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MÉTODOS DE INVERSÃO DE DADOS MAGNÉTICOS PARA ESTIMAR 

FONTES REGIONAIS  

 

Marlon Cabrera Hidalgo-Gato 

 

 

Dezembro/2019 

 

 

No contexto dos estudos de bacias sedimentares, apresentamos duas 

inversões magnéticas 3D rápidas e regularizadas no domínio espacial. A 

primeira inverte a anomalia de campo total para a estimativa da profundidade do 

embasamento, enquanto a segunda inverte a amplitude do vetor da anomalia 

magnética para estimar a intensidade da magnetização e a profundidade do 

embasamento. Ambas inversões discretizam as rochas do embasamento por um 

grid de prismas 3D verticais e justapostos nas direções horizontais cujas 

profundidades até o topo se aproximam das profundidades da topografia do 

embasamento em pontos discretos. Além disso, ambas inversões assumem 

sedimentos não magnéticos sobrepostos às rochas do embasamento magnético 

com magnetização constante. Propomos uma nova maneira de calcular a 

modelagem direta de um prisma, denominada modelagem direta prismática 

rápida. Essa modelagem direta rápida calcula as componentes do vetor de 

magnetização gerado por um prisma mediante uma integral 1D de dipolos ao 

longo da espessura do prisma, que, por sua vez, é multiplicada pela área 

horizontal do prisma. Essa abordagem reduz o tempo computacional não apenas 

do cálculo do modelo direto dos prismas, mas também da inversão não linear. 

Para inverter a anomalia de campo total, a direção e a intensidade da 

magnetização devem ser conhecidas. Assumimos uma intensidade de 

magnetização constante e conhecida e determinamos a declinação e inclinação 

do vetor de magnetização, realizando uma busca discreta e sistemática por 
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valores ótimos que minimizem a função de desajuste dos dados. Na inversão da 

anomalia de campo total para estimar a profundidade do embasamento, usamos 

a regularização de Tikhonov de primeira ordem. Na inversão da amplitude do 

vetor de anomalia magnética, para estimar simultaneamente a intensidade 

magnética e a profundidade do embasamento magnético, impomos a 

proximidade entre as profundidades estimadas e a profundidade média do relevo 

do embasamento. Mostramos que a inversão da anomalia de campo total é 

altamente dependente do conhecimento da direção do vetor de magnetização. 

Por outro lado, mostramos que a inversão da amplitude do vetor da anomalia 

magnética é fracamente dependente da direção do vetor de magnetização. Na 

última inversão, não é necessário nenhum conhecimento prévio sobre a direção 

do vetor de magnetização (declinação e inclinação). Testes em dados sintéticos 

e de campo das bacias do Pará-Maranhão e Foz do Amazonas (Brasil) 

comprovam a aplicabilidade de ambos os métodos propostos.
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In the context of sedimentary basin studies, we present two fast 3D regularized 

magnetic inversions in the space domain. The first one inverts the total-field anomaly 

for depth-to-basement estimate whereas the second one inverts the amplitude of the 

magnetic anomaly vector to estimate both the magnetic intensity and the depth to the 

basement. Both inversions discretize the basement rocks by a grid of 3D vertical 

prisms juxtaposed in the horizontal directions whose depths to the tops approximate 

the depths to the basement topography at discrete points. Additionally, both inversions 

assume that nonmagnetic sediments overlay constant magnetized basement rocks. We 

propose a novel way to compute the forward modeling of a prism, named fast-

prismatic forward modeling.  This fast-prismatic forward modeling calculates the 

components of the magnetic vector yielded by a prism by a 1D integral of dipoles 

along the prism thickness, which, in turn, is multiplied by the horizontal area of the 

prism. This approach reduces the computational time not only of the prism forward 

model but also of the nonlinear inversion. To invert the total-field anomaly, the 

magnetization direction and intensity must be known. We assume a constant and 

known magnetization intensity and determine the declination and inclination of the 

magnetization vector by performing a discrete and systematic search for optimum 

values that minimizes the data-misfit function. In the total-field anomaly inversion for 

estimating the depth to the basement, we use the first-order Tikhonov regularization.  

In the amplitude of the magnetic anomaly vector inversion for simultaneously 

estimating the magnetic intensity and the depth to the magnetic basement, we impose 

the proximity between the estimated depths and the average depth of the basement 
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relief. We show that the total-field anomaly inversion is highly dependent on the 

knowledge of the magnetization vector direction. Conversely, we show that the 

inversion of the amplitude of the magnetic anomaly vector is weakly dependent on the 

magnetization vector direction. In the latter inversion, no previous knowledge about 

the direction of magnetization vector (declination, inclination) is required. Tests on 

synthetic and field data from the Pará-Maranhão and Foz do Amazonas Basins (Brazil) 

prove the applicability of both proposed methods.    
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Chapter 1 

1.0 Introduction 

 

 Geophysics inverse problems consist in estimating an unknown vector 

parameter from a collection of observed data. These geophysical problems are ill-

posed and thus, their solution is neither unique nor stable.  The inverse problems could 

be divided into two main groups depending on the parameters we want to estimate: 

physical-property and structural inversion problems. The former estimates a physical-

property distribution given a fixed geometry (e.g. RICHARDS et al., 1967; PARKER 

et al., 1987; BARBOSA and SILVA, 1994; LI and OLDENBURG, 1996; 

PORTNIAGUINE and ZHDANOV, 2002; CARATORI TONTINI et al., 2003; 

BARBOSA and SILVA, 2006; FARQUHARSON, 2008; SILVA DIAS et al., 2009; 

2011; UIEDA and BARBOSA, 2012; IALONGO et al., 2014; UIEDA and 

BARBOSA, 2017). In contrast, the structural inverse problem estimates the source 

geometry assuming known physical-property contrast (e.g., ZEYEN AND POUS, 

1991; MICKUS and PEEPLES, 1992; BARBOSA et al., 1997; 1999A; 1999B; 

NUNES et al., 2008; MARTINS et al., 2011; OLIVEIRA JR et al., 2011; BARNES 

and BARRAUD, 2012; OLIVEIRA JR and BARBOSA, 2013;). One of the main 

computational obstacles of both physical-property and structural inverse problems is 

the computational effort required to calculate the forward modeling with a large 

number of parameters.  

The most common magnetic inversions parametrize the Earth’s subsurface into 

a grid of prisms (2D or 3D) to estimate a magnetic-intensity distribution subject to fit 

the magnetic anomaly within a given degree of accuracy. However, the magnetic 

anomaly produced by a single prism (BHATTACHARYYA, 1964) is computationally 
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costly and complex because it involves a series of summations over trigonometric 

functions. In some cases, the geological source could be discretized by a sum of a 

series of dipoles, which leads to a simpler and faster calculation of the magnetic 

components than the forward modeling, which uses the prism-based discretization of 

the Earth's subsurface. PORTNIAGUINE and ZHDANOV (2002) and PILKINGTON 

(2016) parametrized the Earth’s subsurface into a grid of dipoles to estimate the shape 

of geological sources by inverting the total-field anomaly.  PILKINGTON (2016) 

calculated the magnetic forward modeling in the wavenumber domain, whereas 

PORTNIAGUINE and ZHDANOV (2002) calculated it in the space domain. 

CARATORI TONTINI et al. (2003) also used prismatic parameterization of the 

subsurface; however, they employed an approximation of the source distribution by 

means of positive constrained Gaussian functions.  

On the other hand, if the geometries of geological sources are estimated by 

inverting the magnetic anomaly, a nonlinear system needs to be solved and hence the 

forward modeling must be calculated at each iteration. In practice, this means that 

several time-consuming iterative processes must be run to find a suitable solution. This 

is the case of estimating the depths to the magnetic basement of a sedimentary basin 

by means of magnetic anomaly data inversion.    

The magnetic data in basin-scale studies have been used to delineate structural 

features within basement (e.g. structural highs and lows, terraces, ridges, faults, among 

others) yielding a structural map (e.g., CARVALHO et al., 2012; LORENÇO et al., 

2014; HIDALGO-GATO and BARBOSA, 2015; ALI et al., 2017). The tectonic 

processes sculpt the basement structures, which, in turn, control the basin architecture. 

Hence, the structural framework of the basement in depth is important to understand 

the basin evolution and to assist the hydrocarbon exploration.  The spectral analysis of 

the magnetic data has been widely used to estimate the average depths of ensembles 

of shallow- and deep-seated magnetic sources (SPECTOR and GRANT, 1970; 

OKUBO et al., 1985 and BANSAL et al., 2011) where the shallow-seated magnetic 

sources can be intrasedimentary mafic and ultramafic bodies and the deep-seated 

magnetic sources can be the basement. OKUBO et al. (1985) derived a method of 

estimating the average of the top and bottom of the deep-seated magnetic sources from 

the power spectrum of the total-field anomaly data. To estimate the entire basement 

topography rather than the average depths of the basement rocks, the main magnetic 

data inversions are grounded on the forward modeling proposed by PARKER (1973).  
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PARKER (1973), in a seminal paper, gave an equation that correlates the Fourier 

transform of the total-field anomaly with the Fourier transform of the power of the 

depths.  Parker’s formulation requires a previous knowledge about the average depth 

of the interface to overcome the intrinsic ambiguity involving the product of the 

physical property by the volume of the inversion of potential-field data that has been 

treated by SKEELS (1947) and BARBOSA et al. (2002), among others. Originally, it 

assumes a constant magnetization contrasts along the entire surface. However, 

extension to incorporate lateral variation of magnetization distribution presents no 

theoretical difficult in Parker’s forward modeling since the magnetization distribution 

is known. Because Parker’s forward modeling requires a series of Fourier transforms, 

both the data (total-field anomaly) and the depths describing the magnetic basement 

topography at discrete points must be located on a regular grid. The main advantages 

of the inverse methods based on Parker’s wavenumber domain expansion formulation 

are 1) the faster calculation of the forward model and 2) the low computational load. 

On the other hand, one disadvantage of this formulation is the large smoothing 

imposed to the depth-to-basement estimates, because the inversion methods based on 

PARKER (1973) stabilize the solutions either by applying a low-pass filter to the data 

or by introducing a damping parameter. We call the methods that use PARKER (1973) 

forward method as “spectral inversions”. Some examples of spectral inversions are:  

OLDENBURG (1974); GUSPÍ (1993); CARATORI TONTINI et al. (2008), among 

others. Using a non-spectral approach, some methods (e.g., MICKUS and PEEPLES, 

1992; ZEYEN and POUS, 1991; GALLARDO-DELGADO et al., 2003; NUNES et 

al., 2008; HIDALGO-GATO and BARBOSA, 2019) parameterize the basement into 

a grid of prisms (2D or 3D) to estimate the shape of the basement topography subject 

to fit the observed total-field anomaly in the space domain. 

 In a nonlinear inversion, linear systems can be solved at several iterations to 

estimate a set of parameters. In geophysics, solving several linear systems usually 

involves a large non-sparse matrix. Hence, the solution of large-scale nonlinear 

inversions is a challenge because, usually, it deals with a considerable number of 

parameters and observations. For the gravity inversion, BOTT (1960) overcame this 

problem by using an analytical formula to update the parameters without requiring 

solving any linear system at each iteration. SILVA et al. (2014) shown that the BOTT 

(1960) method is, in fact, a particular case of the Gauss-Newton method that requires 

a positive (+1) or negative (-1) correlation between the parameters to be estimated and 
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the data misfit. UIEDA and BARBOSA (2017) extended the Gauss-Newton 

formulation of BOTT’S (1960) method to use tesseroids as model elements and 

Tikhonov regularization in order to estimate the Moho depth for the South American 

continent using satellite gravity data and seismological data. The requirement of 

correlation of +1 or -1 between the parameters and the predicted data is always 

satisfied in the gravity inversion. However, in the magnetic inversion, this correlation 

is only archived if the total magnetization vector is vertical. 

In Chapter 2, we present a fast-nonlinear magnetic inversion to estimate the 

magnetic basement depth by following a non-spectral approach, this chapter was 

published by HIDALGO-GATO and BARBOSA (2019). We parametrize the 

basement layer as a grid of 3D vertical prisms juxtaposed in the horizontal directions 

with a known magnetization intensity. The tops of the prisms are the unknown 

parameters to be estimated from the total-field anomaly and represent the depths to the 

magnetic basement. For simplicity, the 𝑖th depth of the sedimentary basement to be 

estimated is directly located beneath the 𝑖th magnetic station. Here, we overcome two 

hurdles: 1) the time-consuming magnetic forward modeling and 2) the need of solving 

large non-sparse linear system iteratively. To overcome the computational cost of the 

magnetic forward modeling, we propose a strategy that does not require the 

computation of the magnetic anomalies produced by prisms through 3D integrals 

(BHATTACHARYYA, 1964). We replace the 3D integral used to calculate the total-

field anomaly of a prism by a 1D integral along the prism thickness, considering the 

magnetic moment as the product of the magnetization intensity and the horizontal 

cross-section area of the prism. The 1D integral is calculated considering its lower and 

upper limits of the integration as the depth to the basement and the depth that may 

describe the non-magnetic bottom, respectively. Here, the 1D integral is calculated 

numerically using the Gauss-Legendre quadrature (GLQ) produced by dipoles located 

along the vertical axis passing through the prism center. Hereafter, we will refer to this 

proposed magnetic forward modeling as fast-prismatic forward modeling. To 

overcome the need of solving large non-sparse linear system iteratively, the full 

sensitivity matrix is not computed; rather, only the diagonal elements are calculated. 

In other words, the 𝑖th element of the 𝑖th row of the sensitivity matrix only needs to be 

computed leading to a diagonal sensitivity matrix. To estimate the basement relief 

from the total-field anomaly inversion, we first need to know the magnetization vector 

of the basement (its intensity and direction).  By assuming the knowledge about the 
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magnetization intensity provided from the basement rocks, we determine the 

magnetization direction (inclination and declination) of the basement. We perform a 

systematic and non-automatic search of the data-misfit function on the plane of the 

inclination versus declination to map the optimum pair of inclination and declination 

as the one that yields the lowest value of the data-misfit function. Tests on synthetic 

data and on airborne magnetic data collected over an area of the Pará-Maranhão Basin, 

offshore northern Brazil, support the efficiency of our method in retrieving the 

basement relief of this poorly studied area of the Brazilian equatorial margin. 

A drawback of the method presented in the Chapter 2 is the need to know the 

magnetization vector of the basement. The total-field anomaly inversion requires the 

knowledge about the total magnetization vector of the sources. Usually, geophysicists 

assume a purely-induced magnetization. If this assumption is not satisfied, erroneous 

depth-to-basement estimates are obtained from total-field anomaly inversion; hence, 

the remanent magnetization cannot be neglected.  

Conversely, the amplitude of the magnetic anomaly vector is weakly dependent 

on the magnetization direction (SHEARER and LI, 2004; LI et al., 2010). The 

amplitude of the magnetic anomaly vector is defined as the square root of the sum of 

the squares of the 𝑥 −, 𝑦 − and 𝑧 −components of the magnetic anomaly vector. These 

components can be measured (CHRISTENSEN and DRANSFIELD, 2002; 

DRANSFIELD et al., 2003), but they are rarely surveyed.  Usually, they are calculated 

from the total-field anomaly either in the wavenumber domain (LOURENCO and 

MORRISON, 1973; PEDERSEN, 1978) or in the space domain through the 

equivalent-layer technique (DAMPNEY, 1969).  

