
tool could prove useful both for teaching and researching
geophysics.

In this work, we present a review of the vast literature
about the magnetic modelling of ellipsoidal bodies and a the-
oretical discussion about the determination of the isotropic
susceptibility value above which the self-demagnetization
must be taken into consideration. We propose an alternative
way of determining this value based on the body shape and
the maximum relative error allowed in the resultant magne-
tization. This alternative approach is validated by the results
obtained with numerical simulations. We also provide a set
of routines to model the magnetic field produced by ellip-

Figure 1. Schematic representation of the coordinate systems used
to represent an ellipsoidal body. (a) Main coordinate system with
axes x, y, and z pointing to north, east, and down, respectively.
The dark grey plane contains the centre (xc,yc,zc; white circle) and
two unit vectors, u and w, defining two semi-axes of the ellipsoidal
body. For triaxial and prolate ellipsoids, u and w define, respec-
tively, the semi-axes a and b. For oblate ellipsoids, u and w define
the semi-axes b and c, respectively. The strike direction is defined
by the intersection of the dark grey plane and the horizontal plane
(represented in light grey), which contains the x axis and y axis. The
angle ε between the x axis and the strike direction is called strike.
The angle ζ between the horizontal plane and the dark grey plane
is called dip. The angle η between the strike direction and the line
containing the unit vector u is called rake. The projection of this line
on the horizontal plane (not shown) is called dip direction (Pollard
and Fletcher, 2005; Allmendinger et al., 2012). (b) Local coordinate
system with origin at the ellipsoid centre (xc,yc,zc) (black dot) and
axes defined by unit vectors v1, v2 and v3. These unit vectors define
the semi-axes a, b and c of triaxial, prolate and oblate ellipsoids in
the same way. For triaxial and prolate ellipsoids, the unit vectors u
andw shown in (a) coincide with v1 and v2, respectively. For oblate
ellipsoids, the unit vectors u and w shown in (a) coincide with v2
and v3, respectively.

soids. The routines are written in Python language as part of
the Fatiando a Terra (Uieda et al., 2013), which is an open-
source library for modelling and inversion in geophysics. We
attempt to use the best practices of continuous integration,
documentation, unit-testing and version control for the pur-
pose of providing a reliable and easy-to-use code.
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2 Methodology

2.1 Geometrical parameters and coordinate systems

Let (x,y,z) be a point referred to a Cartesian coordinate sys-
tem with axes x, y and z pointing to, respectively, north, east
and down. For convenience, we denominate this coordinate
system as the main coordinate system (Fig. 1a). Let us con-
sider an ellipsoidal body with centre at the point (xc,yc,zc),
orientation defined by the angles strike ε, dip ζ and rake η
(Fig. 1a), and semi-axes defined by positive constants a, b,
c (Fig. 1b). The orientation angles strike, dip and rake are
commonly used to define the orientation of lines in structural
geology (Pollard and Fletcher, 2005; Allmendinger et al.,
2012). The points (x,y,z) located on the surface of this el-
lipsoidal body satisfy the following equation:

(r − rc)
TA(r − rc)= 1 , (1)

where r = [ x y z]>, rc = [ xc yc zc]
>, A is a posi-

tive definite matrix given by

A= V

 a−2 0 0
0 b−2 0
0 0 c−2

V> , (2)

and V is an orthogonal matrix whose first, second and third
columns are defined by unit vectors v1, v2 and v3 (Fig. 1b),
respectively. The matrix V can be defined in terms of three
rotation matrices:

R1(θ)=

 1 0 0
0 cosθ sinθ
0 −sinθ cosθ

 , (3)

R2(θ)=

 cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 (4)

and

R3(θ)=

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 . (5)

For triaxial ellipsoids (i.e. a > b > c) and prolate ellipsoids
(i.e. a > b = c), we define the orthogonal matrix V as fol-
lows:

V= R1

(π
2

)
R2 (ε) R1

(π
2
− ζ

)
R3 (η) . (6)

For oblate ellipsoids (i.e. a < b = c), we define V as follows:

V= R3

(
−
π

2

)
R1 (π) R3 (ε) R2

(π
2
− ζ

)
R1 (η) . (7)

The orthogonal matrices V used here for triaxial, prolate and
oblate ellipsoids (Eqs. 6 and 7) are different from those used
by Emerson et al. (1985) and Clark et al. (1986).

The magnetic modelling of an ellipsoidal body is com-
monly performed in a particular Cartesian coordinate system
that is aligned with the body semi-axes and has the origin
coincident with the body centre (Fig. 1b). For convenience,
we denominate this particular coordinate system as the local
coordinate system. The relationship between the Cartesian
coordinates (̃x, ỹ, z̃) of a point in a local coordinate system
and the Cartesian coordinates (x,y,z) of the same point in
the main system is given by

r̃ = V> (r − rc) , (8)

where r̃ = [ x̃ ỹ z̃]>, r and rc are defined in Eq. (1) and
the matrix V (Eqs. 6 and 7) is defined according to the el-
lipsoid type. In what follows, quantities referred to the local
coordinate system (Fig. 1b) are indicated with the symbol
“∼”.

2.2 Theoretical background

Consider a magnetized ellipsoid immersed in a uniform in-
ducing magnetic field H0 (in Am−1) given by

H0 = ‖H0‖

 cosI cosD
cosI sinD

sinI

 , (9)

where ‖·‖ denotes the Euclidean norm (or 2-norm) andD and
I are respectively the declination and inclination of the local
geomagnetic field in the main coordinate system (Fig. 1a).
This field represents the main component of the Earth’s mag-
netic field, which is usually assumed to be generated by the
Earth’s liquid core. In the absence of conduction currents, the
total magnetic field H(r) at the position r (Eq. 1) of a point
referred to the main coordinate system is defined as follows
(Sharma, 1966; Eskola and Tervo, 1980; Reitz et al., 1992;
Stratton, 2007):

H(r)=H0−∇V (r) , (10)

where the second term is the negative gradient of the mag-
netic scalar potential V (r) given by

V (r)=−
1

4π

∫ ∫ ∫
ϑ

M(r ′)>∇

(
1

‖r − r ′‖

)
dx′dy′dz′ . (11)

In this equation, r ′ = [ x′ y′ z′]> is the position vector of
a point located within the volume ϑ , the integral is conducted
over the variables x′, y′ and, z′ and M(r ′) is the magnetiza-
tion vector (in Am−1). Equation (11) is valid anywhere, inde-
pendently if the position vector r represents a point located
inside or outside the magnetized body (DuBois, 1896; Reitz
et al., 1992; Stratton, 2007).

Based on Maxwell’s postulate, let us assume that the body
has a uniform magnetization given by

M=KH† , (12)
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where H† is the resultant uniform magnetic field at any point
within the body and K is a constant and symmetrical second-
order tensor representing the magnetic susceptibility of the
body. This is a good approximation for bodies at room tem-
perature, subjected to an inducing field H0 with strength
≤ 10−3µ−1

0 Am−1 (Rochette et al., 1992), where µ0 repre-
sents the magnetic constant (in Hm−1). In this case, the sus-
ceptibility tensor K is commonly represented, in the main
coordinate system (Fig. 1a), as follows:

K= U

 k1 0 0
0 k2 0
0 0 k3

U> , (13)

where k1 > k2 > k3 are the principal susceptibilities and U is
an orthogonal matrix whose columns ui , i = 1,2,3, are unit
vectors called principal directions. Similarly to the matrix V
(Eqs. 1, 6 and 7), we define the matrix U as a function of
given orientation angles ε, ζ and η depending on the ellipsoid
type. For triaxial and prolate ellipsoids, we define U by using
Eq. (6), whereas for oblate ellipsoids we use Eq. (7). Notice
that the orientation angles ε, ζ and η defining the orthogonal
matrix U may be different from the angles ε, ζ and η defining
the ellipsoid orientation (Fig. 1).