In the case of 2D magnetic bodies, the amplitude of the magnetic anomaly vector 

is the envelope of both the 𝑥 − and  𝑧 −components of the magnetic anomaly vector 

(NABIGHIAN, 1972), regardless of the source magnetization direction. However, in 

geologic scenarios with 3D magnetic bodies, the amplitude of the magnetic anomaly 

vector depends on the source magnetization weakly (NABIGHIAN, 1984; HANEY et 

al., 2003). The weak dependence on the source magnetization direction makes the 

amplitude of the magnetic anomaly vector an efficient data for interpreting geologic 

settings with remanently magnetized sources. 

In Chapter 3, we follow a non-spectral approach to parametrize the basement 

through a grid of juxtaposed rectangular prisms, same as in the second chapter. 
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Differently from the previous non-spectral inversions, we invert the amplitude of the 

magnetic anomaly vector for simultaneously estimating the depths of the basement 

relief and the magnetization intensity of the basement rocks. We assume the absence 

of intrasedimentary igneous intrusions and prior knowledge about the average 

basement depth. The method requires a uniform magnetization for the basement rocks; 

however, it does not assume a given magnetization vector. We do not compute the 

three orthogonal components of the magnetic anomaly produced by prisms through 

3D integrals (BHATTACHARYYA, 1964). Rather, we use the fast-forward modeling 

based on Gauss-Legendre quadrature (GLQ) proposed in Chapter 2 and in HIDALGO-

GATO and BARBOSA (2019). Tests on synthetic data and on field data collected over 

the Foz do Amazonas Basin, Brazil, confirm the potential of the proposed method in 

retrieving the shape of the basement without specifying the magnetization direction 

and intensity of the sources. 
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Chapter 2 

Fast 3D magnetic inversion of a 

surface relief in the space domain 

This chapter was published in HIDALGO-GATO and BARBOSA (2019). 

 

2.1  Summary  

 We present a fast 3D regularized magnetic inversion algorithm for depth-to-

basement estimation based on an efficient way to compute the total-field anomaly 

produced by an arbitrary interface separating nonmagnetic sediments from a magnetic 

basement. We approximate the basement layer by a grid of 3D vertical prisms 

juxtaposed in the horizontal directions, where the prisms’ tops represent the depths to 

the magnetic basement. To compute the total-field anomaly produced by the basement 

relief, the 3D integral of the total-field anomaly of a prism is simplified by a 1D 

integral along the prism thickness, which in turn is multiplied by the horizontal area of 

the prism. The 1D integral is calculated numerically using the Gauss-Legendre 

quadrature produced by dipoles located along the vertical axis passing through the 

prism center.  This new magnetic forward modeling overcomes one of the main 

drawbacks of the nonlinear inverse problem for estimating the basement depths from 

magnetic data:  the intense computational cost to calculate the total-field anomaly of 

prisms. The new sensitivity matrix is simpler and computationally faster than the one 
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using the classical magnetic forward modeling based on the 3D integrals of a set of 

prisms which parametrizes the earth’s subsurface. To speed up the inversion at each 

iteration, we employ the Gauss-Newton approximation for the Hessian matrix keeping 

the main diagonal only and adding the first-order Tikhonov regularization function.  

The large sparseness of the Hessian matrix allows us to construct and solve a linear 

system iteratively, that is faster and demands less memory than the classical nonlinear 

inversion with the prism-based modeling using 3D integrals. We successfully inverted 

the total-field anomaly of a simulated smoothing basement relief with a constant 

magnetization vector. Test on field data from a portion of the Pará-Maranhão Basin, 

Brazil, retrieved a first depth-to-basement estimate geologically plausible. 

 

2.2 Forward Model 

 We assume a sedimentary basin consisting of nonmagnetic sediments overlying 

a magnetic basement. We adopt the conventional prism-based discretization of the 

Earth's subsurface for modeling the basement topography from total-field anomaly. 

We parametrize the basement layer as a grid of 𝑀 3D vertical prisms juxtaposed in the 

horizontal directions of a Cartesian coordinate system, where the 𝑥 − and 

𝑦 −coordinates are, respectively, north and east orientated, the 𝑧 − coordinate is 

positive downward. In this discrete model, we assume that the grid encloses all 

basement topography and the observation grid is co-centered with the basement grid 

(Figure 2.1). The horizontal dimensions  𝑎 and  𝑏  of all prisms are known as shown 

in Figure 2.1. The depths to the bottoms of all prisms are assumed to be constant 𝑧2,  

approximately known, and they describe a surface which may coincide with the non-

magnetic surface.  The depths to the tops of all prisms, 𝑝𝑗, 𝑗 = 1, … , 𝑀, represent the 

depths to the basement and are the parameters to be estimated from the total-field 

anomaly. 

We assume that the magnetization vector of each prism is constant. The total-

field anomaly calculated at the 𝑖th observation point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is given by: 

                              ∆𝑇𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) = ∑ ∅𝑖𝑗

𝑀

𝑗=1

,          𝑖 = 1, … , 𝑁,                                       (2.1) 
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where ∅𝒊𝒋 is the total-field anomaly produced by the 𝑗th prism calculated at the 𝑖th 

observation point with magnetization intensity 𝑚, inclination 𝑚𝑖, and declination 𝑚𝑑. 

The expression of the total-field anomaly produced by the 𝑗th prism was derived by 

BHATTACHARYYA (1964). 

Many authors have used equation 2.1 to calculate the total-field anomaly of 

complex geological layers by discretizing the subsurface with a mesh of 𝑀 smaller 

prisms between the top and the bottom of the layer. Nonetheless, the analytical 

equation of the total-field anomaly produced by a unique prism (∅𝑖𝑗) is 

computationally expensive. On the other hand, the computation of the total-field 

anomaly produced by a dipole is simpler and, consequently, demands less 

computational cost. BHATTACHARYA (1964) derived the analytical expression of 

the total-field anomaly produced by a single prism by integrating the total-field 

anomaly of a dipole over the volume of the prism, i.e.: 

                ∅𝑖𝑗(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)   =    ∫ ∫ ∫ 𝜑𝑖𝑗(𝑥′, 𝑦′, 𝑧′)
𝑧2

𝑝𝑗

𝑦2𝑗
𝑦1𝑗

𝑥2𝑗
𝑥1𝑗

𝑑𝑥′𝑑𝑦′𝑑𝑧′,           (2.2) 

where 𝑥1𝑗
, 𝑥2𝑗

, 𝑦𝑦1𝑗
, 𝑦2𝑗

, 𝑝𝑗  , and 𝑧2  are the horizontal and vertical coordinates of 

the corners of the 𝑗th prism and 𝜑𝑖𝑗(𝑥′, 𝑦′, 𝑧′) is the expression of the total-field 

anomaly, calculated at the 𝑖th observation point, produced by a single 𝑗th dipole with 

magnetic moment having the same direction of the magnetization vector of the prism 

and located at  𝑥′,   𝑦′, and 𝑧′ denoting, respectively, the 𝑥 −, 𝑦 −, and 𝑧 −coordinates 

of an arbitrary point belonging to the interior of the 𝑗th prism. In equation 2.2, the 

integration is conducted with respect to the variables 𝑥′,   𝑦′,  and 𝑧′.  
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Figure 2. 1: Schematic representation of the interpretative model. The user-specified 

grid of M 3D vertical prisms encloses all basement topography where the depths to 

the tops of all prisms, 𝑝𝑗, 𝑗 = 1, … , 𝑀, represent the unknown depths to the basement.  

The depths to the bottoms of all prisms are assumed to be constant and known 

constant bottom. 

 

Integrating equation 2.2 is computationally expensive. Instead, we adopt a 

simplification which consists in two steps. First, the 3D integral (volume integral) of 

the total-field anomaly produced by the 𝑗th prism (equation 2.2) is simplified by a 1D 

integral along the 𝑗th prism thickness, which in turn is multiplied by the horizontal 

area (multiplication of the horizontal dimensions 𝑎 and  𝑏  of all prisms) of the 𝑗th 

prism, i.e., 
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                                   ∅𝑖𝑗(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) ≈ 𝑎. 𝑏 ∫ 𝜑𝑖𝑗(𝑧′)

𝑧2

𝑝𝑗

𝑑𝑧′ ,                                            (2.3) 

where  𝜑𝑖𝑗(𝑧′) is the expression of the total-field anomaly, calculated at the 𝑖th 

observation point,  produced  by a single 𝑗th dipole with magnetic moment having the 

same direction of the magnetization vector of the 𝑗th prism and whose horizontal 

coordinates coincide with the horizontal coordinates of the 𝑗th prisms’ center. Notice 

in equation 2.3 that the integration is conducted with respect to the variable 𝑧′  

denoting the 𝑧 −coordinate of an arbitrary point belonging to the interior of the 𝑗th 

prism.  In the second step, the 1D integral in equation 2.3 is calculated numerically 

using the Gauss-Legendre quadrature (GLQ) produced by dipoles located along the 

vertical axis passing through the center of the 𝑗th prism.  In the case of GLQ, the one-

dimensional integral (equation 2.3) is approximated by a weighted sum of the 

integration kernel (Abramowitz and Stegun, 1972; see page 887): 

                             ∫ 𝜑𝑖𝑗(𝑧′)

𝑧2

𝑝𝑗

𝑑𝑧′  ≈  
𝑧2 − 𝑝𝑗

2
    ∑ 𝑤𝑖

𝑛

𝑖=1
   𝜑𝑖𝑗(𝑧∗

𝑖),                           (2.4) 

where 𝑛 is the quadrature order (number of nodes used in the GQL),  𝑧∗
𝑖,   𝑖 = 1, … , 𝑛,  

are the transformed zero-crossings of the 𝑛th-order Legendre polynomial 𝑃𝑛(𝑧′): 

 𝑧∗
𝑖 =

𝑧2− 𝑝𝑗

2
𝑧′𝑖 +

𝑧2+ 𝑝𝑗

2
,                                           

(2.5) 

where 𝑧′
𝑖 is the 𝑖th zero-crossing of 𝑃𝑛(𝑧′) and 𝑤𝑖,   𝑖 = 1, … , 𝑛,  are the transformed 

Gaussian weights computed through linear mapping from unit interval [−1  1 ] to 

interval [𝑝𝑗 𝑧2] given by: 

     𝑤𝑖 =
2

(1−𝑧𝑖
′2)(𝑃′

𝑛 (𝑧𝑖
′)

2
)
,                                   

(2.6) 

where 𝑃′
𝑛 (𝑧𝑖

′) is the first derivative of the 𝑛th Legendre polynomial which can be 

obtained with well-known recursive relations. ABRAMOWITZ and STEGUN (1972) 

(see page 916) present the zero-crossings 𝑧′
𝑖  and Gaussian weights (equation 2.6) for 

Gauss-Legendre quadrature up to order 96.  
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 Is well known that the integration accuracy using GLQ depends on the number 

of dipoles (the number 𝑛 of nodes) used in the summation (equation 2.4). Actually, the 

higher order of 𝑛 produces better approximation of the integral (UIEDA et al., 2016). 

Hence, the larger the number of dipoles, the better the accuracy of GLQ integration; 

however, it increases the computational cost.  We performe several numerical tests 

showing that values of 𝑛 bettween 2 and 4 give a faster solution than the analytical 

solution of the total-field anomaly produced by a prism (BHATTACHARYA, 1964) 

with acceptable accuracy. See the Appendix 2.A.  

 

2.3 Inverse Problem 

 Let 𝐝o = [𝑑1
𝑂 , … , 𝑑𝑁

𝑂]𝑇 be the observed total-field anomaly vector produced by 

the basement relief of a sedimentary basin. Here, the superscript T indicates 

transposition. Let ∆𝐓(𝐩) = [Δ𝑇1, … , Δ𝑇𝑁]𝑇 be the predicted total-field anomaly vector 

(forward model) produced by 𝑀 prisms that set up the discretization mesh of the 

basement layer. The 𝑖th element of the vector  ∆𝐓(𝐩) is calculated using the fast-

prismatic forward modeling presented in the preceding section using equations 2.1 and 

2.3 with GLQ integration (equations 2.4-2.6).  Let us assume that the magnetization 

vector and the depths to the bottom of all prisms 𝑧2 are known. Retrieving the basement 

depths by estimating the top of each prism (𝐩 = [𝑝1, … , 𝑝𝑀]𝑇) that yields an acceptable 

observed total-field anomaly fitting is a nonlinear inverse problem. To solve this 

problem, we minimize the L2-norm (‖. ‖2) of the data-misfit function given by the 

difference between observed and predicted total-field anomalies, i.e., 

                                                            𝛿(𝐩) =  ‖𝐝o − ∆𝐓(𝐩)‖2.                                       (2.7) 

Estimating the parameter vector 𝐩 that minimizes the equation 2.7 is an ill-

posed inverse problem that needs regularization. We regularize the data-misfit 

function (equation 2.7) by introducing the smoothness between adjacent parameters, 

which is also known as first-order Tikhonov regularization (TIKHONOV and 

ARSENIN, 1977). Hence, we minimize the regularized objective function defined by:  

                                                        𝜓(𝐩) =  𝛿(𝐩) + 𝜆‖𝐑𝐩‖2,                                         (2.8) 
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where 𝐑 is a first-order finite-difference matrix and 𝜆 is a nonnegative scalar that 

controls the trade-off between the data-misfit function (equation 2.7) and the 

regularizing function (second term of the right-hand side of equation 2.8). This means 

that the larger the value of 𝜆, the more stable and smoother are the estimated basement 

relief but also the larger will be the data-misfit measure.  

The solution of equation 2.8 can be found iteratively by using the Gauss-

Newton method with the MARQUARDT (1963) strategy (SILVA et al., 2001; SILVA 

DIAS et al, 2007). Starting with initial depth-to-basement guesses �̂�0, we estimate, at 

the 𝑘th iteration, a correction vector 𝚫�̂�𝑘 that minimizes the regularized objective 

function  𝜓(𝐩) (equation 2.8), i.e., 

                                𝚫�̂� 𝑘 = 𝐇𝑘
−1𝐉𝑘,                                                                        (2.9)    

where 𝐇𝑘 and 𝐉𝑘 are, respectively, the Hessian matrix and the gradient vector of the 

function  𝜓(𝐩), evaluate at 𝐩 = �̂�𝑘, which are given by: 

                          𝐇𝑘 =  𝐀𝑘
𝑇 𝐀𝑘 + 𝜆𝐑𝑇𝐑,                                                              (2.10) 

and 

                                         𝐉𝑘 = 𝐀𝑘
𝑇 𝛆𝑘 − 𝜆𝐑𝑇𝐑 �̂�𝑘,                                                           (2.11) 

where  𝛆𝑘 is the difference between observed and predicted total-field anomalies at the 

𝑘th iteration and 𝐀𝑘 is an 𝑁 x 𝑀 sensitivity  matrix whose  𝑖𝑗th element  𝑎𝑖𝑗
𝑘  is given 

by the partial derivative of ∆𝐓(𝐩) with respect to the 𝑗th parameter calculated at the 

𝑖th observation point and evaluated at the 𝑘th iteration where 𝐩 = �̂�𝑘.  

After estimating 𝚫�̂�𝑘 (equation 2.9), we update the depth-to-basement 

estimates by 

                     �̂�𝑘+1 = �̂�𝑘  +  𝚫�̂�𝑘.                                                          (2.12) 

This process is repeated until the amplitude of the data-misfit values is below a certain 

threshold. 
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2.4 A faster inversion algorithm   

 Solving equation 2.9 is both time-consuming and memory-costly process 

because of two main reasons: 1) the need of calculating the forward modeling and the 

sensitivity matrix at each iteration and 2) the inversion of the Hessian matrix at each 

iteration.   

To tackle the computational hurdle of setting up the sensitivity matrix, we 

consider our approximation of the forward model given by equations 2.1 and 2.3. 

Then, the 𝑖𝑗th element of the sensitivity matrix 𝐀𝑘, at the 𝑘th iteration with 𝐩 = �̂�𝑘 , 

can be written as: 

        𝑎𝑖𝑗
𝑘 =

𝜕

𝜕𝑝𝑗

 ∆𝑇𝑖(𝑝j
𝑘) ≈

𝜕

𝜕𝑝𝑗

∫ 𝜑𝑖𝑗(𝑧′)

𝑧2

𝑝𝑗
𝑘

𝑑𝑧′ ≈ − 𝜑𝑖𝑗(�̂�𝑗
𝑘).                              (2.13) 

 Thus, we approximate the 𝑖𝑗th  element of the sensitivity  matrix at the 𝑘th 

iteration by the total-field anomaly produced by the 𝑖𝑗th dipole 𝜑𝑖𝑗(�̂�𝑗
𝑘) with horizontal 

locations 𝑥𝑗
′   and 𝑦𝑗

′ , vertical location �̂�𝑗
𝑘, and magnetic moment computed by 

multiplying the horizontal area of the prism (𝑎. 𝑏) by the magnetization intensity 

assumed to the basement rocks.  Note that the elements of the  sensitivity  matrix now 

has an analytical and simple formula (equation 2.13) which is computationally faster 

than the numerical approximation.  

 The computational inefficiency of inverting the Hessian matrix (equation 2.9) is 

due to the large non-sparse matrix 𝐀𝑘
𝑇 𝐀𝑘 (equation 2.10). To tackle the computational 

hurdle of inverting the non-sparse Hessian matrix (equation 2.9), we consider only the 

main diagonal of the sensitivity matrix 𝐀𝑘 whose elements are given by equation 2.13. 

Hence, the Hessian matrix of the data-misfit function (𝐀𝑘
𝑇 𝐀𝑘 in equation 2.10) is 

replaced by a diagonal matrix �̃�𝑘 whose 𝑗th diagonal element is given by: 

                                                               �̃�𝑗𝑗
𝑘 ≈ 𝜑𝑗𝑗

2 (�̂�𝑗
𝑘)

.
                                                     (2.14)    

This simplification avoids the inversion of a large non-sparse matrix because the 

Hessian matrix to be inverted in equation 2.9  is replaced by the sum of sparse matrices 

given by: 

                                                               𝐇𝑘 = �̃�𝑘   + 𝜆𝐑𝑇𝐑.                                            (2.15) 
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By harnessing the sparcity of all matrices that set up the new Hessian matrix (equation 

2.15), the computational efficiency to invert this matrix is guaranteed because its 

inversion demands much less computational cost than equation 2.9.   

 We stress that the approximation of the sensitivity matrix 𝐀𝑘 by a diagonal 

matrix is only possible for computing the Hessian matrix (equation 2.15) and not for 

the gradient. In gravity-data inversions, BOTT (1996), SILVA et al. (2014), and 

UIEDA and BARBOSA (2017) also used a diagonal matrix to set up the sensitivity 

matrix to construct both the Hessian matrix and the gradient vector. This is possible 

because there is a positive correlation between the gravity data and the parameter to 

be estimated. Rather, in the magnetic-data inversion such correlation does not exist 

because the magnetization is not a scalar but a vector property, which depends not only 

on the magnetization intensity but also on the magnetization inclination and 

declination of the magnetization vector. For this reason, the same approach adopted 

by BOTT (1996) using gravity data is not possible for magnetic-data inversion due to 

the dipolar characteristic of the total-field anomaly. Here, the gradient vector 𝐉𝑘 

(equation 2.11) is computed by using the full sensitivity matrix 𝐀𝑘 (equation 2.13).  

And  the predicted total-field anomaly is calculated by using the proposed fast-

prismatic forward modeling (equations 2.1 and 2.3 with GLQ integration described by 

equations 2.4-2.6). 

Finally, we call attention that our inversion method using fast-prismatic 

forward modeling (equations 2.1 and 2.3) with GLQ integration (equations 2.4-2.6) 

and a sparse Hessian matrix (equation 2.15) produces virtually the same result as the 

classical inversion using the prism-based forward modeling (equations 2.1 and 2.2) 

and the full Hessian matrix (equation 2.10) with a full sensitivity matrix 𝐀𝑘. This is 

because we use  a conservative number of dipoles (𝑛) from 2 to 4 to guarantee the 

accuracy of the GLQ integration as we point out in the Appendix A. Moreover, in our 

inversion method, only the Hessian matrix (equation 2.15) is sparse because it uses a 

diagonal sensitivity matrix �̃�𝑘; however, the gradient vector (equation 2.11) is 

computed using the full sensitivity matrix and it guarantees the convergence of our 

nonlinear inversion method. 
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2.5 Computational-efficiency analysis  

 Figure 2.2 shows an example of the time required to calculate the forward 

equation for the classical prism-based forward modeling (equations 2.1 and 2.2) and 

our proposed fast-prismatic forward modeling (equations 2.1 and 2.3) with GLQ 

integration (equations 2.4-2.6). We calculate the forward models of a generic basement 

surface by increasing the number of prisms (number of parameters) from 400 to 2500. 

In this comparison, we use 4 nodes for the GLQ integration. Both the classical prism-

based forward modeling and our approach using equations 2.1 and 2.3 with GLQ 

integration have 𝑂(𝑁2) dependency with time due to the loop operations. However, 

the forward model using prisms is computationally more costly than our forward 

modeling. Figure 2.2 shows the increase in the computational time required for both 

forward models as the number of prisms increases. By comparing the computational 

time required for the classical prism-based forward modeling (gray dashed line in 

Figure 2.2) with our approach using equations 2.1 and 2.3 and the GLQ integration 

(black solid line in Figure 2.2), we note that our forward modelling has a much better 

computational efficiency. Specifically, the number of operations for different 

quadrature orders (𝑛) is of  𝑂(𝑁2𝑛). Nonetheless, we show that even using a large 

quadrature order (𝑛 = 4), the quadrature approximation is faster than the classical 

prism forward modeling which uses 3D integral. This is mainly due to the number of 

operations used to calculate the forward model of the prisms 𝑂(8𝑁2) and the 

complexity of the trigonometric and logarithmic terms inside the prism formulation.  

In a classical nonlinear inverse problem, we need to calculate, at each iteration: 

i) the forward model; ii) the sensitivity matrix and; iii) the Hessian matrix and its 

inverse. In the inverse problem with the classical prism-based forward modeling 

(equations 2.1 and 2.2), the sensitivity matrix is calculated by a finite-differences 

method using two prisms for each 𝑖𝑗th element of the matrix. In our proposed inverse 

method, the elements of the sensitivity matrix are single dipoles (equation 2.13). Thus, 

for the classical inverse method, the sensitivity-matrix calculation has a number of 

operations of 𝑂(16𝑁2). Conversely, in our proposed inverse method the elements of 

the sensitivity matrix are single dipoles (equation 2.13) with a number of operations 

of 𝑂(𝑁2). We stress that these numbers only indicate the proportional complexity of 

the number of operations in both processes. Figure 2.2 also shows an example of the 

time consumption of the inversion using the classical inverse problem based on prism-
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based forward modeling (green solid line) and our proposed inverse method (gray solid 

line). We also note that our inverse method has a much better computational efficiency 

compared with the classical inverse problem. We stress that the running time 

differences shown in Figure 2.2 may change due to hardware and different 

implementation of the algorithms.  

 

Figure 2. 2: Computational time consumption of the forward modeling using prism 

(gray dashed curve) and quadrature integral (black solid curve) versus the number of 

parameters. Computational time consumption of the inversion using prism (green solid 

curve) and quadrature integral (gray solid curve) versus the number of parameters. 

 

2.6 Determining the magnetization direction 

 The magnetization vector of the basement layer is a hyperparameter of the 

inversion because the depth-to-basement estimates are influenced by this vector; but it 

is not directly estimated in the inversion.  Here, we assume a constant magnetization 

vector for the entire basement with known magnetization intensity but unknown 

magnetization direction (inclination  𝑚𝑖  and declination 𝑚𝑑). Hence, to estimate the 

basement relief, we first need to determine the basement’s magnetization direction.  
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 Several authors have presented different methodologies to estimate the 

magnetization direction of isolated sources (e.g., FEDI et al., 1994; MEDEIROS and 

SILVA, 1995; PHILLIPS, 2005; DANNEMILLER and LI, 2006; NUNES et al., 2008; 

GEROVSKA et al., 2009; OLIVEIRA Jr. et al., 2015). Here, we adapt a methodology 

proposed by NUNES et al. (2008) to determine the magnetization direction. 

  To determine the optimum pair of inclination 𝑚𝑖
∗  ∈ [−50°, 50°]  and declination 

𝑚𝑑
∗ ∈ [−180°, 180°] of the magnetization vector of the basement layer, we assume a 

uniformly magnetized basement with known magnetization intensity. We determine 

the optimum pair (𝑚𝑖
∗, 𝑚𝑑

∗ ) in the following way. We fix a pair of values of 𝑚𝑖 and 

𝑚𝑑   and estimate the basement depths 𝐩 ̂ that minimize the regularized objective 

function (𝜓(𝐩),  equation 2.8). Next, we plot the data-misfit function (𝛿(𝐩), equation 

2.7) on the plane 𝑚𝑖 × 𝑚𝑑. This procedure is repeated for different pairs of  𝑚𝑖  and 

𝑚𝑑  to produce a discrete mapping of 𝛿(𝐩) on the plane 𝑚𝑖 × 𝑚𝑑  for a given 

increment of 𝑚𝑖 and 𝑚𝑑. After drawing the discrete mapping of  𝛿(𝐩) on the plane 

𝑚𝑖 × 𝑚𝑑, with 𝑚𝑖 varying from −50° to  50° and 𝑚𝑑  varying from −180° to  180°, 

the optimum pair (𝑚𝑖
∗, 𝑚𝑑

∗) is the one that produces the smallest value of 𝛿(𝐩). 

 

2.7 Application to synthetic data 

 Figure 2.3a shows the noise-corrupted total-field anomaly produced by a 

simulated 3D basement relief of a sedimentary basin (Figures 2.4a and 2.4b). The 

geological layer between the top of the basement (Figures 2.4a and 2.4b) and the 

bottom of a flat surface (non-magnetic surface at 8 km deep) was discretized by 10,000 

juxtaposed vertical prisms with constant magnetization of 2.0 A/m and inclination and 

declination, equal to 45° and 20°, respectively, in the same direction of the 

geomagnetic field. All the geological sources located between the basement relief and 

the Earth’s surface are nonmagnetic sediments.  

The depth of the basement varies from 418 m to 4375 m in an area of ~256 km2 

with a single depocenter elongated in the northwest-southeast direction (Figure 2.4b). 

By using the implementation of UIEDA et al. (2013), we calculate the total-field 

anomaly produced by the prismatic bodies at an elevation of 150 m on a regular grid 

of 100 × 100 observation points with a horizontal resolution of 160 m. The anomaly 
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is corrupted with pseudorandom zero-mean Gaussian noise with a standard deviation 

of 10 nT (Figure 2.3a).  

 

Figure 2. 3: Noise-corrupted (a) and predicted (b) total-field anomalies; the former is 

produced by the simulated basement relief shown in Figure 2.4 and the latter is 

produced by the corresponding estimated basement relief shown in Figure 2.5. The 

histogram distribution (c) shows the differences between observed and predicted data. 

To minimize the edge effects, we extend both the interpretation model and the 

observed data beyond the easternmost, westernmost, northernmost, and southernmost 

limits of the observed data. This extension extends 20% beyond the edges of the 

observed data. We invert the extended observation grid (Fig 2.3a) to recover the 

basement relief of the simulated sedimentary basin (Fig 2.4a and 2.4b) using our 

method and assuming the magnetization vector direction and intensity is known. The 

predicted total-field anomaly is computed by our fast-prismatic forward modeling 

using equations 2.1 and 2.3 with the GLQ integration with a number of nodes 𝑛 = 2 

as described before. We also test 𝑛 = 3 and 4; however, the differences between the 

calculated total-field anomaly with the GLQ method are lower than 1%. Thus, the 

weighted sum of two dipoles located along the 𝑧 −axis of each prism is sufficient to 

approximate the total-field anomaly produced by a 100 × 100 grid of 3D vertical 

juxtaposed prisms in both horizontal directions. Our iterative inversion runs over 18 

iterations using 𝜆 = 0.0001, which was determined using the standard L-curve 

approach (HANSEN, 1992). The starting guess to the basement depths �̂�0  is a vector 

with all elements equal to 3 km.  
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Figure 2. 4: Perspective view (a) and contour map (b) of the simulated basement relief.  

Figure 2.3b and 2.3c shows, respectively, the predicted total-field anomaly 

produced by the depth-to-basement estimates shown in Figure 2.5b and the histogram 

of the inversion residuals (observed minus predicted data). As we can see, the 

predicted total-field anomaly (Fig 2.3b) adjusts the observed data (Fig 2.3a) with the 

histogram of residuals resembling a Gaussian distribution with zero mean and standard 

deviation of ±10 nT (Fig 2.3c). The estimated basement relief (Fig 2.5b) has 
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predominately lower wavenumber spectral contents than the simulated basement (Fig 

2.5a and 2.6), which is dominated by both low- and high-wavenumber features.  

 

Figure 2. 5: Perspective views of the simulated (a) and estimated (b) basement reliefs. 

Our method is not able to recover the high-wavenumber features of the 

simulated basement relief because the observed magnetic data does not reflect such 

steep variations. Figure 2.6 shows a vertical cross-section along a profile in the east-

west direction at 𝑥 = 0 where the tops of the prisms describe the simulated basement 

relief and the black solid line is the estimated basement relief. We note in this profile 

that the smoothness of the estimated basement relief is evident. 

We perform a numerical analysis to investigate the sensitivity of our method to 

the use of different initial guesses. Here, the results of this analysis are displayed along 

a profile (Fig 2.6); however, this analysis is performed using a grid of data. Figure 2.6 

shows a vertical cross-section along a profile in the east-west direction at 𝑥 = 0 where 

the tops of the prisms describe the simulated basement relief.  The blue, red, black, 

and green solid lines are the estimated basement reliefs obtained with four different 

initial guesses to the basement depths which are planar surfaces at 4, 3, 2 and 1 km 

deep. We call to attention that even setting different surfaces as initial guesses, our 

method retrieves magnetic basement reliefs (coloured lines in Figure 2.6) close to each 

other. Moreover, the most striking feature in Figure 2.6 that deserves our attention is 

that the initial guess does not need to be an average of the depths of the true magnetic 

basement relief. This sensitivity analysis shows the robustness of our method to the 

choice of the initial guess that can be a planar surface at any depth.  We stress that the 

sensitivity of our method to uncertainties in the magnetization contrast of the magnetic 

basement (not shown) is trivial. By assigning a magnetization contrast smaller than the 
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true one, the estimated basement relief is deeper when compared with the true one. 

Conversely, by assigning a magnetization contrast larger than the true one, the 

estimated basement relief is shallower than the true one. 

 

Figure 2. 6: East-West profile at the constant 𝑥 −coordinate at zero showing the 

simulated basement (top of the prisms). The blue, red, black, and green solid lines are 

the estimated basement reliefs obtained with four different initial guesses to the 

basement depths, which are planar surfaces at 4 km, 3 km, 2 km, and 1 km deep, 

respectively. The histogram distribution shown as an inset of the differences between 

simulated and estimated basement depths along the profile using a planar surface at 3 

km as the initial guess.  