If the principal susceptibilities are different from each
other, we say that the body has an anisotropy of magnetic
susceptibility (AMS). The AMS is generally associated with
the preferred orientation of the grains of magnetic minerals
forming the rock (Fuller, 1963; Uyeda et al., 1963; Janák,
1972; Hrouda, 1982; Thompson and Oldfield, 1986; Mac-
Donald and Ellwood, 1987; Rochette et al., 1992; Dunlop
and Özdemir, 1997; Tauxe, 2003). For the particular case
in which the principal directions coincide with the ellipsoid
axes, the matrix U is equal to the matrix V (Eq. 2). Another
important particular case is that in which the susceptibility is
isotropic and, consequently, the principal susceptibilities k1,
k2 and k3 (Eq. 13) are equal to a constant χ . In this case, the
susceptibility tensor K (Eq. 13) assumes the particular form

K= χ I , (14)

where I represents the identity matrix.
By using the magnetization M defined by Eq. (12), the to-

tal magnetic field H(r) (Eq. 10) can be rewritten as follows:

H(r)=H0+N(r)KH† , (15)

where N(r) is a symmetrical matrix whose ij -element nij (r)
is given by

nij (r)=
1

4π
∂2 f (r)

∂ri ∂rj
, i = 1,2,3 , j = 1,2,3 , (16)

where r1 = x, r2 = y, r3 = z are the elements of the position
vector r (Eq. 1), and

f (r)=

∫ ∫ ∫
ϑ

1
‖r − r ′‖

dx′dy′dz′ . (17)

Notice that the scalar function f (r) (Eq. 17) is proportional
to the gravitational potential that would be produced by the
ellipsoidal body with volume ϑ if it had a uniform den-
sity equal to the inverse of the gravitational constant. It can
be shown that the elements nij (r) are finite whether r is a
point within or without the volume ϑ (Peirce, 1902; Webster,
1904). The matrix N(r) (Eq. 15) is called the depolarization
tensor (Solivérez, 1981, 2008, 2016).

The following part of this paper moves on to describe the
magnetic field H(r) (Eq. 15) at points located both within
and without the volume ϑ of the ellipsoidal body. However,
the mathematical developments are conveniently performed
in the local coordinate system (Fig. 1b) related to the respec-
tive ellipsoidal body.

2.3 Coordinate transformation

To continue our description of the magnetic modelling of
ellipsoidal bodies, it is convenient to perform two impor-
tant coordinate transformations. The first one transforms the
scalar function f (r) (Eq. 17) from the main coordinate sys-
tem (Fig. 1a) into a new scalar function f̃ (̃r) referred to the
local coordinate system (Fig. 1b). The function f̃ (̃r)was first
presented by Dirichlet (1839) to describe the gravitational
potential produced by homogeneous ellipsoids. Later, sev-
eral authors also deduced and used this function for describ-
ing the magnetic and gravitational fields produced by triaxial,
prolate and oblate ellipsoids (Maxwell, 1873; Thomson and
Tait, 1879; DuBois, 1896; Peirce, 1902; Webster, 1904; Kel-
logg, 1929; Stoner, 1945; Osborn, 1945; Peake and Davy,
1953; Macmillan, 1958; Chang, 1961; Lowes, 1974; Clark
et al., 1986; Tejedor et al., 1995; Stratton, 2007).

It is convenient to use f̃ †(̃r) and f̃ ‡(̃r) to define the func-
tion f̃ (̃r) evaluated, respectively, at points r̃ inside and out-
side the volume ϑ of the ellipsoidal body. The scalar function
f̃ †(̃r) is given by

f̃ †(̃r)= π abc

∞∫
0

(
1−

x̃2

a2+ u
−

ỹ2

b2+ u
−

z̃2

c2+ u

)
1

R(u)
du r̃ ∈ ϑ, (18)

where

R(u)=

√(
a2+ u

)(
b2+ u

)(
c2+ u

)
. (19)

This function represents the gravitational potential that
would be produced by the ellipsoidal body at points located
within its volume ϑ if it had a uniform density equal to
the inverse of the gravitational constant. Notice that, in this
case, the gravitational potential is a quadratic function of the
spatial coordinates x̃, ỹ and z̃, which supported Maxwell’s
(1873) postulate about uniformly magnetized ellipsoids. In a
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similar way, the function f̃ ‡(̃r) is given by

f̃ ‡(̃r)= π abc

∞∫
λ

(
1−

x̃2

a2+ u
−

ỹ2

b2+ u
−

z̃2

c2+ u

)
1

R(u)
du , r̃ 6∈ ϑ , (20)

where R(u) is defined by Eq. (19) and the parameter λ is
defined according to the ellipsoid type as a function of the
spatial coordinates x̃, ỹ and z̃ (see Appendix B). For read-
ers interested in additional information about the parameter
λ, we recommend Webster (1904, p. 234), Kellogg (1929,
p. 184) and Clark et al. (1986).

The second important coordinate transformation is defined
with respect to Eq. (15). By properly using the orthogonality
of matrix V (Eq. 2), the magnetic field H(r) (Eq. 15) can be
transformed from the main coordinate system (Fig. 1a) to the
local coordinate system (Fig. 1b) as follows:

V>H(r)︸ ︷︷ ︸
H̃(̃r)

= V>H0︸ ︷︷ ︸
H̃0

+V>N(r)V︸ ︷︷ ︸
Ñ(̃r)

V>KV︸ ︷︷ ︸
K̃

V>H†︸ ︷︷ ︸
H̃†

, (21)

where the superscript “∼” denotes quantities referred to the
respective local coordinate system.

In Eq. (21), the transformed depolarization tensor Ñ(̃r) is
calculated as a function of the original depolarization tensor
N(r) (Eq. 15). In this case, the elements of Ñ(̃r) are calcu-
lated as a function of the second derivatives of the function
f (r) (Eq. 17), which is defined in the main coordinate sys-
tem (Fig. 1a). It can be shown (Appendix A), however, that
the elements ñij (̃r) of Ñ(̃r) can also be calculated as follows:

ñij (̃r)=
1

4π
∂2 f̃ (̃r)

∂r̃i ∂r̃j
, i = 1,2,3 , j = 1,2,3 , (22)

where r̃1 = x̃, r̃2 = ỹ and r̃3 = z̃ are the elements of the trans-
formed vector r̃ (Eq. 8) and f̃ (̃r) is given by Eq. (18) or (20),
depending if r̃ represents a point located within or without
the volume ϑ of the ellipsoidal body.

2.4 Transformed depolarization tensors Ñ(r̃)

2.4.1 Depolarization tensor Ñ†

Let Ñ† be the transformed depolarization tensor calculated
for the case in which r̃ (Eq. 8) represents a point located in-
side the ellipsoidal body. In this case, the elements of Ñ† are
calculated according to Eq. (22), with f̃ (̃r) given by f̃ †(̃r)

(Eq. 18). As we have already pointed out, the f̃ †(̃r) (Eq. 18)
is a quadratic function of the spatial coordinates x̃, ỹ and z̃.
Consequently, the elements ñ†

ij , i = 1,2,3, j = 1,2,3, of Ñ†

do not depend on the elements of the transformed position
vector r̃ (Eq. 8). Also, the off-diagonal elements are zero and

the diagonal elements are given by (Stoner, 1945)

ñ
†
ii =

abc

2

∞∫
0

1(
e2
i + u

)
R(u)

du , i = 1,2,3 , (23)

where R(u) is defined by Eq. (19) and e1 = a, e2 = b and
e3 = c. These elements are commonly known as demagne-
tizing factors and are defined according to the ellipsoid type.
Here, we calculate the demagnetizing factors in the SI sys-
tem. Consequently, they satisfy the condition ñ

†
11+ ñ

†
22+

ñ
†
33 = 1, independently of the ellipsoid type. It is worth

stressing that, according to Eq. (23), the demagnetizing fac-
tors ñ†

ii are constants defined by the ellipsoid semi-axes a, b
and c.