 

In Appendix 3.A we show a synthetic test at induced low latitudes. We simulated 

a sequence of horst and grabens and inverted the total-field anomaly to recover the 

simulated basement relief. 
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2.8 Geological background and magnetic data from 

Pará-Maranhão Basin 

 

 We applied our method to the total-field anomaly from the Pará-Maranhão 

Basin, located in the Brazilian equatorial margin. The Brazilian equatorial-margin 

basins are characterized by their northwest-southeast en-echelon trend. The tectonic 

evolution of the Brazilian equatorial margin is linked to the oblique opening of the 

Equatorial Atlantic Ocean after the Gondwana breakup.  

 The Pará-Maranhão is an offshore basin located between the Foz do Amazonas 

Basin to the northwest and the Barreirinhas Basin to the southeast as shown in Figure 

2.7 (modified from HIDALGO-GATO and BARBOSA, 2015). The basement of the 

Pará-Maranhão Basin is mainly formed by the São Luis Craton, which is a fragment 

of the West African Craton that was broken during the Atlantic rifting process and the 

consequent opening of the Atlantic Ocean. HIDALGO-GATO and BARBOSA (2015) 

show a structural map with several transition zones corroborated using the local phase 

in the scale-space monogenic signal. The study area is located at the northwest portion 

of the Pará-Maranhão Basin, extending from the shallow basement to deep waters 

where the transition between continental and oceanic crusts occurs. There are no 

evidences of igneous intrusions on this portion of the basin. Hence, it is reasonable to 

consider nonmagnetic sediments in this study area.  

 The magnetic data is a public airborne survey flown in 2003 at a height of 150 

m. The averages of the inclination and the declination of the geomagnetic field at the 

acquisition date are −2° and −20°, respectively. The data were gridded at a constant 

observation surface 𝑧 = −150 𝑚. Figure 2.8a shows the total-field anomaly on a 

regular grid of 100 by 100 observation points regularly spaced at 1.5  km in both north-

south and east-west directions. The total-field anomaly measures were mostly positive 

(not shown), which is an unexpected behaviour. Hence, we removed a regional 

component from the total-field anomaly data consisting of a constant average value 

(not shown).   
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Figure 2.7: Location of the Pará-Maranhão Basin (Brazil) (Modified from HIDALGO-

GATO and BARBOSA, 2015) and the study area (black square).  

 

 

 2.9 Real Data: Depth-to-basement estimates 

 We assume a constant magnetization vector for the entire basement of the study 

area with a known magnetization intensity of 4.0 A/m grounded on the basement rocks 

and unknown magnetization direction. To determine an optimum inclination and 

declination of the magnetized basement, we perform the inversion on a coarse grid of 

45 × 37 observation points in the north-south and east-west directions. We produce a 

discrete mapping of the data-misfit function ( 𝛿(𝐩), equation 2.7) on the domain of  

𝑚𝑖 × 𝑚𝑑 considering an interval of inclinations varying from −50° to 50° and an 

interval of declinations varying from −180° to 180°of the magnetization vector of the 

basement. Figure 2.10 shows the mapping of  𝛿(𝐩)  in logarithmic scale with a step of 

5° for both 𝑚𝑖 and 𝑚𝑑 in Cartesian coordinates (Figure 2.10a) and in polar coordinates 

(Figure 2.10b).  

 Note that two well-defined minima of the data-misfit measure (pinpointed as 

stars in Figure 2.10a and 2.10b) are achieved when the magnetization vector of the 

basement has an inclination close to −10° and a declination around 160° and when the 
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magnetization vector  has an inclination of −5° and a declination of  −20°.  Because 

the latter magnetization vector of the basement is close to the magnetization vector of 

the geomagnetic field (inclination of −2° and declination of  −20°) and considering 

that the discrete mapping was set up with increment of 5° for both 𝑚𝑖 and 𝑚𝑑, we 

assumed an induced magnetization of the basement; i.e., the magnetization vector of 

the basement is equal to the geomagnetic field.  

 Because we have two well-defined minima of the data-misfit measure (Figure 

2.10), two hypotheses of magnetization directions will be used to estimate two versions 

of the magnetized basement relief. The first inversion considers only induced 

magnetization (inclination of −2° and declination of  −20°)  while the second 

inversion considers the hypothesis of remanent magnetization vector with an 

inclination of −10° and a declination of  160°. To minimize the undesirable edge 

effects in the estimated basement relief, we extended the interpretation model area 

horizontally by 20% of the total area and introduced the effect generated by this 

extension into the observed total-field anomaly data. 

 

 To estimate the basement depth by inverting the observed total-field anomaly 

(Figures 2.8a and 2.9a), we adopt the following tests:  

1) In the first test, the magnetization vector of the basement is considered 

constant in the direction of the geomagnetic field.  Hence, an induced 

magnetization with an intensity of 4.0 A/m for the entire magnetized 

basement is only considered. We use an initial guess of the basement depths 

�̂�0 as a 6 km-deep flat surface. To calculate the predicted total-field anomaly 

(equations 2.1 and 2.3), we use the GLQ integration with a number of 

nodes 𝑛 = 4. Our inversion algorithm reaches a satisfactory data-misfit 

value after 3 iterations using λ = 0.001. Figure 2.8b shows the predicted 

total-field anomaly produced by the estimated basement relief shown in 

Figures 2.11a. As we can see, the histogram of the residuals (Fig 2.8c) 

corroborates the acceptance of the data fitting. 

2) In the second test, the magnetization vector of the basement is considered 

constant with inclination of −10° and a declination of 160°. Hence, a 

remanent magnetization vector with an intensity of 4.0 A/m is considered. 

We also use an initial guess of the basement depths �̂�0 as a 6 km-deep flat 
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surface. To calculate the predicted total-field anomaly (equations 2.1 and 

2.3), we use the GLQ integration with a number of nodes 𝑛 = 4. Our 

inversion algorithm reaches a satisfactory data-misfit value after 3 iterations 

using  λ = 0.001 (the same as test 1). Figure 2.9b shows the predicted total-

field anomaly produced by the estimated basement relief shown in Figures 

2.11b. Note that the histograms distribution (Figure 2.9c) shows less 

residuals than the inversion considering only induced magnetization (Figure 

2.8c). 

 

 

Figure 2.8: Real case study – Under the hypothesis of induced magnetization with 

inclination −2° and declination −20°. Observed (a) and predicted (b) total-field 

anomalies; the latter is produced by the estimated magnetic basement relief shown in 

Figure 2.11a. The histogram distribution (c) shows the differences between observed 

(a) and predicted (b) data. 
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Figure 2.9: Real case study – Under the hypothesis of remanent magnetization with 

inclination 2° and declination  160°. Observed (a) and predicted (b) total-field 

anomalies; the latter is produced by the estimated magnetic basement relief shown in 

Figure 2.11b. The histogram distribution (c) shows the differences between observed 

(a) and predicted (b) data. 

 

Figure 2.10: Contour maps of the logaritmic data-misfit function (log (𝛿(𝐩)), equation 

2.7)  on the plane 𝑚𝑖 × 𝑚𝑑  using a step of 5° for both 𝑚𝑖 and 𝑚𝑑 in Cartesian 

coordinates (a) and polar coordinates (b). The white stars pinpoint two optimum pairs 

of the inclination and declination of the magnetized basement of the study area. 

 

 The depth-to-basement estimate using an induced magnetization vector (Figure 

2.11a) shows an expected north-eastward crustal thinning as we move from the shore 

to the continent-ocean-boundary. The northernmost portion of the estimated basement 
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shows an abrupt increase of depths (maximum of 7 km). We note that in the northern 

portion, the continental-oceanic boundary probably appears as a deep basement depth 

with crustal thinning. On the other hand, the depth-to-basement estimate using a 

remanent magnetization vector shown in Figure 2.11b shows an uplift of the basement 

to the northern portion of the area. Ergo, the estimated basements (Fig 2.11a and 2.11b) 

shows an opposite shape as expected. An east-west elongated basement trend is 

observed between the two southward branches of the Saint Paul transfer zone in both 

basement surfaces (Fig 2.11a and 2.11b). There is an ambiguity in the magnetization 

direction as shown in Figures 2.10a and 2.10b. Given the geological framework of this 

part of the basin (ZALAN, 2017), we believe that the most likely basement surface is 

the one produced by the inversion test 1 (Fig 2.11a) with the hypothesis of induced 

magnetization only.  

 

 

Figure 2.11: Contour maps of the estimated depths of the basement surfaces 

considering induced magnetization (a) and remanent magnetization vector (b).  

 

In appendix 2.B, we apply this workflow to a synthetic test with magnetization 

direction at low latitude. 
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2.10 Final considerations  

 We have developed a regularized nonlinear total-field anomaly inversion to 

estimate the depths of the magnetic basement of a sedimentary basin with nonmagnetic 

sediments and without intra-sedimentary igneous intrusions.  We approximated the 

basement layer by a grid of 3D vertical prisms juxtaposed in the horizontal directions 

of a right-handed coordinate system. The depths to the tops of the prisms approximate 

the depths to the basement relief in a discrete way and they are the unknown parameters 

to be estimated. The computational efficiency of our inversion method is higher 

because we used an efficient way to compute the forward modeling of the magnetic 

data of a prism. First, the volume integral of the magnetic data of a prism is simplified 

by a 1D integration taken with respect to the 𝑧-axis of a prism (prism thickness). Then, 

the 1D integral over the prism thickness is multiplied by the horizontal area of the 

prism. Finally, the 1D integral of magnetic data of a prism is solved numerically using 

the Gauss-Legendre quadrature yielded by weighted sums of dipoles effects located 

along the 𝑧-axis of the prism passing through the prism center. 

 The computation time of our method is also speeded up by replacing the full 

sensitivity matrix by the magnetic response produced by a single dipole located at the 

top of each prism. Additionally, we employed the Gauss-Newton approximation for 

the Hessian matrix maintaining the main diagonal only and adding the first-order 

Tikhonov regularization function.  We stress that the gradient vector in the Gauss-

Newton optimization problem is calculated by using the full sensitivity matrix. The 

numerical studies showed that our magnetic inversion to estimate the depths to the 

basement is faster than the standard volume-integration method to calculate the 

magnetic response of a set of prisms. 

 Because our magnetic inversion method requires the magnetization vector 

direction to be known, we assumed a uniformly magnetized basement with known 

magnetization intensity and determined the magnetization direction (inclination and 

declination). The knowledge about the magnetization intensity could be provided by 

the information on the basement rocks. For determining the inclination (𝑚𝑖) and 

declination (𝑚𝑑) of the magnetization vector of the basement layer, we constructed a 

discrete mapping of the data-misfit function on a plane 𝑚𝑖 × 𝑚𝑑. The best pair 

(𝑚𝑖,𝑚𝑑) is the one that yields the minimum of the mapped data-misfit function. 



44 

 

 We applied our inversion algorithm to a complex synthetic data. Our tests 

showed the robustness of our method to the choice of the initial guess that could be a 

surface at any depth.  Hence, the interpreter does not need to know an average of the 

depths of the true magnetic basement relief. However, our method is sensitive to the 

dipole moment (the product of magnetization intensity multiplied by volume); hence, 

this is a limitation because it requires the prior knowledge of the magnetization 

intensity of the basement, which in turn can be provided by the knowledge of the 

basement rocks. We evaluated the performance of our method by applying it to a real 

magnetic data from the Pará-Maranhão Basin, offshore northern Brazil. The discrete 

mapping of the data-misfit function on a plane 𝑚𝑖 × 𝑚𝑑 for intervals of  𝑚𝑖  ∈

[−50°, 50°] and 𝑚𝑑  ∈ [−180°, 180°] shows two minima. Hence, we tested two 

hypotheses of the direction of the magnetization vector to estimate the basement relief 

of the Pará-Maranhão Basin: (1) induced magnetization vector, and (2) remanent 

magnetization vector. The depth-to-basement estimate using an induced magnetization 

vector yields an acceptable data fitting and shows an expected north-eastward crustal 

thinning as we move from the shore to the continent-ocean-boundary.  

We stress that the depths-to-basement estimates, both in the synthetic and in field 

data, are  not able to retrieve the shortest wavelength feature in the basement due to 

the imposed smoothness constraint by the first-order Tikhonov regularization, which 

tends to smooth sharp variations in the solution.  

 Our magnetic inversion could be easily adapted to the gravity inversion by 

substituting the dipole field by a point of mass. The extension of our magnetic 

inversion to other types of regularization (e.g., total variation) and misfit functions 

(e.g., L1-norm of the data-misfit function) has no methodological hindrances. Finally, 

our work can be extended to deal with a horizontally varying magnetization vector as 

long as the horizontal-varying magnetization intensity and the horizontally varying 

magnetization direction be known such as in Parker’s forward modelling. Moreover, 

in real-data application, we can invert a small piece of the data if the total magnetic 

vector is known. 
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2.11 Appendix 2.A: Accuracy Analysis of The Fast-

Prismatic Forward Modeling 

 The key controlling point of the integration accuracy using GLQ depends on the 

number of dipoles 𝑛 (equation 2.4). Specifically, 𝑛  controls not only the accuracy of 

the numerical integration but also the computation time. The larger the number of 

dipoles, the better the accuracy of the GLQ integration, but also the higher the 

computational cost.  Here, we investigate how many dipoles (𝑛)  are necessary to 

obtain a faster and more accurate total-field anomaly produced by our forward 

modeling (equations 2.1 and 2.3) with GLQ integration (equations 2.4-2.6). The 

reference against which we compare our proposed forward modeling is the analitycal 

solution of the total-field anomaly produced by the classical prism-based forward 

modeling (equations 2.1 and 2.2). 

  The choice of 𝑛 depends on the thickness of the prism (𝑡) versus the distance 

between the top of the prism (basement depth) to the observation point (ℎ).  We have 

determined optimal number of dipoles (𝑛) for the total-field anomaly by comparing 

the computed prism effect proposed in this work  (equations 2.1 and 2.3) using GLQ 

integration (equations 2.4-2.6) with one of the classical prism analytical expression 

proposed by BHATTACHARYA (1964) (equations 2.1 and 2.2). The metric chosen 

to evaluate the optimal number of dipoles based on the accuracy analysis is the  

normalized root mean square between the two total-field anomalies, i.e., 

         𝑁𝑅𝑀𝑆 = 1 −
𝑅𝑀𝑆(∆𝐓−∆𝐓𝑩)

𝑅𝑀𝑆(∆𝐓)+𝑅𝑀𝑆(∆𝐓𝑩)
,                     (2.A-1) 

where ∆𝐓 and ∆𝐓𝑩 are N-dimensional total-field anomaly vectors produced by the 

fast-prismatic forward modeling presented in this work  (equations 2.1 and 2.3 using 

GLQ integration through equations 2.4-2.6) and by the prism-based forward modeling 

(equations 2.1 and 2.2) proposed by Bhattacharya (1964). In equation 2.A-1, 𝑅𝑀𝑆(. ) 

is the root mean square of a vector. Here, the values of 𝑁𝑅𝑀𝑆  (equation 2.A-1) are 

limited to the range 0-1. If both data (∆𝐓 and ∆𝐓𝑩 ) are close to each other the 𝑁𝑅𝑀𝑆 

is close to one, and thus, the best acurracy of our fast-prismatic forward modeling (∆𝐓) 

is guaranteed. 

 To perform the accuracy evaluation of the proposed fast-prismatic forward 

modeling, we simulate a single 3D prism with horizotal dimensions of 50 m and center 
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located at 0 km in both north-south and east-west directions. The prism is uniformly 

magnetized by induction only, with a magnetization intensity of 10 A/m and 

inclination of 45°, declination of -20°. The noise-free total-field anomalies (∆𝐓 and 

∆𝐓𝑩) are computed on a plane surface at the nodes of a 20 x 20 grid with a grid spacing 

of 500 m in both north-south and east-west directions. The thickness of the prism (𝑡) 

varies from 0 to 20 km (the x-axes in Fig 2.12).  The distance between the top of the 

prism and the plane observation surface (ℎ) varies from 0 to 15 km (the y-axes in 

Figure 2.12).  In this simulation, the depth to the top of the prism starts from 100 m.

 

Figure 2.12: Results from the accuracy analysis of the fast-prismatic forward 

modelling. Contour maps of  𝑁𝑅𝑀𝑆, on plane 𝑡 ×  ℎ, (equation 2.A-1) with number 

of dipoles of (a) 𝑛 = 1, (b) 𝑛 = 2, (c) 𝑛 = 3  and (d) 𝑛 =  4.  Here, 𝑡  is the thickness of 

the prism and ℎ is the distance between the top of the prism and the observation, The 

dark-red-filled contour intervals produce an accurate computation of the total-field 

anomaly by the proposed fast-prismatic forward modelling (equations 2.1 and 2.3 

using GLQ integration through equations 2.4-2.6) comparing with the prism-based 

forward modelling (BHATTACHARYA, 1964). 

  Figure 2.12 a-d shows the map of 𝑁𝑅𝑀𝑆, on plane 𝑡 ×  ℎ, with the number 

of dipoles 𝑛 varing from 1 to 4, respectively. The acceptable accuracy of the proposed 

fast-prismatic forward modeling (equations 2.1 and 2.3 using GLQ integration through 

equations 2.4-2.6) in comparison with the prism-based forward modeling 

(BHATTACHARYA, 1964) lies inside the dark-red-filled contour intervals (Fig 2.A-
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1) where the 𝑁𝑅𝑀𝑆  is close to one. All pairs (𝑡 and ℎ) that lie inside the dark-red 

regions in Figure 2.A-1 yield an accurate computation of the total-field anomaly by 

our fast-prismatic forward modeling. Based on these tests, the best trade-off between 

accuracy and computation time is when the number of dipoles 𝑛 varies from 2 to 4. 

This range of 𝑛 is addopted here as a conservative choice to compute the total-field 

anomaly. 

 Another key sensitivy parameter in the GLQ method is the size of the prism 

related to the observation distance. As expected, a 1D integral over a 3D volume could 

only be valid if the horizontal area of the prism is significantly smaller than the distance 

between the observation heigh and the depth of the prisms. To perform this accuracy 

evaluation, we simulate a single 3D prism uniformly magnetized by induction only, 

with a magnetization intensity of 4 A/m and inclination of 45° and a  declination of -

20°. The prism is located at the center of the grid. The size of the grid, hence the size 

of the prism, was varied together with the obsevartion distance. We calculated the 

noise-free total-field anomalies (∆𝐓 and ∆𝐓𝑩) produced by each pairs; prism size vs 

observation depth to calculated the NRMS guiven by equation 2.A-1. Figure 2.13 

shows the mapped NRMS of the sensibility test by changing the thickness of the prism 

from 1 km to 10 km and the observation depth from 1 km to 11 km. Note that, for 

observations distances grather than the size of the prism, the error of the quadrature 

approximation is less than 10%. (white dashed line). We higlhy recommend using this 

criteria in the GLQ method. 

 

Figure 2.13: Results from the accuracy analysis of the prism size with the observation 

depth. The white dash line divides the areas were the accuracy level is above 

acceptable values. 
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2.12 Appendix 2.B: Magnetization direction 

estimating using the proposed search workflow 

  

 Here, we apply to synthetic data the same workflow used in the real-case study 

(sections 2.8 and 2.9). In this way, we simulate a noise-corrupted synthetic total-field 

anomaly (Figure 2.14a) produced by the depth-to-basement relief (Figure 2.14b) with 

one horst in the central portion and two grabens at different depths. The basement is 

constantly magnetized with an inclination of 5.0°, a declination of  160.0° and 

intensity of  2.0 A/m. We calculated the total-field (Figure 2.14a) of the simulated 

basement considering a geomagnetic field with inclination of −3.5° and a declination 

of  −20.0°.  Hence, there is a strong remanent component. Note that, in this synthetic 

test, the inclination and declination of the geomagnetic field vector are close to the real 

case study from Pará-Maranhão Basin shown in Chapter 2 (sections 2.8 and 2.9). To 

calculate the observed total-field anomaly, we used the implementation of UIEDA et 

al. (2013), which is a prism-based implementation.  

 Like in the application to real data over Pará-Maranhão Basin,  To determine an 

optimum inclination and declination of the magnetized basement, we perform a 

systematic and nonautomatic search of the data-misfit function on the plane of the 

inclination versus declination to map the optimum pair (or pairs) of inclination and 

declination as the one (or the ones) that yields the lowest value of the data-misfit 

function. Specifically, we perform the inversion on a coarse grid of 31 × 31 

observation points in the north-south and east-west directions. We produce a discrete 

mapping of the data-misfit function ( 𝛿(𝐩), equation 2.7) on the plane 𝑚𝑖 × 𝑚𝑑 

(Figure 2.15a and 2.15b) considering an interval of inclinations varying from −30 to 

30° and an interval of declinations varying from −180° to 180°of the magnetization 

vector of the basement. Figure 2.15 shows the mapping of  𝛿(𝐩)  in logarithmic scale 

with a step of 10° for both 𝑚𝑖 and 𝑚𝑑 in Cartesian coordinates (Figure 2.15a) in polar 

coordinate (Figure 2.15b).  

 Like in the application real data from the Pará-Maranhão Basin (see Figure 2.10), 

we also have in this synthetic test two well-defined minima of the data-misfit measure 

(pinpointed as with stars in Figure 2.15a and 2.15b) are achieved when the 
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magnetization vector has an inclination of  −3° and a declination around 170° (close 

to the true magnetization direction of the basement)  and another one with inclination 

of −3° and declination of −5°.  

 

Figure 2.14: Observed total-field-anomaly (a) produced by the simulated basement 

relief (b). 

 

Figure 2.15: Contour maps of the logaritmic data-misfit function (log (𝛿(𝐩)), equation 

2.7)  on the plane 𝑚𝑖 × 𝑚𝑑  in Cartesian coordinates (a) and in polar coordinates (b). 

The white stars pinpoint the optimum pairs of the inclination and declination of the 

magnetized basement of the synthetic data (Figure 12.14a). The true magnetization 

direction has inclination of  5.0° and declination of  160.0°. 
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Because we have two well-defined minima of the data-misfit measure (stars 

in Figure 2.15), two hypotheses of magnetization directions of the basement relief 

will be used to obtain two estimates of the magnetized basement relief.  

In the first inversion, we assign to the magnetized basement the inclination 

of  −3° and declination of 170° (a star in Figure 2.15). Let us recall that this 

magnetization direction is close to the true one (inclination of 5.0°, a declination of  

160.0°), which in turn differs from the geomagnetic field direction (with inclination 

of −3.5° and a declination of  −20.0°). Hence, we are testing the hypothesis of 

remanent magnetization with an assigned magnetization direction (inclination of  

−3° and declination of 170°, a star in Figure 2.15) closes to the true one. Figure 2.16a 

shows that the predicted total-field anomaly yields an acceptable data fitting.  In this 

test, the depth-to-basement estimate (Figure 2.16b) retrieves the true basement relief 

(Figure 2.14b) efficiently.  

 

Figure 2.16: – Synthetic test - Under the hypothesis of remanent magnetization with 

inclination of  −3° and declination of 170° (star in Figure 2.15). Predicted total-field 

anomaly (a) produced by the estimated magnetic basement relief (b). The geomagnetic 

field direction has inclination of −3.5° and declination of  −20.0°. The true basement 

is magnetized with and inclination of 5.0° and declination of  160.0°. 

 

In the second inversion, we assign to the magnetized basement the inclination 

of  −3° and declination of −5° (a star in Figure 2.15). Let us recall that this assigned 



51 

 

magnetization direction differs either from the true one (inclination of  5.0°, a 

declination of  160.0°) or from the geomagnetic field direction (with inclination of 

−3.5° and a declination of  −20.0°). Hence, we are also testing the hypothesis of 

remanent magnetization; however, the assigned magnetization direction (inclination 

of  −3° and declination of −5°, a star in Figure 2.15) is wrong. Although, the 

assigned magnetization direction is wrong the predicted total-field anomaly yields an 

acceptable data fitting (Figure 2.17a).  However, the depth-to-basement estimate 

(Figure 2.17b) does not retrieve the true basement relief (Figure 2.14b). Rather, the 

depth-to-basement estimate shown in Figure 2.17b, with a wrong magnetization 

direction picked from the discrete mapping of the data-misfit function (Figure 2.17), 

has an opposite geometry than the simulated basement (Figure 2.14b)  and the 

estimated basement relief  (Figure 2.16b) with a magnetization direction (picked 

from the discrete mapping of the data-misfit function) close the true one.  

 

Figure 2.17: – Synthetic test - Under the hypothesis of remanent magnetization with 

inclination of  −3° and declination of −5°  ( star in Figure 2.15). Predicted total-field 

anomaly (a) produced by the estimated magnetic basement relief (b). The geomagnetic 

field direction has inclination of −3.5° and declination of  −20.0°. The true basement 

is magnetized with and inclination of 5.0° and declination of  160.0°. 

 

We stress that the synthetic results shown in Figures 2.16 and 2.17 are similar 

to those obtained in the real data application (sections 2.8 and 2.9) where we have 
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two well-defined minima in the discrete mapping of the data-misfit function on the 

plane inclination versus declination (two stars in Figure 2.10). Both magnetization 

directions (two stars in Figure 2.10) yield acceptable data fittings (Figures 2.8b and 

2.9b); however, the two depth-to-basement estimates (Figure 2.11) have an opposite 

geometry. One might think that the choice of the “best” depth-to-basement estimates 

might be difficult. However, we show that in the application to real data from Pará-

Maranhão Basin the choice of the “best” depth-to-basement estimate was simple 

because we expect a seaward crustal thinning. Hence, only one depth-to-basement 

estimate (Figure 2.11a) exhibits this feature and consequently a seaward deeper 

basement.    
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Chapter 3 

Magnetic amplitude inversion for 

depth-to-basement and 

magnetization intensity estimates 

This chapter was submited for the Geophysics on November 2019. 

 

3.1 Summary 

 We present an inversion method to recover both the depth and the total 

magnetization intensity of the basement under a sedimentary basin using the amplitude 

of the magnetic anomaly vector (amplitude data).  Because the amplitude data is 

weekly dependent on the magnetization direction, the proposed method is suitable for 

interpreting areas with remanent magnetization. Our method assumes constant 

magnetized basement rocks overlain by nonmagnetic sediments. To overcome the 

inherent ambiguity of potential-field data, we assume the knowledge of the average 

depth of the basement and use it as a constraint to regularize the inversion. A sensitivity 

analysis with synthetic data shows the weak dependency of the magnetic amplitude 

inversion on the magnetization direction. Different combinations of magnetization 
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directions recover the interface separating sediments from basement rocks. Test on 

field data over the Foz do Amazonas Basin, Brazil, recovers the shape of the basement 

relief without any knowledge about the magnetization intensity and direction. The 

estimated basement relief reveals a smoothing basement framework with a local 

basement discontinuity, interpreted as a northwest–trending fault, and with clear 

gradient changes, interpreted as the transition between continental and oceanic crusts.  

 

3.2 Forward model 

We assume a sedimentary basin with no magnetic sediments or intrusions. 

We assume that its crystalline basement has a constant but unknown magnetization 

vector with inclination 𝑚𝑖, declination 𝑚𝑑 and intensity 𝑚. Consider a Cartesian 

coordinate system with the 𝑥 − and 𝑦 − axes oriented, respectively, to the north and 

east, and the vertical axis (𝑧 − axis) positive downward. We parametrize the magnetic 

basement with a collection of 𝑀 prisms with tops at the interface between sediments 

and basement, and bottoms at an arbitrary constant depth 𝑍𝑏 tending to infinite. The 

depths of the tops of the prisms 𝑝𝑗,  𝑗 = 1, … , 𝑀, define the basement relief and 

together with the magnetization intensity (𝑚) are the parameters to be estimated from 

the amplitude of the magnetic anomaly vector.  

To calculate the forward modeling of the 𝛼-component, 𝛼 = 𝑥, 𝑦, 𝑧, of the 

magnetic anomaly vector produced by a prism, we adopted the same methodology 

presented in Chapter 2 and published by Hidalgo-Gato and Barbosa (2019) to compute 

the  total-field anomaly of a prism, which is named the fast-prismatic forward 

modeling. Like HIDALGO-GATO and BARBOSA (2019), we approximate the 3D 

integral (volume integral) of the 𝛼-component of the magnetic anomaly vector 

produced by the 𝑗th prism, at the observation point (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) with unity magnetization 

intensity and horizontal cross-section ∆𝑠, by a 1D  integral along the prism thickness  

considering the limits of the integration as the depths to the top 𝑝𝑗 (depth to the 

basement) at the 𝑗th prism and the depth to the base 𝑍𝑏  

                          𝑏𝑖𝑗
𝛼 ≈ 𝐶𝑚 ∆𝑠 

𝜕

𝜕𝛼
∫ �̂�

𝑍𝑏

𝑝𝑗

. ∇
1

𝑟𝑖𝑗
 𝑑𝑧′,                                                           (3.1) 
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where 𝐶𝑚 =  109𝜇𝑜/4𝜋  with 𝜇𝑜 as the vacuum permeability, �̂�  is a unit vector 

defining the magnetization direction of all prisms with inclination 𝑚𝑖 and declination 

𝑚𝑑. In equation 1, 𝛁  is a three-dimensional gradient operator vector given by 𝛁 ≡

[
𝜕

𝜕𝑥
 ,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
]

𝑇

 and  

                     
1

𝑟𝑖𝑗
=

1

√(𝑥𝑖 − 𝑥′𝑗)2 + (𝑦𝑖 − 𝑦′𝑗)2 +  (𝑧𝑖 − 𝑧′𝑗)2

 ,                                    (3.2) 

where 𝑥𝑖,  𝑦𝑖   and 𝑧𝑖  are  the coordinates of the 𝑖th observation point, 𝑥′𝑗  and   𝑦′𝑗  are  

the horizontal coordinates of the center of the 𝑗th prism and 𝑧′  is the integration 

variable representing the 𝑧 − coordinate of an arbitrary point within the 𝑗th prism.   

 The amplitude of the magnetic anomaly vector due to the 𝑀 prisms at the 𝑖th 

observation point (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖), 𝑖 = 1, … , 𝑁, is given by: 

                                         𝑑𝑖(𝐩, 𝑚 )  =  𝑚𝑓𝑖(𝐩) ,                                                             (3.3a) 

where 𝑚  is the uniform magnetization intensity of the prisms and               

                      𝑓𝑖(𝐩) =  √(∑ 𝑏𝑖𝑗
𝑥𝑀

𝑗=1 )
2

+  (∑ 𝑏𝑖𝑗
𝑦𝑀

𝑗=1 )
2

+ (∑ 𝑏𝑖𝑗
𝑧𝑀

𝑗=1 )
2

  ,                     (3.3b) 

in which  𝑏𝑖𝑗
∝ , ∝= 𝑥, 𝑦, 𝑧, is defined by equation 3.1 and 𝐩 = [𝑝1, … , 𝑝𝑀]𝑇 is a vector 

containing the depths to the top of the 𝑀 prisms. 