Note that, according to Eqs. (21) and (A7),

N(r)= V Ñ† V> , (24)

where Ñ† is a diagonal matrix and V (Eq. 2) is an orthogo-
nal matrix. This equation shows that, for the particular case
in which r and consequently r̃ represent a point inside the
volume ϑ of the ellipsoid, the elements ñ†

ii of Ñ† represent
the eigenvalues while the columns of V represent the eigen-
vectors of the original depolarization tensor N(r).

Triaxial ellipsoids

For triaxial ellipsoids (e.g. a > b > c), the demagnetizing
factors obtained by solving Eq. (23) are given by

ñ
†
11 =

abc(
a2− c2

) 1
2
(
a2− b2

) [F(κ,φ)−E(κ,φ)] , (25)

ñ
†
22 =−

abc(
a2− c2

) 1
2
(
a2− b2

) [F(κ,φ)−E(κ,φ)]

+
abc(

a2− c2
) 1

2
(
b2− c2

)E(κ,φ)− c2

b2− c2 (26)

and

ñ
†
33 =−

abc(
a2− c2

) 1
2
(
b2− c2

)E(κ,φ)+ b2

b2− c2 , (27)

where

F(κ,φ)=

φ∫
0

1(
1− κ2sin2ψ

) 1
2
dψ (28)

and

E(κ,φ)=

φ∫
0

(
1− κ2sin2ψ

) 1
2
dψ , (29)
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with κ =
[(
a2
− b2)/(a2

− c2)] 1
2 and cosφ = c/a. The

functions F(κ,φ) (Eq. 28) and E(κ,φ) (Eq. 29) are called
Legendre’s normal elliptic integrals of the first and second
kind, respectively. Stoner (1945) presented a detailed deduc-
tion of the demagnetizing factors ñ†

11 (Eq. 25), ñ†
22 (Eq. 26)

and ñ†
33 (Eq. 27). Clark et al. (1986) presented similar formu-

las. It can be shown that these demagnetizing factors satisfy
the conditions ñ†

11+ ñ
†
22+ ñ

†
33 = 1 and ñ†

11 < ñ
†
22 < ñ

†
33.

Prolate ellipsoids

For prolate ellipsoids (e.g. a > b = c), the demagnetizing
factors obtained by solving Eq. (23) are given by

ñ
†
11 =

1
m2− 1

 m(
m2− 1

) 1
2

ln
[
m+

(
m2
− 1

) 1
2
]
− 1

 (30)

and

ñ
†
22 =

1
2

(
1− ñ†

11

)
, (31)

where ñ†
33 = ñ

†
22, with ñ†

11 defined in Eq. (30) and m= a/b.
The detailed deduction of the demagnetizing factors ñ†

11
(Eq. 30) and ñ†

22 (Eq. 31) can be found, for example, in
Stoner (1945). These formulas were later presented by Emer-
son et al. (1985). It can be shown that these demagnetizing
factors satisfy the conditions ñ†

11+ 2 ñ†
22 = 1 and ñ†

11 < ñ
†
22.

Oblate ellipsoids

For oblate ellipsoids (e.g. a < b = c), the demagnetizing fac-
tors obtained by solving Eq. (23) are given by

ñ
†
11 =

1
1−m2

1−
m(

1−m2
) 1

2
cos−1m

 (32)

and

ñ
†
22 =

1
2

(
1− ñ†

11

)
, (33)

where ñ†
33 = ñ

†
22, with ñ†

11 defined in Eq. (32) and m= a/b.
The detailed deduction of these demagnetizing factors can
be found, for example, in Stoner (1945). These formulas
can also be found in Emerson et al. (1985). The only dif-
ference, however, is that Emerson et al. (1985) replaced the
term cos−1 by a term tan−1, according to the trigonomet-
ric identity tan−1x = cos−1(1/

√
x2+ 1), x > 0. It can be

shown that these demagnetizing factors satisfy the conditions
ñ

†
11+ 2 ñ†

22 = 1 and ñ†
11 > ñ

†
22.

2.4.2 Depolarization tensor Ñ‡(r̃)

The elements ñ‡
ij (̃r), i = 1,2,3, j = 1,2,3, of the trans-

formed depolarization tensor Ñ‡(̃r) are calculated according

to Eq. (22), with f̃ (̃r) given by f̃ ‡(̃r) (Eq. 20). By following
Clark et al. (1986), the diagonal elements ñ‡

ii (̃r) and the off-
diagonal elements ñ‡

ij (̃r), i = 1,2,3, j = 1,2,3, are given by

ñ
‡
ii (̃r)=−

abc

2

(
∂λ

∂r̃i
hi r̃i + gi

)
(34)

and

ñ
‡
ij (̃r)=−

abc

2

(
∂λ

∂r̃i
hj r̃j

)
, (35)

where

hi =−
1(

e2
i + λ

)
R(λ)

, (36)

gi =

∞∫
λ

1(
e2
i + u

)
R(u)

du , (37)

where e1 = a, e2 = b, e3 = c and ∂λ
∂r̃i

is defined in Appendix
B (Eq. B22). The functions gi (Eq. 37) are defined according
to the ellipsoid type. Notice that the elements ñ‡

ii (̃r) (Eq. 34)
and ñ‡

ij (̃r) (Eq. 35) are proportional to the second derivatives
of the function f̃ ‡(̃r) (Eq. 20), which is harmonic. Conse-
quently, the diagonal elements ñ‡

ii (̃r) satisfy the condition
ñ

‡
11(̃r)+ ñ

‡
22(̃r)+ ñ

‡
33(̃r)= 0 for any point r̃ outside the el-

lipsoid, independently of the ellipsoid type.

Triaxial ellipsoids

For triaxial ellipsoids (e.g. a > b > c), the functions gi
(Eq. 37) are defined as follows:

g1 =
2(

a2− b2
)(
a2− c2

) 1
2

[F(κ,φ)−E(κ,φ)] , (38)

g2 =
2
(
a2
− c2) 1

2(
a2− b2

)(
b2− c2

) {E(κ,φ)−(b2
− c2

a2− c2

)

F (κ,φ)−
a2
− b2(

a2− c2
) 1

2

[
c2
+ λ(

a2+ λ
)(
b2+ λ

)] 1
2
 (39)

and

g3 =
2(

b2− c2
)(
a2− c2

) 1
2
E(κ,φ)

+
2

b2− c2

[
b2
+ λ(

a2+ λ
)(
c2+ λ

)] 1
2

, (40)

where F(κ,φ) andE(κ,φ) are defined by Eqs. (29) and (28),

but with sinφ =
√(
a2− c2

)
/
(
a2+ λ

)
. A detailed deduction

of these formulas was presented by Tejedor et al. (1995).
Similar formulas can also be found in Clark et al. (1986).
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Prolate ellipsoids

For prolate (e.g. a > b = c) ellipsoids, the functions gi
(Eq. 37) are given by

g1 =
2(

a2− b2
) 3

2

ln

(a2
− b2) 1

2 +
(
a2
+ λ

) 1
2(

b2+ λ
) 1

2


−

(
a2
− b2

a2+ λ

) 1
2

 (41)

and

g2 =
1(

a2− b2
) 3

2


[(
a2
− b2)(a2

+ λ
)] 1

2

b2+ λ

− ln

(a2
− b2) 1

2 +
(
a2
+ λ

) 1
2(

b2+ λ
) 1

2

 , (42)

where g3 = g2. These formulas can be obtained by properly
manipulating those presented by Emerson et al. (1985).

Oblate ellipsoids

For oblate (e.g. a < b = c) ellipsoids, the functions gi
(Eq. 37) are given by

g1 =
2(

b2− a2
) 3

2


(
b2
− a2

a2+ λ

) 1
2

− tan−1

(b2
− a2

a2+ λ

) 1
2

 (43)

and

g2 =
1(

b2− a2
) 3

2

tan−1

(b2
− a2

a2+ λ

) 1
2


−

[(
b2
− a2)(a2

+ λ
)] 1

2

b2+ λ

 , (44)

where g3 = g2. Similarly to the case of prolate ellipsoid
shown previously, these formulas can be obtained by prop-
erly manipulating those presented by Emerson et al. (1985).

2.5 Internal magnetic field and magnetization

By considering r̃ as a point within the volume ϑ of the ellip-
soid and using the Maxwell postulate about the uniformity of
the magnetic field H(r) inside ellipsoidal bodies, we can use
Eq. (21) for defining the resultant uniform magnetic field H̃†

inside the ellipsoidal body as follows:

H̃†
=

(
I+ Ñ† K̃

)−1
H̃0 , (45)

where I is the identity matrix and Ñ† is as defined in the
previous section.

Let us pre-multiply the uniform internal field H̃† (Eq. 45)
by the transformed susceptibility tensor K̃ (Eq. 21) to obtain

M̃= K̃
(

I+ Ñ† K̃
)−1

H̃0

=

(
I+ K̃ Ñ†

)−1
K̃ H̃0 , (46)

where M̃ represents the transformed magnetization, as can
be easily verified by using Eqs. (12) and (21). The matrix
identity used for obtaining the second line of Eq. (46) is given
by Searle (1982, p. 151).

Equation (46) can be easily generalized for the case in
which the ellipsoid has also a uniform remanent magneti-
zation M̃R . Let us first consider that the uniform remanent
magnetization satisfies the condition H̃A = K̃−1M̃R , where
H̃A represents a hypothetical uniform ancient field. Then, if
we assume that H̃0, in Eqs. (45) and (46), is in fact the sum of
the inducing magnetic field H̃0 and the hypothetical ancient
field H̃A, we obtain the following generalized equation:

M=3(KH0+MR) , (47)

where

3= V
(

I+ K̃ Ñ†
)−1

V> . (48)

Despite the coordinate system transformation represented by
the matrix V (Eq. 2), Eq. (47) is consistent with that given
by Clark et al. (1986, Eq. 38). It shows the combined effect
of the anisotropy of magnetic susceptibility (AMS) and the
shape anisotropy. The AMS is represented by the suscepti-
bility tensor K (Eq. 13) and reflects the preferred orientation
of the magnetic minerals forming the body. The susceptibil-
ity tensor appears in Eq. (47), defined in the main coordi-
nate system (Fig. 1a), and (48), defined in the local coordi-
nate system (Fig. 1b). The shape anisotropy is represented, in
Eq. (47), by the depolarization tensor Ñ† and reflects the self-
demagnetization associated to the body shape. Notice that the
resultant magnetization M (Eq. 47) does not necessarily have
the same direction as the inducing field H0 (Eq. 9). The angu-
lar difference between the resultant magnetization and the in-
ducing field depends on the combined effect of the anisotropy
of magnetic susceptibility and the shape anisotropy.

For the particular case in which the susceptibility is
isotropic, the susceptibility tensor is defined according to
Eq. (14). In this case, the magnetization M (Eqs. 12 and 47)
is referred to the main coordinate system (Fig. 1a), and the
matrix 3 (Eq. 48) can be rewritten as follows:

M=3(χH0+MR) , (49)

and

3= V
(

I+χ Ñ†
)−1

V> . (50)

Despite the coordinate transformation represented by matrix
V (Eq. 2), this equation is in perfect agreement with those
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presented by Guo et al. (2001, Eqs. 13–15). The first term,
depending on the inducing field H0 (Eq. 9), represents the
induced magnetization whereas the term depending on MR

is the remanent magnetization. Equation (49) reveals that, as
pointed out by many authors (e.g. Maxwell, 1873; DuBois,
1896; Stoner, 1945; Clark et al., 1986; Stratton, 2007), the
induced magnetization opposes the inducing field if it is par-
allel to an ellipsoid axis, independently of the ellipsoid type.
Otherwise, the magnetization is not necessarily parallel to
the inducing field. If we additionally consider that χ � 1, the
matrix 3 (Eq. 50) approaches to the identity and the magne-
tization M (Eq. 49) can be approximated by

M̆= χH0+MR , (51)

which is the classical equation describing the resultant mag-
netization in applied geophysics (Blakely, 1996, p. 89). No-
tice that, in this particular case, the induced magnetization is
parallel to the inducing field H0 (Eq. 9), whether it is parallel
to an ellipsoid axis or not. Usually, Eq. (51) is considered a
good approximation for χ ≤ 0.1 SI. Although this value has
been largely used in the literature, there have been few em-
pirical and/or theoretical investigations about it.

2.5.1 Relationship between χ and the relative error in
M̆

In the case of isotropic susceptibility, the resultant magneti-
zation M (Eq. 49) may be determined by solving the follow-
ing linear system:

3−1 M= χH0+MR , (52)

where, according to Eq. (50),

3−1
= V

(
I+χ Ñ†

)
V> . (53)

As we have already pointed out, the approximated magne-
tization M̆ (Eq. 51) represents the particular case in which
the matrix 3 (Eq. 50), and consequently the matrix 3−1

(Eq. 53), are close to the identity.
Consider a perturbed matrix δ3−1 given by

δ3−1
=3−1

− I (54)

and, similarly, a perturbed magnetization vector δM given by

δM=M− M̆ . (55)

By using these two equations, we may rewrite that of the
approximated magnetization M̆ (Eq. 51) as follows:(
3−1
− δ3−1

)
(M− δM)= χH0+MR . (56)

Now, by subtracting the true magnetization M (Eq. 52) from
this linear system (Eq. 56) and rearranging the terms, we ob-
tain the following linear system for the perturbed magnetiza-
tion δM (Eq. 55):

δM=−δ3−1M . (57)

By using the concept of vector norm and its corresponding
operator norm (Demmel, 1997; Golub and Loan, 2013), we
may use Eq. (57) to write the following inequality:

‖δM‖
‖M‖

≤ ‖δ3−1
‖ . (58)

where ‖δM‖ and ‖M‖ denote Euclidean norms (or 2-norms)
and the term ‖δ3−1

‖ denotes the matrix 2-norm of δ3−1.
By using Eqs. (53) and (54) and the orthogonal invariance of
the matrix 2-norm (Demmel, 1997; Golub and Loan, 2013),
we define ‖δ3−1

‖ as follows:

‖δ3−1
‖ = χ ñ†

max , (59)

where ñ†
max is the demagnetization factor associated with the

shortest ellipsoid semi-axis. For a triaxial ellipsoid, ñ†
max ≡

ñ
†
33 (Eq. 27), for a prolate ellipsoid, ñ†

max ≡ ñ
†
22 (Eq. 31),

and, for an oblate ellipsoid, ñ†
max ≡ ñ

†
11 (Eq. 32). It is worth

stressing that, independently of the ellipsoid type, ñ†
max is a

scalar function of the ellipsoid semi-axes. In Eq. (58), the ra-
tio ‖δM‖‖M‖−1 represents the relative error in the approx-
imated magnetization M̆ (Eq. 51) with respect to the true
magnetization M (Eqs. 49 and 52). Given a target relative
error ε and an ellipsoid with given semi-axes, we may use
the inequality represented by Eq. (59) to define

χmax =
ε

ñ
†
max

, (60)

which represents the maximum isotropic susceptibility that
the ellipsoidal body can assume in order to guarantee a rel-
ative error lower than or equal to ε. For isotropic suscepti-
bilities greater than χmax, there is no guarantee that the rel-
ative error in the approximated magnetization M̆ (Eq. 51)
with respect to the true magnetization M (Eqs. 49 and 52)
is lower than or equal to ε. The geoscientific community has
been using χmax = 0.1 SI as a limit value for neglecting the
self-demagnetization and, consequently, use magnetization
M̆ (Eq. 51) as a good approximation of the true magneti-
zation M (Eqs. 49 and 52). Equation (60), on the other hand,
defines χmax as a function of the ellipsoid semi-axes, accord-
ing to a user-specified relative error ε.