 

3.3 Inverse Problem 

We consider the observed amplitude of the magnetic anomaly vector  𝐝𝐎 =

[𝑑1
𝑂 , … , 𝑑𝑁

𝑂  ]𝑇 produced by a basement relief with constant magnetization vector 

having intensity 𝑚, inclination 𝑚𝑖 and declination 𝑚𝑑. Let  𝐝(𝐩, 𝑚) be the 𝑁–

dimensional vector of the predicted amplitude of the magnetic anomaly vector,                              

                                                         𝐝(𝐩, 𝑚 ) = 𝑚 𝐟(𝐩),                                       (3.4) 

whose 𝑖th element  𝑑𝑖(𝐩, 𝑚 )  is given by equation 3.3a and  𝐟(𝐩) is an 𝑁 ×  1 vector 

whose 𝑖th element is defined by equation 3.3b.   
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 Here, we wish to estimate the depths of the tops of the 𝑀 prisms (𝐩) and the 

intensity of the magnetization vector (𝑚) that better explain the observed amplitude 

data  𝐝𝐎.  Estimating the depths to the tops of M prisms from the observed amplitude 

data 𝐝𝐎 to retrieve the shape of the basement relief is a nonlinear inverse problem. 

Conversely, estimating the magnetization intensity is a linear inverse problem. The ill-

posedness of this problem is because of the inherent ambiguity involving attempts to 

estimate both the physical property and the volume of the source from any potential-

field data. To reduce this ambiguity, we impose proximity between the estimated 

depths and a previously defined average depth 𝑍𝑎𝑣𝑔 .  

 This problem is solved by minimizing the objective function  

                      𝜑(𝐩, 𝑚) =  ‖𝐝𝐎 −  𝐝(𝐩, 𝑚 )‖
2

+ 𝜇‖𝐩 − 𝐩𝒂‖2,                                      (3.5) 

where ‖∙‖ is the Euclidean norm, 𝐩𝒂 is a 𝑀-dimensional vector with all elements equal 

to 𝑍𝑎𝑣𝑔 and 𝜇 is a nonnegative scalar (regularizing parameter). The second Euclidean 

norm on the right side of equation 3.5 imposes a proximity between the estimated 

depths and the average depth 𝑍𝑎𝑣𝑔.  

 Expanding  𝜑(𝐩, 𝑚) in a Taylor series around the approximations 𝐩𝑘 and 𝑚𝑘, at 

the 𝑘th iteration, and keep terms up to second order we get 

𝜑(𝐩𝑘 + ∆𝐩𝑘, 𝑚𝑘 + ∆𝑚𝑘) = 𝜑(𝐩𝑘, 𝑚𝑘) + 𝐉𝒑
𝑘𝑇

∆𝐩𝑘 + 𝐽𝑚
𝑘 ∆𝑚𝑘 + 

 
1

2
∆𝐩𝑘𝑇

𝐇𝒑𝒑
𝒌   ∆𝐩𝑘 +

1

2
∆𝑚𝑘𝐻𝑚𝑚

𝑘 ∆𝑚𝑘 +   
1

2
∆𝐩𝑘𝑇

𝐡𝒑𝑚
𝒌   ∆𝑚𝑘 +  

1

2
∆𝑚𝑘𝐡𝑚𝒑

𝒌 𝑇
 ∆𝐩𝑘 ,   (3.6)   

where 𝐽𝑚
𝑘  is a scalar which contains the derivative of the function 𝜑(𝐩, 𝑚) with respect 

to 𝑚,  

                     𝐽𝑚
𝑘 =  −2 𝐝𝐎𝑇

𝐟(𝐩𝑘) + 2𝑚𝑘𝐟(𝐩𝑘)𝑇𝐟(𝐩𝑘),                                              (3.7) 

and 𝐉𝒑
𝑘  is the 𝑀 × 1 gradient vector of the function 𝜑(𝐩, 𝑚) with respect to vector 𝐩, 

                    𝐉𝒑
𝑘 = −2[𝐀𝑘]T[𝐝𝐎 − 𝑚𝑘𝐟(𝐩𝑘)] + 2𝜇( 𝐩𝒌 − 𝐩𝒂),                                  (3.8) 

where  𝐀𝑘 is the 𝑁 × 𝑀 Jacobian matrix of the function 𝐝(𝐩)  with respect to vector 

𝐩. The 𝑖𝑗th element 𝑎𝑖𝑗
𝑘  of matrix 𝐀𝑘 is the derivative of 𝐝(𝐩) (equation 3.3b) with 

respect to the depth to the top of the  𝑗th prism 𝑝𝑗, i.e., 
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          𝑎𝑖𝑗
𝑘 =  

𝑚𝑘

fi(𝐩k)
(∑ 𝑏𝑖𝑗

𝑥

𝑀

𝑗=1

, ∑ 𝑏𝑖𝑗
𝑦

𝑀

𝑗=1

, ∑ 𝑏𝑖𝑗
𝑧

𝑀

𝑗=1

) ∙ (
𝜕

𝑑𝑝𝑗
𝑏𝑖𝑗

𝑥 ,
𝜕

𝑑𝑝𝑗
𝑏𝑖𝑗

𝑦
,

𝜕

𝑑𝑝𝑗
𝑏𝑖𝑗

𝑧  ),       (3.9𝑎) 

where ∙ represents the dot product and the derivative part of equation 3.9a is  

(
𝜕

𝑑𝑝𝑗
𝑏𝑖𝑗

𝑥 ,
𝜕

𝑑𝑝𝑗
𝑏𝑖𝑗

𝑦
,

𝜕

𝑑𝑝𝑗
𝑏𝑖𝑗

𝑧  ) =  (−𝜙𝑖
𝑥(𝑝𝑗), −𝜙𝑖

𝑦
(𝑝𝑗), − 𝜙𝑖

𝑧(𝑝𝑗) ),                        (3.9b) 

where  𝜙𝑖
𝛼(𝑝𝑗), 𝛼 = 𝑥, 𝑦, 𝑧,  is the 𝛼-component of the magnetic induction produced 

by a single 𝑗th dipole at the 𝑖th observation point.  The 𝑗th dipole is magnetized by 

induction, with unitary magnetic moment and located at the top of the center of the 𝑗th 

prism whose depth is 𝑝𝑗. Like HIDALGO-GATO and BARBOSA (2019), the 

elements of the Jacobian matrix 𝐀𝑘 have a simple analytic expression (equations 3.9a 

and 3.9b) that is more computationally efficient than the numerical approximation. In 

equation 3.6, 𝐻𝑚𝑚
𝑘  is a scalar which contains the second derivative of the function 

𝜑(𝐩, 𝑚) with respect to 𝑚 

                                                    𝐻𝑚𝑚
𝑘 = 2𝐟(𝐩𝑘)𝑇𝐟(𝐩𝑘) ,                                                (3.10) 

𝐇𝒑𝒑
𝒌  is the 𝑀 × 𝑀 Hessian matrix of the function 𝜑(𝐩, 𝑚) with respect to vector 𝐩  

                                                    𝐇𝒑𝒑
𝒌    ≈ 2 𝐀𝑘𝑇

𝐀𝑘 +  2𝜇𝐈,                                            (3.11)  

     

where 𝐈 is the identity matrix of order 𝑀, 𝐡𝒑𝑚
𝒌  is an 𝑀 × 1 vector containing the second 

derivatives of the function 𝜑(𝐩, 𝑚) with respect to 𝐩 and 𝑚 

                                         𝐡𝒑𝑚
𝒌 =  −2 𝐅𝑘𝑇

𝐝𝐎 + 4𝑚𝑘 𝐅𝑘𝑇
𝐟(𝐩𝑘),                                  (3.12) 

and 𝐡𝑚𝒑
𝒌  = 𝐡𝒑𝑚

𝒌 . In equation 3.12, 𝐅𝑘 is the 𝑁 × 𝑀 Jacobian matrix of the function 

𝐟(𝐩)  with respect to vector 𝐩. All functions defined by equations 3.7 – 3.12 are 

evaluated at 𝐩 = 𝐩𝑘 and 𝑚 = 𝑚𝑘. 

 By differentiating the expanded function 𝜑(𝐩𝑘 + ∆𝐩𝑘, 𝑚𝑘 + ∆𝑚𝑘) (equation 

3.6) with respect to ∆𝐩𝑘 and  ∆𝑚𝑘 and setting the result equal to the null vector, we 

obtain the block linear systems of equations given by  
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                              [
  𝐻𝑚𝑚

𝑘   𝐡𝑚𝒑
𝒌 𝑇

  𝐡𝒑𝑚
𝒌 𝐇𝒑𝒑

𝒌
]  [

∆�̂�𝑘

∆�̂�𝑘 ] = − [
𝐽𝑚

𝑘

𝐉𝒑
𝑘 ],                                     (3.13)  

where the caret denotes estimate. Here, to estimate the magnetization intensity 

perturbation ∆𝑚𝑘 and the depth-to-basement perturbation ∆𝐩𝑘, we solve the full linear 

system defined by equation 3.13 and update the magnetization intensity and depth-to-

basement estimates iteratively as follows: 

                                                  m̂𝑘+1 = m̂𝑘 + ∆m̂𝑘 ,                                               (3.14a) 

and 

                                                      �̂�𝑘+1 = �̂�𝑘 + ∆�̂�𝑘.                                                 (3.14b) 

The stopping criterion is based on the invariance of the objective function (equation 

3.5). At the iteration 𝑘 = 0, the initial guest 𝐩0 of the basement depths is an 

𝑀 −dimensional vector with all elements equals to the average depth 𝑍𝑎𝑣𝑔. 

 We call attention to an interesting alternative approach to obtain the 

magnetization intensity and depth-to-basement estimates. This alternative approach is 

based on the fact that the vector 𝐡𝒑𝑚
𝒌  (equation 3.12) containing the second derivatives 

of 𝜑(𝐩, 𝑚) with respect to 𝐩 and 𝑚 has elements close to zero (order of 10-8). Hence, 

the two off-diagonal blocks in the linear system of equations 3.13 can be neglected. 

This yields to a block diagonal linear system which, in turn, results in two-step 

alternative approach for estimating the perturbations ∆m̂𝑘 and  ∆�̂�𝑘. In the first step, 

we solve a linear inverse problem by taking the estimate of magnetization intensity 

perturbation as 

                          ∆�̂�𝑘 = �̂�𝑘+1 −  �̂�𝑘,                                                                           (3.15) 

and estimate the magnetization intensity by 

                             �̂�𝑘+1 =  
𝐝𝐎𝑇

𝐟(𝐩𝑘)

𝐟(𝐩𝑘)
𝑇

𝐟(𝐩𝑘)
.                                                                             (3.16) 

 In the second step, we solve a nonlinear inversion by using the iterative Gauss-

Newton method with MARQUARDT (1963) strategy (SILVA et al., 2001; SILVA 

DIAS et al., 2007) for estimating the depths to the basement. This is accomplished by 
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estimating, at the 𝑘th iteration, the vector of the depth-to-basement perturbation  ∆�̂�𝑘 

through the solution of the linear equation system 

       (𝐇𝒑𝒑
𝒌  + 𝜆𝑘𝐈)∆�̂�𝑘 = −𝐉𝒑

𝑘 ,                                                                        (3.17) 

where 𝐉𝒑
𝑘   and 𝐇𝒑𝒑

𝒌   are given by equations 3.8 and 3.11, respectively and 𝜆𝑘 is a 

nonnegative number, known as Marquardt’s parameter, which is automatically 

adjusted during the iterative process to guarantee that the modified Hessian matrix be 

positive definite and to ensure the convergence. 

 We stress that both the computation time and the estimated perturbations (∆�̂�𝑘 

and ∆�̂�𝑘) obtained by solving the full linear system (equation 3.13) or by following 

the above explained alternative approach (equation 3.15-3.17) are approximately 

equal, in the same order of magnitude and both recovers satisfactory the true basement 

relief. Hence, we used the approximate alternative approach described before. 

 

3.4 Determining the inversion hyperparameters 

  In an inverse problem, hyperparameters are variables whose values are set 

before running the inversion code. Hyperparameters have an impact on the inversion 

result but they are not directly estimated in the inversion. In our work, the 

hyperparameters are the regularizing parameter 𝜇 (equation 3.5), the average depth 

𝑍𝑎𝑣𝑔 (vector 𝐩𝒂 in equation 3.5) and the bottom depth 𝑍𝑏 (equation 3.1). 

 

  The regularizing parameter 𝜇  controls the solution stability and how close 

the estimated basement relief will be to the average depth 𝑍𝑎𝑣𝑔. The larger the value 

of 𝜇, the more stable and the closer to the average depth 𝑍𝑎𝑣𝑔 will be the estimated 

basement relief. To determine 𝜇, we use the L-curve criterion (HANSEN, 1992) which 

consists in plotting, on a log–log scale, the squared norm of the regularized solution 

(‖�̂� − 𝐩𝒂‖2) against the squared norm of the regularized data residual (‖𝐝𝐎 −

 𝐝(�̂�, �̂� )‖
2
) for a range of regularizing parameters. Typically, this plot resembles an 

L-shaped curve. The optimum value of  𝜇  is the one closest to the “corner” of the L-

curve. 
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  To determine the average depth 𝑍𝑎𝑣𝑔 and the bottom depth 𝑍𝑏,  we use 

spectral method original proposed by BHATTACHARYYA and LEU (1977) and 

modified by OKUBO et al. (1985). BHATTACHARYYA and LEU (1977) presented 

a method for spectral analysis of gravity and magnetic anomalies due to 3D vertical 

prism. This method determines the depth to the top of the source from the linear slope 

of azimuthally averaged Fourier spectrum. We use this depth to the top of the source 

as the average basement depth 𝑍𝑎𝑣𝑔.  BHATTACHARYYA and LEU (1977) also 

determine the depth to the centroid (𝑍𝑐) from the slope of an azimuthally averaged 

frequency-scaled Fourier spectrum in the low wavenumber region. Finally, the depth 

to the bottom of the source 𝑍𝑏 is determined by the difference between  2 𝑍𝑐  and the 

depth to the top of the source (here called 𝑍𝑎𝑣𝑔), i.e.,  𝑍𝑏 =  2 𝑍𝑐 −  𝑍𝑎𝑣𝑔 . 

 

3.5 Application to synthetic data 

 To demonstrate and analyze the accuracy of our method, we apply it on a 

synthetic data simulating a rifted basin with non-magnetic sediments overlaying the 

basement relief. Figure 3.1 (vertically exaggerated) shows the simulated basement 

relief parametrized with a collection of prisms equally distributed in the 𝑥 − and 𝑦 − 

directions. All the prisms have the base at the constant surface  𝑍𝑏 = 8 𝑘𝑚. The 

basement relief in Figure 3.1 extends from −30 to 30 𝑘𝑚 in the 𝑥 − and 𝑦 − 

directions. To minimize edge effects in the inverse problem, we extrapolate the model 

by 20 𝑘𝑚 outside the shown area in both directions. Figure 3.2 shows the noise-

corrupted amplitude of the magnetic anomaly vector produced by the simulated rifted 

basin with a constant magnetization vector having inclination, declination and 

intensity equals to  +45°, +20° and 2  A/m, respectively. The basement is magnetized 

by induction only. We use the implementation of UIEDA et al. (2013) to calculate the 

𝑏𝑥, 𝑏𝑦 and 𝑏𝑧 components of the magnetic vector produced by the prisms on a regular 

observation grid of  0.5 𝑘m ×  0.5 𝑘m at a 0.15 𝑘m height. The anomaly is corrupted 

with pseudorandom zero-mean Gaussian noise with a standard deviation of 10 nT. 

  To invert the amplitude of the magnetic anomaly vector (Figure 3.2), we assume 

an average depth 𝑍𝑎𝑣𝑔 equal to 3.51 km. This value is equal to the true average depth 

of the simulated basement relief. We also assume that the basement magnetization 

vector (inclination and declination) is known and constant. We parameterize the 
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simulated basement by discretizing it into a 100 ×  100 grid of 3D vertical prisms in 

the 𝑥 − and 𝑦 −directions, respectively, with the same horizontal dimensions of 1 km. 

This discretization model includes the extended area beyond the limits of the data. 

 

Figure 3. 1: Perspective view of the simulated basement relief. 

 Because we assume the true average depth of the sediment-basement interface, 

the magnetization intensity is not a sensitive parameter in our inverse problem and thus 

any initial constant guess of the magnetization intensity results in the same estimated 

basement relief for a given pair of inclination (𝑚𝑖) and declination (𝑚𝑑). We solved 

our inverse problem using 𝜇 = 0.01, which was estimated through L-curve approach 

(HANSEN, 1992). The inversion converged within 11 iterations to misfit values close 

to the error level. 

 Figure 3.3 shows the estimated basement relief and the histograms of the 

differences between simulated (Figure 3.1) and estimated basement depths. The 

basement is recovered within less than ±0.1 km differences (one standard deviation) 

and the histogram of depth residuals shows a sample mean close to zero and standard 

deviation of 0.078  km (Figure 3.3). As we can see, the predicted data (Figure 3.4) 

explain the observed (Figure 3.2) amplitude of the magnetic anomaly vector within the 
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error level regardless the wrong initial guess of the magnetization intensity (80 𝐴/𝑚). 

We recovered the magnetization intensity in the first iteration with high accuracy level 

(2.02 𝐴/𝑚). 

 

Figure 3.2: Observed noise-corrupted amplitude of the magnetic anomaly vector.  

 

Figure 3.3: Depth-to-basement estimate. The inset shows the histogram of depth 

residuals 



63 

 

 

Figure 3. 4: Predicted amplitude of the magnetic anomaly vector. The inset shows the 

histogram of data residuals. 

 

 In Appendix 3.A We show a synthetic test with induced magnetization in low 

latitudes, like our real case data. We simulated a sequence of horst and grabens with 

different depths and inverted the amplitude data to recover the simulated basement 

relief. 

 

Sensitivity analysis to the magnetization direction 

 To investigate the sensitivity of our method to the magnetization direction, we 

invert the observed amplitude of the magnetic anomaly vector (Figure 3.2) for different 

combinations of inclination 𝑚𝑖 and declination 𝑚𝑑 of the magnetization vector 

direction. Figure 3.5 and 3.6 display the results of this sensitivity analysis. Figure 3.5a 

shows the observed data (the same shown in Figure 3.2) produced by the true simulated 

basement relief shown in Figure 3.6a (the same shown in Figure 3.1) and the true 

basement-relief profiles (black line) whose locations are shown in the map (dashed 

lines in Figure 3.6a) of the true basement relief. Figures 3.5b and 3.6b show the 

inversion results by assuming known induced magnetization vector (i.e., 𝑚𝑖 = 45° and  

𝑚𝑑 = 20°, the same results shown in Figures 3.3 and 3.4). Figures 3.5c-3.5g and 3.6c-
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3.6g show the solutions sensitivity to uncertainties in the magnetization inclination and 

declination. The wrong assigned magnetic inclinations 𝑚𝑖  and declinations 𝑚𝑑 of 

Figures 3.5c-3.5g and 3.6c-3.6g are shown in their corresponding title headings.  

 The three rows in Figure 3.5c to 3.5g show the predicted amplitudes of the 

magnetic anomaly vector (upper row), the histograms of the data residuals (middle 

row) and the data residuals (lower row); where the data residuals are the differences 

between observed (Figure 3.5a) and predicted (upper panels in Figure 3.5c-3.5g) data. 

The first and second rows in Figure 3.6c to 3.6g show, respectively, the estimated 

basement reliefs and model residuals defined as the differences between true basement 

relief (Figure 3.6a) and estimated basement reliefs (upper panels in Figure 3.6c-3.6g). 

For a more precise analysis, we plot the true (black line) and the estimated (blue line) 

basement reliefs in 2D profiles along the east-west and north-south directions as shown 

in the two lower rows of Figure 3.6c to 3.6g. 

 Figures 3.5c and 3.6c and Figures 3.5d and 3.6d show the inversion results by 

using a magnetization vector inclination equal to +45° (same as true one) and wrong 

declinations of -45° and +45°, respectively. Both, the wrong negative (Figure 3.6c) 

and the wrong positive (Figure 3.6d) declinations recover satisfactorily the basement 

reliefs within an acceptable error margin. This is corroborated by the histograms of the 

data residuals in Figure 3.5c and 3.5d, which show means and standard deviations 

close to zero. These results are by themselves a contribution over the existing inversion 

algorithms since we managed to recover the magnetic basement using a wrong 

declination of the magnetization vector. 

 The amplitude of the magnetic anomaly vector is weakly dependent on the 

magnetization vector direction but not fully independent, especially the opposite 

direction of the induced field as shown next. Figure 3.5e shows that even using a wrong 

magnetic inclination of +15° and a wrong magnetic declination of -20°, the depth-to-

basement estimate (Figure 3.6e) recovers the simulated magnetic basement. One can 

notice that the estimated basement in Figure 3.6e is slightly different and less accurate 

than the estimates shown in Figure 3.6b-3.6d. 

 Let´s now consider a negative magnetic inclination. Figure 3.5f shows the 

inversion results using magnetic inclination and declination of -45° and +20°, 

respectively. Note that the magnetic inclination is in the opposite direction of the true 

one (+45°) and the magnetic declination is equal to the true one. As we can see in 
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Figure 3.5f the predicted amplitude of the magnetic anomaly vector explains the 

observed data within the data error level which is supported by the histogram of the 

data residuals and the map of data residuals. In contrast, the depth-to-basement 

estimate shown in Figure 3.6f is shifted towards the south-west direction when 

compared with true simulated basement relief. Similar behavior is observed in the 

estimated basement relief using an inclination of -30° and a declination of -45° as 

shown in Figures 3.5g and 3.6g. In this case, the basement relief is also shifted towards 

the south-west direction. However, both estimated basement reliefs shown in Figure 

3.6f and 3.6g recover the shape of the true basement relief, but the estimates exhibit 

small shift.   

 The results shown in Figures 3.5 and 3.6 suggest that the depth-to-basement 

estimates by inverting the amplitude of the magnetic anomaly vector are more sensitive 

to uncertainties in the magnetic inclination than in the magnetic declination.  Figures 

3.5c and 3.6c and Figures 3.5d and 3.6d show that even considering uncertainties in 

magnetic declinations the amplitude data inversions retrieve the basement relief and 

fit the data. Conversely, Figures 3.5f and 3.6f and Figures 3.5g and 3.6g show that the 

amplitude data inversions with uncertainties in magnetic inclinations retrieve slightly 

dislocated shapes of the basement reliefs. The black arrows in Figure 3.6 show the 

gradients of the model residuals defined as the differences between true (Figure 3.6a) 

and estimated (upper panels in Figure 3.6b-3.6g) basement reliefs. The gradients are 

plotted in a regular grid over the maps of the model residuals (second row in Figure 

3.6b-3.6g) where the gradients in the x- and y-directions define the direction of each 

arrow that points in the direction of steepest ascent and whose length is equal to the 

amplitude of the gradient scaled by a factor to improve the view of the arrows. Notice 

in Figure 3.6b that the arrows show the smallest lengths corroborating the excellent 

performance of the inversion of the amplitude data in estimating the basement relief 

by assuming the true magnetization vector (i.e., 𝑚𝑖 = 45° and  𝑚𝑑 = 20°). Figure 3.6c 

and 3.6d shows arrow lengths smaller than ones shown in Figure 3.6f and 3.6g 

certifying that the amplitude data inversions are less sensitive to uncertainties in 

magnetic declinations (Figure 3.6c and 3.6d). The directions of the arrows in Figure 

3.6f and 3.6g indicate the displacement of the estimated basement reliefs in the 

southwest-northeast direction. This gradient analysis (black arrows in Figure 3.6b-

3.6g) is theoretical and cannot be applied to a field-data interpretation because it 

assumes the knowledge of the true basement relief. 
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Figure 3.5: Magnetization direction sensibility on synthetic data. The first, second and third rows show, respectively, the observed (a) the predicted data 

(b to g) for different magnetization directions (magnetic inclinations 𝑚𝑖 and declinations 𝑚𝑑 are shown in the title headings of panels b to g) and (c) the 

histogram of the data residuals (observed minus predicted data) in nT. The true magnetization direction has inclination of  +45° and declination of +20° 

(the estimate shown in panel b).   
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Figure 3.6: Magnetization direction sensibility on synthetic data. The first row shows the simulated (a) and estimated basement relief (b to g) for different 

magnetization directions (magnetic inclinations 𝑚𝑖and declinations 𝑚𝑑are shown in the title headings of panels b to g). The second row shows the model 

residuals (true minus estimated basement reliefs) in km. The black arrows show the gradients of model residuals. The two lower rows show east-west 

and south-north profiles extracted along the true (a) and estimated basement reliefs (b-g).  The true and estimated basement reliefs in the profiles are 

shown in black and blue lines, respectively. The locations of these profiles are shown in dashed lines in the panel a. 
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Sensitivity analysis to the average depth 

In the test shown in Figure 3.1-3.4, the average depth 𝑍𝑎𝑣𝑔 of the simulated basement 

relief was assumed to be known. To investigate the sensitivity of our method to the 

average depth 𝑍𝑎𝑣𝑔, we invert the observed amplitude of the magnetic anomaly vector 

(Figure 3.2) by assuming a constant magnetization vector equal to the true one 

(inclination of  +45° and declination of +20°) and a wrong average depth.  

 If the assigned average depth of the basement is shallower (𝑍𝑎𝑣𝑔 = 1.518 km) 

than the true one (3.51 km) the magnetization intensity estimate (0.5 A/m) is smaller 

than the true one (2 A/m) and the depth-to-basement estimate is shallower (Figure 

3.7a) than the true one. Conversely, if the assigned average depth of the basement is 

deeper (𝑍𝑎𝑣𝑔= 5.518 km) than the true one (3.51 km) the magnetization intensity 

estimate (5 A/m) is greater than the true one (2 A/m) and the depth-to-basement 

estimate (Figure 3.7b) is deeper than the true one. However, in both cases (shallower 

or deeper average depths than the true ones) the shapes of the estimated basement 

reliefs are very similar (Figure 3.7c) but the estimated depths present different 

averages. 

 

Figure 3.7: Average depth sensibility on synthetic data. Tests assigning incorrect 

average depths 𝑍𝑎𝑣𝑔. (a) 𝑍𝑎𝑣𝑔is shallower (1.518 km) than the true one and (b) 𝑍𝑎𝑣𝑔 is 

deeper (5.518 km) than the true one. (c) The southwest-northeast profiles of the true 

basement relief (black line) and the estimated basements (color lines) shown in panels 

a and b. The location of these profiles is shown in dashed lines in the panels a and b.  

The true average depth of the basement relief is 3.51 km. 

 

 This sensitivity analysis to the average depth shows that our method estimates 

an apparent magnetization intensity of the basement rock. 
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 3.6 Application to Field Data 

Geological framework of the Foz do Amazonas basin  

 The Foz do Amazonas Basin is located between French Guiana to the north and 

the Pará-Maranhão Basin to the southeast. Figure 3.8 (modified from HIDALGO-

GATO and BARBOSA, 2019) shows the five offshore basins that compound the 

Brazilian Equatorial Margin. The study area is located at the southeast portion of the 

Foz do Amazonas Basin (black square), a poorly studied portion of the basin extending 

from shallow to deep water.  We access four public wells whose locations are shown 

in Figure 3.8 and their names are: 1APS10BAP (4255 m total depth), 1APS05AP 

(4354 m total depth), 1AS20BAP (3542 m total depth) and 1APS37AP (2255 m total 

depth). Unfortunately, none of the wells drilled deep enough to penetrate the basement 

rocks. Notwithstanding, none of four wells drilled in the study area have shown 

evidence of intrasedimentary igneous intrusions. The Foz do Amazonas Basin is a 

magma-poor basin as described by ZALAN (2017). Hence, the drill holes support the 

assumption of a nonmagnetic sediment layer overlaying the basement relief required 

by our method.  

 The tectonic framework of the entire Brazilian Equatorial Margin is linked to an 

oblique opening of the Atlantic Ocean, alternating between normal and strike-slips 

faults. The Precambrian basement of the Foz do Amazonas Basin consists of thrust 

belt faults in the north-northwest–south-southeast direction from the amalgamation of 

the Gondwana. COSTA et al. (2002) show a structural map with several normal faults 

and grabens in the onshore Foz do Amazonas and Marajó Basins. COSTA et al. (2002) 

suggest that the onshore portions of Foz do Amazonas and Marajó Basins have steep 

larger border faults and multi-tectonic phases during the basin evolution, which 

includes steps such as transtension, transpression and finalizing in another event of 

transtension during the Cenozoic. Indeed, there is a considerable tectonic complexity 

in the basement of the study area, which is part of the underexplored Brazilian 

Equatorial Basins.  
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Magnetic Data and basement relief estimation 

 The high-resolution magnetic data is a public airborne survey over the Foz do 

Amazonas Basin flown between 2003 and 2004. The acquisition lines in the study area 

are spaced by 2 km and flown in the N18°W direction at a constant average height of 

150 m. Figure 3.8 shows the acquisition polygon (blue), the study area (black square) 

in Geographic coordinates and the total-field anomaly data in a local coordinate system 

that consist of a constant shift from the original UTM (51°W). The inclination and 

declination of the main geomagnetic field in the middle of the study area at the 

acquisition date were, respectively, 7.68° and -19.45. We gridded the data to the 

constant acquisition height of 150 m.  

 The spectral analysis (BHATTACHARYYA and LEU, 1977; and OKUBO et 

al., 1985) in the total-field anomaly data (Figure 3.8) shows that the average depth of 

the basement source (shallow-seated source) is at 6  km depth (Figure 3.9a) while the 

bottom of the magnetization (deep-seated source) is around 16  km depth (Figure 3.9b).   
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Figure 3.8: Location of the Foz do Amazonas Basin (Brazil) (Modified from HIDALGO-GATO and BARBOSA, 2019), the acquisition airborne 

survey (blue polygon), the study area (black square) and the total-field anomaly  (colored map) of the study area with well locations (black 

symbols).
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Figure 3. 9: The spectral analysis to determine (a) the average depth 𝑍𝑎𝑣𝑔 and (b) the 

bottom depth 𝑍𝑏. 

 

 By using the equivalent layer approach proposed by DAMPNEY (1969), we 

decompose the observed total-field anomaly (Figure 3.8) into the three orthogonal 

components of the magnetic vector 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧 and then calculate the amplitude of 

the magnetic vector shown in Figure 3.10a.   

 The subsurface model is discretized as a collection of prisms with tops 

coincident with the average basement relief (�̂�0 = 6 km) and the bottom at the constant 

surface 𝑍𝑏=16 km.  The prisms are regularly spaced by 3600 m in both directions with 

a constant magnetization vector direction equal to the main geomagnetic field and 

intensity of 2 A/m (initial guess). We extrapolated the model by 50 km beyond the 

data limits in both horizontal directions to mitigate edge effects.  
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Figure 3.10: Observed (a) and predicted (b) amplitudes of the magnetic anomaly 

vector. (c) The histogram distribution of the data residual defined as the difference 

between observed (a) and predicted (b) data. 