2.5.2 Ambiguity between confocal ellipsoids with the
same magnetic moment

There is a fundamental non-uniqueness of ellipsoidal bodies,
analogous to the equivalence of concentric spheres with the
same magnetic moment. To show this ambiguity, let us first
consider a reference ellipsoid which is immersed in a uni-
form inducing field and has semi-axes a, b and c, isotropic
susceptibility χ and no remanence. The magnetization of this
ellipsoid, defined in the local coordinate system, can be ob-
tained by using Eqs. (14), (21) and (46) as follows:

M̃= χ
(

I+χ Ñ†
)−1

H̃0 . (61)
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In this case, the magnetic moment P̃, defined in the local co-
ordinate system, is given by

P̃= ϑM̃ , (62)

where ϑ = 4
3πabc is the ellipsoid volume. From Eqs. (61)

and (62), we can easily show that, if the inducing field H̃0 is
parallel to a semi-axis ei , where i = 1,2,3, e1 = a, e2 = b,
e3 = c, only the ith component Pi of the magnetic moment
P̃ is non-null, and is given by

Pi = ϑ
χ H0

1+χ ñ†
ii

, (63)

where H0 is the intensity of the inducing field H̃0 and the
demagnetizing factor ñ†

ii is defined by Eq. (25), (30) or (32),
according to the ellipsoid type.

Now, consider a confocal ellipsoid with semi-axes a′ =√
a2+ u, b′ =

√
b2+ u and c′ =

√
c2+ u, where u is a pos-

itive real number. From Eq. (63), we can define the isotropic
susceptibility χ ′ that is necessary to this confocal ellipsoid
produce the same magnetic moment P̃ (Eq. 62) as follows:

χ ′ =
Pi

ϑ ′H0− ñ
†
ii Pi

, (64)

where ϑ ′ = 4
3πa

′b′c′ and ñ†
ii is the new demagnetizing factor

computed for the confocal ellipsoid by using Eq. (25), (30)
or (32), according to the ellipsoid type. It can be shown that
this confocal ellipsoid produces the same magnetic field as
the reference ellipsoid.

This ambiguity between confocal ellipsoids with the
same magnetic moment has already been pointed out by
Clark (2014). It occurs for the particular case in which the
uniform inducing field is parallel to an ellipsoid axis and
there is no remanence. Otherwise, the magnetic field pro-
duced by the confocal ellipsoids will be different due to the
shape anisotropy.

2.6 External magnetic field and total-field anomaly

The magnetic field 1H(r) produced by an ellipsoid at exter-
nal points is calculated from Eqs. (21) and (47) as the differ-
ence between the resultant field H(r) and the inducing field
H0:

1H(r)= VÑ‡(̃r)V>M , (65)

where Ñ‡(̃r) is the transformed depolarization tensor whose
elements ñ

‡
ii (̃r) and ñ

‡
ij (̃r) are defined, respectively, by

Eqs. (34) and (35). 1H(r) represents the magnetic field pro-
duced by a uniformly magnetized body located in the crust.
Equation (65) gives the magnetic field (in Am−1) produced
by an ellipsoid. However, in geophysics, the most widely
used field is the magnetic induction (in nT). Fortunately, this
conversion can be easily done by multiplying Eq. (65) by

km = 109 µ0, where µ0 represents the magnetic constant
(in Hm−1). For geophysical applications, it is preferable to
calculate the total-field anomaly produced by the magnetic
sources. This scalar quantity is given by (Blakely, 1996)

1T (r)= ‖B0+1B(r)‖−‖B0‖ , (66)

where B0 = kmH0 and 1B(r)= km1H(r), with H0 and
1H(r) defined, respectively, by Eqs. (9) and (65). In
practical situations, however, ‖B0‖>>‖1B(r)‖ and, con-
sequently, the following approximation is valid (Blakely,
1996):

1T (r)≈
B>0 1B(r)
‖B0‖

. (67)

3 Computational implementation and reproducibility

The code is implemented in the Python language, by using
the NumPy and SciPy libraries (van der Walt et al., 2011), as
part of the open-source library Fatiando a Terra (Uieda et al.,
2013). Our code is very modular and has a test suite formed
by a considerable number of assertions, unit tests, doc tests
and integration tests. We refer the readers interested in best
practices for scientific computing to Wilson et al. (2014).

The numerical simulations presented here were gener-
ated with the Jupyter Notebook (http://jupyter.org), which
is a web application that allows the creation and sharing of
documents that contain live code, equations, visualizations
and explanatory text. Besides using Fatiando a Terra (Uieda
et al., 2013), the numerical simulations use the NumPy li-
brary (van der Walt et al., 2011) to perform numerical com-
putations and the Matplotlib library (Hunter, 2007) to plot
the results and generate figures. The Jupyter Notebooks
used to produce all the results presented here are avail-
able in a repository on GitHub (https://github.com/pinga-lab/
magnetic-ellipsoid).

4 Numerical simulations

All the code developed for generating the results presented
in the following sections, as well as the code developed for
generating additional numerical simulations, can be found at
the folder code of the online repository https://github.com/
pinga-lab/magnetic-ellipsoid.

4.1 Demagnetizing factors

We simulated a triaxial ellipsoid with semi-axes a0 =

1000 m, b0 = 700 m and c0 = 200 m. Then we used this el-
lipsoid as a reference to generate 100 different triaxial ellip-
soids and calculate their demagnetizing factors ñ†

11, ñ†
22 and

ñ
†
33 by using Eqs. (25), (26) and (27). The semi-axes of these

100 ellipsoids are given by a = a0+u b0, b = b0+u b0 and
c = c0+ u b0, where 0≤ u≤ 10. Notice that, for u= 0, the
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resulting semi-axes are equal to those of the reference ellip-
soid. The larger the variable u, the larger the resulting semi-
axes a, b and c, but the smaller the relative difference be-
tween them. Consequently, the resulting ellipsoids obtained
from the semi-axes a, b and c become more spherical as u in-
creases. In this case, the demagnetizing factors ñ†

11 (Eq. 25),
ñ

†
22 (Eq. 26) and ñ†

33 (Eq. 27) tend to 1/3 (e.g. Stoner, 1945).
Figure 2a shows the calculated demagnetizing factors ñ†

11
(in red), ñ†

22 (in green) and ñ†
33 (in blue) for the 100 triaxial

ellipsoids. The result shows that the relative difference be-
tween the demagnetizing factors is large for small values of
u and decreases as u increases. In this case, all demagnetizing
factors tend to 1/3, according to what we know from theory.
Also, Fig. 2a confirms that the demagnetizing factors satisfy
the condition ñ†

11 < ñ
†
22 < ñ

†
33 independently of the value of

u.
We have also simulated 100 different prolate ellipsoids

with semi-axes a =m b0 and b = b0, where 1.02≤m≤ 10
and b0 = 1000 m, and calculate their demagnetizing factors
ñ

†
11 and ñ†

22 by using Eqs. (30) and (31), respectively. Simi-
larly, we simulated 100 different oblate ellipsoids with semi-
axes a =m b0 and b = b0, where 0.02≤m≤ 0.98 and b0 =

1000 m, and calculate their demagnetizing factors ñ†
11 and

ñ
†
22 by using Eqs. (32) and (33), respectively.
Figure 2b and c show the results obtained for the 100

prolate and the 100 oblate ellipsoids, respectively. As ex-
pected from theory, the demagnetizing factors ñ†

11 (red line
in Fig. 2b) and ñ†

22 (green line in Fig. 2b) calculated for the
prolate ellipsoids are close to 1/3 for m close to 1. Also,
these demagnetizing factors satisfy the condition ñ†

11 < ñ
†
22

for all values of m. The result obtained for the oblate ellip-
soids (Fig. 2c) are also in perfect agreement with theory. The
demagnetizing factors ñ†

11 (in red) and ñ†
22 (in green), which

were calculated by using Eqs. (32) and (33), respectively,
are close to 1/3 for m close to 0 and satisfy the condition
ñ

†
11 > ñ

†
22 for all values of m.

4.2 Confocal ellipsoids

We simulated two confocal ellipsoids by using the param-
eters shown in Table 1. The semi-axes of Ellipsoid 2 were
defined as

√
a2+ u,

√
b2+ u and

√
c2+ u, where a, b, and

c are the semi-axes of Ellipsoid 1 and u= 2× 106 m.
We have computed the total-field anomalies produced by

Ellipsoid 1 and Ellipsoid 2 at the same regular grid of 200×
200 points located on a horizontal plane at z= 0 m by using
two different inducing fields H0.

In the first case, we used a uniform inducing field H0
which is parallel to the semi-axis a of the confocal ellip-
soids and has inclination ≈ −4.98◦, declination ≈ 15.38◦

and intensityH0 ≈ 18.7 Am−1. The total-field anomaly pro-
duced by Ellipsoid 1 by using this inducing field is shown in
Fig. 3. In this case, Ellipsoid 2 produces the same total-field
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Figure 2. (a) Comparison between the demagnetizing factors ñ†
11

(in red), ñ†
22 (in green) and ñ†

33 (in blue) produced by 100 triaxial
ellipsoids with semi-axes a = a0+u b0, b = b0+u b0 and c = c0+
u b0, where 0≤ u≤ 10 and b0 = 700 m. The demagnetizing factors
were calculated by using Eqs. (25), (26) and (27). (b) Comparison
between the demagnetizing factors ñ†

11 (in red) and ñ†
22 (in green)

produced by 100 prolate ellipsoids with semi-axes a =m b0 and
b = b0, where 1.02≤m≤ 10 and b0 = 1000 m. The demagnetizing
factors were calculated by using Eqs. (30) and (31). (c) Comparison
between the demagnetizing factors ñ†

11 (in red) and ñ†
22 (in green)

produced by 100 oblate ellipsoids with semi-axes a =m b0 and b =
b0, where 0.02≤m≤ 0.98 and b0 = 1000 m. The demagnetizing
factors were calculated by using Eqs. (32) and (33). The horizontal
black line represents the value 1/3.
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Table 1. Parameters defining two confocal ellipsoids.

Parameter Ellipsoid 1 Ellipsoid 2 Unit

Semi-axis a 900 ≈ 1676.31 m
Semi-axis b 500 1500 m
Semi-axis c 100 ≈ 1417.74 m
Coordinate of the centre xc 0 0 m
Coordinate of the centre yc 0 0 m
Coordinate of the centre zc 1500 1500 m
Orientation angle ε∗ 45 45 ◦

Orientation angle ζ∗ 10 10 ◦

Orientation angle η∗ −30 −30 ◦

Isotropic susceptibility χ 1.2 ≈ 0.014 SI

∗ Defined in Fig. 1a.
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Figure 3. Total-field anomaly (in nT) produced by the synthetic
bodies Ellipsoid 1 and Ellipsoid 2, both defined in Table 1. The syn-
thetic data produced by these confocal ellipsoids were calculated on
a regular grid of 200× 200 points at the constant vertical coordinate
z= 0 m. These data were calculated with a uniform inducing field
parallel to the semi-axis a of the confocal ellipsoids.

anomaly as Ellipsoid 1. The isotropic susceptibility of El-
lipsoid 2 was calculated with Eq. (64) and consequently its
magnetic moment is equal to that of Ellipsoid 1. Notice that
the volume of Ellipsoid 2 is approximately 79 times greater
than that of Ellipsoid 1, whereas the isotropic susceptibility
of Ellipsoid 1 is approximately 85 times greater than that of
Ellipsoid 2. This result illustrates the ambiguity between the
field produced by confocal ellipsoids with the same magnetic
moment.

The second inducing field H0 used is oblique to the semi-
axes of the confocal ellipsoids, has the same intensity as the
other one, but a different direction. In this case, the inclina-
tion and declination of H0 are, respectively, −30 and 60◦.
Figure 4a and b show the total-field anomalies produced, re-
spectively, by Ellipsoid 1 and Ellipsoid 2 by using this new
inducing field H0. Notice that by using this oblique induc-
ing field, the total-field anomalies produced by the confo-
cal ellipsoids are different from each other due to the shape
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Figure 4. Total-field anomalies (in nT) produced by (a) Ellipsoid
1 and (b) Ellipsoid 2, both defined in Table 1. The synthetic data
produced by these confocal ellipsoids were calculated on a regular
grid of 200×200 points at the constant vertical coordinate z= 0 m.
These data were calculated with a uniform inducing field which is
oblique to the semi-axes of the confocal ellipsoids. (c) Difference
between the total-field anomalies shown in (b) and (a).

anisotropy. The differences are shown in Fig. 4c. These re-
sults confirm numerically what was pointed out by Clark
(2014): confocal ellipsoids with properly scaled isotropic
susceptibilities, no remanence and the same magnetic mo-
ment produce different magnetic fields at the same external
points, unless the inducing field happens to lie along one of
their axes.

www.geosci-model-dev.net/10/3591/2017/ Geosci. Model Dev., 10, 3591–3608, 2017



3602 D. Takahashi and V. C. Oliveira Jr.: Magnetic modelling of ellipsoids

Table 2. Parameters defining a synthetic orebody. This model is
based on that presented by Farrar (1979) to simulate the Warrego
orebody, Tennant Creek field, Australia.

Parameter Value Unit

Semi-axis a 490.7 m
Semi-axis b 69.7 m
Semi-axis c 30.0 m
Coordinate of the centre xc 0 m
Coordinate of the centre yc 0 m
Coordinate of the centre zc 500 m
Orientation angle ε1

−34.0 ◦

Orientation angle ζ 1 66.1 ◦

Orientation angle η1 45.0 ◦

Isotropic susceptibility χ 1.69 SI
x component of the inducing field B0

2 32610 nT
y component of the inducing field B0

2 0 nT
z component of the inducing field B0

2 39450 nT

1 Defined in Fig. 1a. 2 Defined in Eq. (66).

4.3 Simulation of a geological body

We simulated an ellipsoidal body similar to the Warrego
orebody, which was the resource on which the well-known
Warrego mine developed in Tennant Creek, Australia. Af-
ter nearly a decade as one of the most important gold and
copper mines in Australia, the Warrego mine was closed in
late 1989. According to Wedekind (1990), the Warrego ore-
body is a combination of two major and several small iron-
stone lodes, which are discrete bodies comprised predomi-
nantly of magnetite or hematite above the base of oxidation.
Farrar (1979) represented the Warrego orebody as a triaxial
ellipsoid having a high isotropic susceptibility. In this case,
the self-demagnetization strongly impacts the magnetic mod-
elling of this body.

Table 2 shows the parameters defining a synthetic orebody
which is based on that presented by Farrar (1979) to rep-
resent the Warrego orebody. Figure 5 shows the total-field
anomaly 1T (r) (Eq. 67) produced by the synthetic body
on a regular grid of 100 × 100 points at a constant verti-
cal coordinate z= 0 m. The total-field anomaly varies from
≈ −71 nT to ≈ 482 nT, resulting in a peak-to-peak ampli-
tude of ≈ 553 nT, and was calculated by using the true mag-
netization M defined in Eqs. (49) and (52).

We have calculated the difference between the total-field
anomaly 1T (r) (Eq. 67) calculated with the true magneti-
zation M (Eqs. 49 and 52) and that calculated with the ap-
proximated magnetization M̆ (Eq. 51). The differences were
calculated by using the synthetic body defined in Table 2,
but with three different isotropic susceptibilities. Figure 6a, b
and c show the differences calculated by using, respectively,
isotropic susceptibilities χ = 1.69 SI (Table 2), χ1 = 0.1 SI
and χ2 = 0.116 SI.
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Figure 5. Total-field anomaly (in nT) produced by the synthetic ore-
body defined in Table 2. The synthetic data are calculated on a reg-
ular grid of 100 × 100 points at the constant vertical coordinate
z= 0 m.

As expected, the differences calculated by using the higher
isotropic susceptibility (Fig. 6a) are very large. The peak-to-
peak amplitude is≈ 40 nT and represents≈ 8% of the peak-
to-peak amplitude of the total-field anomaly shown in Fig. 5.

Figure 6b shows the differences calculated by using χ1 =

0.1 SI. It is commonly accepted that, for bodies having
isotropic susceptibilities lower than or equal to 0.1 SI, the
self-demagnetization can be neglected and, consequently, the
magnetization M̆ (Eq. 51) is a good approximation of the
true magnetization M (Eqs. 49 and 52). In our test, the use
of χ1 = 0.1 SI leads to a relative error ‖δM‖‖M‖−1

≈ 0.7%
(Eq. 58) in the magnetization. The peak-to-peak amplitude
of the differences in the total-field anomaly (Fig. 6b) is
≈ 0.2 nT, which represents ≈ 0.6% of the peak-to-peak am-
plitude of the total-field anomaly calculated by using the true
magnetization M (Eqs. 49 and 52).

Finally, Fig. 6c shows the differences calculated by using
χ2 = 0.116 SI. This value was calculated by using Eq. (60)
with a target relative error ε = 8% and the ñ†

max defined by
Eq. (27). By using this isotropic susceptibility, it is expected
that the calculated relative error ‖δM‖‖M‖−1 (Eq. 58) in the
magnetization be lower than or equal to the target relative
error ε = 8%. In this test, the use of χ2 = 0.116 SI leads to
a relative error ‖δM‖‖M‖−1

≈ 0.8% (Eq. 58) in the mag-
netization. The peak-to-peak amplitude of the differences
in the total-field anomaly (Fig. 6c) is ≈ 0.3 nT, which rep-
resents ≈ 0.7% of the peak-to-peak amplitude of the total-
field anomaly calculated by using the true magnetization M
(Eqs. 49 and 52). In this case, the use of an isotropic suscepti-
bility greater than the usual limit 0.1 SI does not mislead the
magnetic modelling dramatically. On the contrary, it shows
small discrepancies in the magnetic modelling and validates
Eq. (60).

Geosci. Model Dev., 10, 3591–3608, 2017 www.geosci-model-dev.net/10/3591/2017/



D. Takahashi and V. C. Oliveira Jr.: Magnetic modelling of ellipsoids 3603

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x 

(k
m

)
(a)

40

30

20

10

0

10

20

30

40

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 
(k

m
)

(b)

0.18

0.12

0.06

0.00

0.06

0.12

0.18

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y (km)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 
(k

m
)

(c)

0.24

0.18

0.12

0.06

0.00

0.06

0.12

0.18

0.24

Figure 6. Difference between the total-field anomaly calculated
with the approximated magnetization M̆ (Eq. 51) and with the true
magnetization M (Eqs. 49 and 52). The total-field anomalies are in
nT and were calculated with Eq. (67), on a regular grid of 100×100
points, at the constant vertical coordinate z= 0 m. The differences
are produced by the synthetic orebody defined in Table 2, but with
different isotropic susceptibilities: (a) the isotropic susceptibility
defined in Table 2, (b) an isotropic susceptibility χ = 0.1 SI and
(c) an isotropic susceptibility χ = 0.116 SI. This last value was cal-
culated with Eq. (60), by using ε = 8%.

5 Conclusions

We present an integrated review of the vast literature about
the magnetic modelling of triaxial, prolate and oblate el-
lipsoids. We also present a numerical simulation confirm-

ing the ambiguity between confocal ellipsoids with the same
magnetic moment and present a theoretical discussion about
the determination of the isotropic susceptibility value above
which the self-demagnetization must be taken into consid-
eration. We propose an alternative way of determining this
value based on the body shape and the maximum relative er-
ror allowed in the resultant magnetization. Our approach is
an alternative to the constant value which seems to be de-
termined empirically and has been used by the geoscientific
community. Our alternative approach is validated by the re-
sults obtained with numerical simulations. In a future work,
it would be interesting to use a similar approach to determine
bounds for the maximum relative error in the magnetic field
calculated by neglecting the self-demagnetization.

This work also provides a set of routines to model the mag-
netic field produced by ellipsoids. The routines are written in
the Python language as part of the Fatiando a Terra (Uieda
et al., 2013) open-source library for modelling and inversion
in geophysics. The current version of our code is freely dis-
tributed in a repository hosted on the GitHub website. We are
working to integrate our routines in the next stable release of
Fatiando a Terra. We hope that these routines will be useful
to the wide geoscientific community, either for research or
for teaching.

Code availability. The current version of our code is freely dis-
tributed under the BSD 3-clause licence and it is available for down-
load at Zenodo: http://doi.org/10.5281/zenodo.996479 (Takahashi
and Oliveira Jr., 2017). The latest development version of our code
can be freely downloaded from a repository on GitHub (https://
github.com/pinga-lab/magnetic-ellipsoid). Instructions for running
the current version of our code are also provided on the repository.
The code is still being improved and we encourage the user to work
with the latest development version. The code was developed as
part of the Fatiando a Terra (Uieda et al., 2013) open-source Python
library for modelling and inversion in geophysics. Documentation
and installation instructions for the 0.5 release version of Fatiando
a Terra are provided at http://www.fatiando.org/v0.5.
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Appendix A: Derivatives of the functions f (r) and f̃ (r̃)

Let f̃ (̃r) be the scalar function obtained by transforming
f (r) (Eq. 17) from the main coordinate system (Fig. 1a) to
the local coordinate system (Fig. 1b). For convenience, let us
rewrite Eq. (8) as follows:

r̃k = v1k r1+ v2k r2+ v3k r3+ ck , (A1)

where r̃k , k = 1,2,3, are the elements of the transformed po-
sition vector r̃ (Eq. 8), rj , j = 1,2,3, are the elements of the
position vector r (Eq. 1), vjk , j = 1,2,3, are the elements of
the matrix V (Eq. 2) and ck is a constant defined by the coor-
dinates xc, yc, and zc of the centre of the ellipsoidal body.

By considering the functions f (r) (Eq. 17) and f̃ (̃r) eval-
uated at the same point, but on different coordinate systems,
we have

∂f (r)

∂rj
=
∂f̃ (̃r)

∂r̃1

∂r̃1

∂rj
+
∂f̃ (̃r)

∂r̃2

∂r̃2

∂rj
+
∂f̃ (̃r)

∂r̃3

∂r̃3

∂rj
,

j = 1,2,3 ,

which, from Eq. (A1), can be given by

∂f (r)

∂rj
= vj1

∂f̃ (̃r)

∂r̃1
+ vj2

∂f̃ (̃r)

∂r̃2
+ vj3

∂f̃ (̃r)

∂r̃3
,

j = 1,2,3 . (A2)

Now, by deriving ∂f (r)
∂rj

(Eq. A2) with respect to the ith
element ri of the position vector r (Eq. 1), we obtain

∂2f (r)

∂ri ∂rj
= vj1

∂

∂ri

(
∂f̃ (̃r)

∂r̃1

)
+ vj2

∂

∂ri

(
∂f̃ (̃r)

∂r̃2

)

+ vj3
∂

∂ri

(
∂f̃ (̃r)

∂r̃3

)

= vj1

(
∂2f̃ (̃r)

∂r̃1 ∂r̃1
vi1+

∂2f̃ (̃r)

∂r̃2 ∂r̃1
vi2+

∂2f̃ (̃r)

∂r̃3 ∂r̃1
vi3

)

+ vj2

(
∂2f̃ (̃r)

∂r̃1 ∂r̃2
vi1+

∂2f̃ (̃r)

∂r̃2 ∂r̃2
vi2+

∂2f̃ (̃r)

∂r̃3 ∂r̃2
vi3

)

+ vj3

(
∂2f̃ (̃r)

∂r̃1 ∂r̃3
vi1+

∂2f̃ (̃r)

∂r̃2 ∂r̃3
vi2+

∂2f̃ (̃r)

∂r̃3 ∂r̃3
vi3

)

=
[
vj1 vj2 vj3

]
F̃(̃r)

 vi1
vi2
vi3

 , (A3)

where F̃(̃r) is a 3× 3 matrix whose ij th element is ∂2f̃ (̃r)
∂r̃i ∂r̃j

.
From Eq. (A3), we obtain

F(r)= VF̃(̃r)V> , (A4)

where F(r) is a 3× 3 matrix whose ij th element is ∂2f (r)
∂ri ∂rj

and V (Eq. 2) is defined according to the ellipsoid type. No-
tice that the matrices F(r) and F̃(̃r) represent the Hessians

of the functions f (r) (Eq. 17) and f̃ (̃r), respectively. Also,
the depolarization tensor N(r) (Eq. 15) can be rewritten by
using the matrix F(r) as follows:

N(r)=
1

4π
F(r) . (A5)

By properly using the orthogonality of the matrix V (Eq. 2),
we may rewrite Eq. (A4) as follows:

F̃(̃r)= V>F(r)V . (A6)

Finally, by multiplying both sides of Eq. (A6) by 1
4π and us-

ing Eq. (A5), we conclude that

Ñ(̃r)= V>N(r)V . (A7)

Appendix B: Parameter λ and its spatial derivatives

Here, we follow the reasoning presented by Webster (1904)
for analysing the parameter λ which defines triaxial, prolate
and oblate ellipsoids.

B1 Parameter λ defining triaxial ellipsoids

Let us consider an ellipsoid with semi-axes a, b, c oriented
along the x̃, ỹ and z̃ axis, respectively, of its local coordi-
nate system (Fig. 1b), where a > b > c > 0. This ellipsoid is
defined by the following equation:

x̃2

a2 +
ỹ2

b2 +
z̃2

c2 = 1 . (B1)

A quadric surface (e.g. ellipsoid, hyperboloid of one sheet or
hyperboloid of two sheets) which is confocal with the ellip-
soid defined in Eq. (B1) can be described as follows:

x̃2

a2+ u
+

ỹ2

b2+ u
+

z̃2

c2+ u
= 1 , (B2)

where u is a real number. Equation (B2) represents an ellip-
soid for u satisfying the condition

u+ c2 > 0 . (B3)

Given a, b, c, and a u satisfying Eq. (B3), we may use
Eq. (B2) for determining a set of points (x,y,z) lying on the
surface of an ellipsoid which is confocal with that one de-
fined in Eq. (B1). Now, consider the problem of determining
the ellipsoid which is confocal with that defined in Eq. (B1)
and pass through a particular point (̃x, ỹ, z̃). This problem
consists in determining the real number u that, given a, b, c,
x̃, ỹ and z̃, satisfies Eq. (B2) and the condition expressed by
Eq. (B3). By rearranging Eq. (B2), we obtain the following
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cubic equation for u:

p(u)= (a2
+ u)(b2

+ u)(c2
+ u)− (b2

+ u)(c2
+ u) x̃2

− (a2
+ u)(c2

+ u) ỹ2
− (a2

+ u)(b2
+ u) z̃2 . (B4)

This cubic equation shows that

u=


d→∞ , p(u) > 0

−c2 , p(u) < 0
−b2 , p(u) > 0
−a2 , p(u) < 0 .

(B5)

Notice that, according to Eq. (B5), the smaller, intermediate
and largest roots of the cubic equation p(u) (Eq. B4) are lo-
cated, respectively, in the intervals [−a2 ,−b2

], [−b2 ,−c2
]

and [−c2 ,∞[. Remember that we are interested in a u sat-
isfying the condition expressed by Eq. (B3). Consequently,
according to the signal analysis shown in Eq. (B5), we are
interested in the largest root λ of the cubic equation p(u)
(Eq. B4).

From Eq. (B4), we obtain a simpler one given by

p(u)= u3
+p2 u

2
+p1 u+p0 , (B6)

where

p2 = a
2
+ b2
+ c2
− x̃2
− ỹ2
− z̃2 , (B7)

p1 = b
2 c2
+ a2 c2

+ a2 b2
− (b2

+ c2) x̃2

− (a2
+ c2) ỹ2

− (a2
+ b2) z̃2 (B8)

and

p0 = a
2 b2 c2

− b2 c2 x̃2
− a2 c2 ỹ2

− a2 b2 z̃2 . (B9)

Finally, from Eqs. (B7), (B8) and (B9), the largest root λ of
p(u) (Eq. B6) can be calculated as follows (Weisstein, 2017):

λ= 2
√
−Q cos

(ϕ
3

)
−
p2

3
, (B10)

where

ϕ = cos−1

(
R√
−Q3

)
, (B11)

Q=
3p1−p

2
2

9
(B12)

and

R =
9p1p2− 27p0− 2p3

2
54

. (B13)

B2 Parameter λ defining prolate and oblate ellipsoids

Let us now consider a prolate ellipsoid with semi-axes a, b,
c oriented along the x̃, ỹ and z̃ axis, respectively, of its lo-
cal coordinate system (Fig. 1b), where a > b = c > 0. In this

case, the equation defining the surface of the ellipsoid is ob-
tained by substituting c = b in Eq. (B1). Consequently, the
equation defining the respective confocal quadric surface is
given by

x̃2

a2+ u
+
ỹ2
+ z̃2

b2+ u
= 1 (B14)

and the new condition that must be fulfilled by the variable u
for Eq. (B14) to represent an ellipsoid is

u+ b2 > 0 . (B15)

Similarly to the case of a triaxial ellipsoid presented in the
previous section, we are interested in determining the real
number u that, given a, b, x̃, ỹ and z̃, satisfies Eq. (B14) and
the condition expressed by Eq. (B15). From Eq. (B14), we
obtain the following quadratic equation for u:

p(u)= (a2
+ u)(b2

+ u)− (b2
+ u) x̃2

− (a2
+ u)(ỹ2

+ z̃2) . (B16)

This equation shows that

u=


d→∞ , f (ρ) > 0

−b2 , f (ρ) < 0
−a2 , f (ρ) > 0

(B17)

and, consequently, that its two roots lie in the intervals
[−a2 ,−b2

] and [−b2 ,∞[. Therefore, according to the con-
dition established by Eq. (B15) and the signal analysis shown
in Eq. (B17), we are interested in the largest root λ of the
quadratic equation p(u) (Eq. B16).

By properly manipulating Eq. (B16), we obtain a simpler
one given by

p(u)= u2
+p1 u+p0 , (B18)

where

p1 = a
2
+ b2
− x̃2
− ỹ2
− z̃2 (B19)

and

p0 = a
2 b2
− b2 x̃2

− a2
(
ỹ2
+ z̃2

)
. (B20)

Finally, by using Eqs. (B19) and (B20), the largest root λ of
p(u) (Eq. B18) can be easily calculated as follows:

λ=
−p1+

√
p2

1 − 4p0

2
. (B21)

In the case of oblate ellipsoids, the procedure for deter-
mining the parameter λ is very similar to this one for prolate
ellipsoids. The semi-axes a, b, c of oblate ellipsoids are de-
fined so that b = c > a > 0 and the condition that must be
fulfilled by the variable u is u+ a2 > 0. In this case, the two
roots of the resulting quadratic equation lie in the intervals
[−b2 ,−a2

] and [−a2 ,∞[. Consequently, we are still inter-
ested in the largest root of the quadratic equation for the vari-
able u, which is also calculated by using Eq. (B21).
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B3 Spatial derivative of the parameter λ

The magnetic modelling of triaxial, prolate or oblate ellip-
soids requires not only the parameter lambda defined by
Eqs. (B10) and (B21) but also its derivatives with respect
to the spatial coordinates x̃, ỹ and z̃. Fortunately, the spa-
tial derivatives of the parameter λ can be calculated in a very
similar way for all ellipsoid types.

Let us first consider a triaxial ellipsoid. In this case, the
spatial derivatives of λ are given by

∂λ

∂r̃j
=

2 r̃j(
e2
j+λ

)
(

x̃

a2+λ

)2
+

(
ỹ

b2+λ

)2
+

(
z̃

c2+λ

)2 ,

j = 1,2,3, (B22)

where r̃1 = x̃, r̃2 = ỹ, r̃3 = z̃, e1 = a, e2 = b and e3 = c. This
equation can be determined directly from Eq. (B2). The spa-
tial derivatives of λ in the case of prolate or oblate ellipsoids
can also be calculated by using Eq. (B22) for the particular
case in with b = c.
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