 

 We inverted the amplitude of the magnetic vector (Figure 3.10a) to recover the 

basement relief using a regularization parameter μ=0.001 (estimated using L-curve 

proposed by HANSEN, 1992). The predicted amplitude of the magnetic vector (Figure 

3.10b) explains the observed amplitude data (Figure 3.10a) within an acceptable error 

level. The histogram of the data residuals (Figure 3.10c), with zero mean and standard 

deviation of approximately 5 nT, corroborates the acceptance of the data fitting. The 

recovered apparent magnetization intensity is 4 A/m.  
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Figure 3.11: Contour map of the depth-to-basement estimate. The black symbols 

pinpoint the locations of the wells shown in Figure 3.8. 

  

 Figure 3.11 shows a map view of the depth-to-basement estimate with the 

proposed method with contour lines spaced by 400 m and the locations of the wells 

shown in Figure 3.8. Two basement highs are observed in the central part of the data. 

Note that the transition between basement highs and lows is smooth in most of the 

retrieved basement. In a regional-scale perspective, note that, at the northernmost limit, 

the estimated basement relief gets deeper and constant. We infer that this basement 

feature may be due to a change in crustal domains from a continental hyperextended 

crust to a more homogenous and monotonous oceanic crust. 
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3.7 Final considerations   

In this Chapter, we proposed the inversion of the amplitude of the magnetic 

anomaly vector to estimate the depths and the apparent magnetization intensity of 

the magnetized basement of a sedimentary basin. We assume that the basement rocks 

have a constant magnetization vector throughout the study area. Our method is 

weakly dependent on the magnetization vector direction and intensity; hence, the 

precise knowledge about them is not required. The basement relief is approximated 

by a collection of vertical prisms with constant but unknown magnetization vector in 

both, direction and intensity. To overcome the ambiguity of inverting for volume and 

physical property inherent to potential field data our method requires the knowledge 

of the average depth of the basement relief.  

 We calculate the predicted amplitude of the magnetic anomaly vector through a 

fast approach that calculates a 1D integral over the prism thickness via the Gauss-

Legendre Quadrature presented in Chapter 2. Our inverse problem uses the Gauss-

Newton approximation with a proximity constraint to the average depth of the 

basement relief.  We applied our inversion algorithm in a synthetic data simulating a 

rifted basin and performed a sensitivity analyses by changing the magnetization 

direction and the average depth of the magnetized basement. We show that the 

amplitude of the magnetic anomaly vector is weakly dependent, but it is not completely 

independent. Our inversion results suggest that the depth-to-basement estimates are 

more sensitive to uncertainties in the magnetic inclination than in the magnetic 

declination. Because of the fundamental ambiguity consisting of the product of the 

physical property (magnetization intensity) by the volume (basement layer), 

uncertainties in the average depth of the basement plays a significant role. If the 

assigned average depth of the basement is deeper (shallower) than the true one the 

magnetization intensity estimate is greater (smaller) and the depth-to-basement 

estimate is deeper (shallower) than the true ones. However, the shape of the estimated 

basement relief is very similar, regardless of the uncertainties in both the 

magnetization vector direction and the average depth of the basement. 
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 We inverted a magnetic-amplitude dataset over the Foz do Amazonas Basin in 

the Brazilian Equatorial Margin. The amplitude dataset was calculated from the 

observed total-field anomaly in the space domain through equivalent layer approach. 

Our inversion estimates an overall smooth basement relief with a local basement 

discontinuity interpreted as an east-west trending fault. In regional scale, the gradient 

changes in the estimated basement relief seem to characterize the transition between 

continental and oceanic crusts.  

 The main limitation of the proposed method is the assumption about uniform 

magnetization of the basement rocks. The method estimates a single apparent 

magnetization intensity. Hence, a future improvement to the method includes to deal 

with intra-basement mafic and ultramafic bodies giving rise to strongly interfering 

magnetic anomalies.  
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3.8 Appendix 3.A: Synthetic Test at Low Latitude 

 

 In this thesis, we have applied the two developed inversions – the total-field 

anomaly inversion, in Chapter 2, and the magnetic amplitude inversion, in Chapter 3 

– to synthetic data at middle latitudes and to field data at low latitudes. Here, we 

investigate the performance of our two inversions to synthetic data at low latitudes. 

Hence, we performed a synthetic test to invert 1) the total-field anomaly and 2) the 

amplitude of the magnetic vector for a common simulated basement relief. Figures 

3.12c, 3.13c and 3.14c show the simulated depth-to-basement surface with one horst 

in the central portion and two grabens at different depths. The basement is constantly 

magnetized with and inclination of 5°, a declination of  160.0° and intensity of  

4.0 A/m. We calculated the magnetic components of the simulated basement 

considering a geomagnetic field with inclination of −3.5° and a declination of  −20.0°; 

hence, there is a strong remanent component. Note that the inclination and declination 

of the geomagnetic field vector are close to the real case study shown in Chapter 2 

(Para-Maranhao Basin) and Chapter 3 (Foz do Amazonas Basin). The base of the 

magnetic layer 𝑍𝑏 is a constant surface at 9  km depth. To calculate the observed data, 

we used the implementation of UIEDA et al. (2013), which is a prism-based 

implementation. 

1) Depth-to-basement estimates from the total-field anomaly inversion (Chapter 2): 

Figure 3.12a shows the total-field anomaly produced by the basement relief (Figure 

3.12c) calculated at a constant height of −150 𝑚. The observed data is corrupted 

with pseudorandom zero-mean Gaussian noise with a standard deviation of 1 nT. 

To minimize edge effects, we extrapolate the model to a constant grid that extends 

from −50 km to 50 km with a regular space of 2 km in both directions. Our 

starting guess is a constant surface at 5 km depth. In this first test, we assume the 

magnetization vector direction is known. We inverted the observed data using the 

GLQ method proposed in Chapter 2 with a number of nodes 𝑛 = 4. Our iterative 

inversion runs over 3 iterations using a first-order Tikhonov regularization 

parameter of  0.00001. Figure 3.12b shows the predicted total-field anomaly 

produced by the depth-to-basement estimates (Figure 3.12d). The histogram of the 

residuals between observed and predicted data is shown in Figure 3.12b as an inset. 
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We can observe that the residuals follow a Gaussian distribution with mean around 

zero and standard deviation of less than 0.25 nT (one standard deviation). We can 

also note that the simulated basement relief (Figure 3.12d) was recovered 

successfully.  

 

Figure 3.12: Inversion of the total-field anomaly at low latitudes with Gauss Legendre 

Quadrature method proposed in Chapter 2. The magnetization vector direction and intensity 

are known. (a) The observed  and (b) predicted total-field anomalies.  The observed anomaly, 
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in panel a, is produced by the simulated depth to basement (c). The predicted anomaly, in 

panel b, is produced by the estimated depth to the basement. The histogram distribution of 

the data residual (inset in b) is defined as the difference between observed (a) and predicted 

(b) total-field anomalies. 

 

          Figure 3.13 shows the inversion results in the case that the magnetization direction is 

unknown. Hence, we wrongly considered an induced magnetization (i.e., the magnetization 

vector of the basement is in the same direction of the geomagnetic field). Note that the 

observed (Figure 3.13a) and predicted (Figure 3.13b) total-field anomalies are very similar 

within the error level as shown by the histogram in Figure 3.13b.  However, the estimated 

basement relief (Figure 3.13d) differs from the real basement (Figure 3.13c) either in its 

shape or in its depth. Note that the retrieved basement has an opposite polarity than the 

simulated basement. Under the wrong hypothesis of an induced magnetization, the simulated 

grabens and horst in Figure 3.13c are, respectively, retrieved as horsts and graben in Figure 

3.13d 

In most of the real case studies, the magnetization direction vector is unknown, and 

the magnetization is assumed to be purely induced. In Appendix 2.B, we performed a 

synthetic test showing the proposed magnetization estimation search method used in the real 

case study of Chapter 2.  
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Figure 3.13: Inversion of the total-field anomaly at low latitudes with Gauss Legendre 

Quadrature method proposed in Chapter 2. The total-field anomaly inversion assumes a 

wrong hypothesis of induced magnetization. (a) The observed and (b) predicted total-field 

anomalies.  The observed anomaly, in panel a, is produced by the simulated depth to 

basement (c). The predicted anomaly, in panel b, is produced by the estimated depth to the 

basement. The histogram distribution of the data residual (inset in b) is defined as the 

difference between observed (a) and predicted (b) total-field anomalies. 
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2) Depth-to-basement estimates from the amplitude data inversion (Chapter 3): 

 

  Figure 3.14a shows the amplitude of the magnetic anomaly vector (amplitude 

data) produced by the simulated basement relief shown in Figure 14c. We use the 

implementation of UIEDA et al. (2013) to calculate the 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧 components 

of the magnetic vector produced by the collection of prisms. The amplitude data is 

corrupted with pseudorandom zero-mean Gaussian noise with a standard deviation 

of 1 nT. We extended the model from −50 km to 50 km in both directions on a 

regular spaced grid of 2 km. We parametrize the subsurface by a collection of 

regular prisms with constant tops at the average depth of the simulated basement 

relief with lateral size 𝑑𝑥 and 𝑑𝑦 equals to 2 km. Note that the lateral size of the 

prisms are at least two times less than the minimum depth of the simulated 

basement (4350 𝑚). To recover the basement relief, we invert the amplitude data 

using the GLQ approach presented in Chapter 3, with a starting magnetization 

intensity of 8.0 𝐴/𝑚, which is two times greater than the real magnetization 

intensity. Since the amplitude data inversion method is weakly dependent on the 

magnetization vector direction, we can assume an induced magnetization, i.e., we 

use the geomagnetic field direction as the magnetization vector direction. Our 

inversion requires a minimum of three iterations to converge using the true average 

depth and using a regularizing parameter of  0.00001. Figure 3.14b shows the 

predicted amplitude data calculated using GLQ method and produced by the 

estimated basement relief shown in Figure 3.14d. We can notice that the predicted 

data (Figure 3.14b) explains the observed amplitude data (Figure 3.14a) within the 

error levels as shown in the histogram distribution of the residuals in Figure 3.14b 

(inset). We can note high wavenumber features in the retrieved basement relief 

(Figure 3.14d). This is mainly because we did not impose a smoothness 

regularization and used a small regularizing parameter. Despite of that, the 

recovered basement relief follows the simulated basement with high accuracy. We 

emphasize that the simulated basement has a strong remanent component 

(inclination of 5° and declination of  160.0°) which is different of the geomagnetic 

field (inclination of −3.5° and a declination of  −20.0°).  Our inversion does not 

require the knowledge of the magnetization vector direction; hence, we used the 

induced field direction to invert the observed amplitude data. Despite of using a 

wrong magnetization direction, our method recovers the basement relief in shape 
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and in depth. These results could not be achieved by inverting a total-field anomaly 

data (Chapter 2) without using the correct magnetization direction as shown 

previously in Figures 3.12 and 3.13. 

 

 

Figure 3.14: Inversion of the amplitude data at low latitudes with Gauss Legendre 

Quadrature method proposed in Chapter 3.  The amplitude data inversion assumes a wrong 

hypothesis of induced magnetization. (a) The observed and (b) predicted amplitude data.  
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The observed amplitude data, in panel a, is produced by the simulated depth to basement (c). 

The predicted amplitude data, in panel b, is produced by the estimated depth to the basement. 

The histogram distribution of the data residual (inset in b) is defined as the difference 

between observed (a) and predicted (b) amplitude data.  
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Chapter 4 

Conclusions 

 We developed two regularized nonlinear magnetic inversions to estimate the 

depths of the magnetic basement of a sedimentary basin with nonmagnetic sediments 

and without intra-sedimentary igneous intrusions.  We approximated the basement 

layer by a grid of 3D vertical prisms juxtaposed in the horizontal directions of a right-

handed coordinate system. The computational efficiency of our inversions is higher 

because we used an efficient way to compute the forward modeling of the magnetic 

data produced by a prism. The volume integral of the magnetic data of a prism was 

simplified by a 1D integration taken with respect to the 𝑧-axis of a prism (prism 

thickness) which is multiplied by the horizontal area of the prism.   

 The first method (Chapter 2) inverts the total-field anomaly by using the first-

order Tikhonov regularization to estimate the depths of the magnetic basement. This 

inversion requires previously knowledge of the magnetization vector direction and 

intensity. For determining the inclination (𝑚𝑖) and declination (𝑚𝑑) of the 

magnetization vector of the basement layer, we constructed a discrete mapping of the 

data-misfit function on a plane 𝑚𝑖 × 𝑚𝑑 for intervals of  𝑚𝑖  ∈ [−50°, 50°] and 𝑚𝑑  ∈

[−180°, 180°]. The best pair (𝑚𝑖,𝑚𝑑) is the one that yields the minimum of the 

mapped data-misfit function. We applied our inversion algorithm to a complex 

synthetic data and to a real data from the Pará-Maranhão Basin (Brazil). The estimated 

basement relief of the sedimentary basin looks geologically reasonable.    
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 The second method (Chapter 3) inverts the amplitude of the magnetic anomaly 

vector to estimate simultaneously the depths and the magnetization intensity of the 

magnetized basement of a sedimentary basin. We assumed that the basement rocks 

have a constant magnetization vector. We showed that our method is weakly 

dependent on the magnetization vector direction and intensity; hence, no previous 

knowledge about them is required. To minimize the ambiguity of estimating the 

volume and the physical property, inherent to potential-field data, our method requires 

the knowledge of the average depth of the basement relief. Tests on synthetic and field 

data from the Foz do Amazonas Basin in the Brazilian Equatorial Margin showed the 

applicability of our method.  

        We showed that the total-field anomaly inversion (Chapter 2) is highly 

dependent on the knowledge of the magnetization vector direction. Our tests showed 

that the inversion of the total-field anomaly can estimate a completely wrong basement 

relief under wrong hypotheses of magnetization direction.  The sensitivity analysis of 

the total-field anomaly inversion showed its robustness to the choice of the initial guess 

that can be a planar surface at any depth. However, the sensitivity analysis to 

uncertainties in the magnetization contrast of the magnetic basement showed that the 

total-field anomaly inversion is highly dependent on its knowledge. Although there is 

a high dependence, the consequences to uncertainties in the knowledge about the 

magnetization contrast are trivial. By assigning a magnetization contrast smaller than 

the true one, the estimated basement relief via the total-field anomaly inversion is 

shallower when compared with the true one. Conversely, by assigning a magnetization 

contrast larger than the true one, the estimated basement relief via the total-field 

anomaly inversion is deeper than the true one. 

         Conversely, we showed that the inversion of the amplitude of the magnetic 

anomaly vector (Chapter 3) is weakly dependent on the magnetization vector direction; 

hence, it does not require previous knowledge about the direction of magnetization 

vector (declination, inclination).  Our tests showed that the inversion of the amplitude 

of the magnetic anomaly vector is weakly dependent; however, it does not mean a 

complete independence. The results suggested that the depth-to-basement estimates 

via the amplitude data inversion are more sensitive to uncertainties in the magnetic 

inclination than in the magnetic declination. The inversion of the amplitude of the 

magnetic anomaly vector estimates simultaneously the depths to the basement relief 

and the apparent magnetization-intensity of a sedimentary basin. To overcome the 
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inherent ambiguity of potential-field data involving the product of the physical 

property (magnetization intensity) by the volume (basement layer), we assumed the 

knowledge of the average depth of the basement and use it as a constraint to regularize 

the inversion.  Although there is a high dependence on the knowledge of the average 

depth of the basement, the consequences to uncertainties its value are trivial.  By 

assigning an average depth of the basement deeper (shallower) than the true one the 

magnetization intensity estimate is greater (smaller) and the depth-to-basement 

estimate is deeper (shallower) than the true ones. However, the shape of the estimated 

basement relief is quite similar, regardless of the uncertainties in both the 

magnetization vector direction and the average depth of the basement. 

      We stress that the main limitation of the two inversions is the assumption about 

uniform magnetization of the basement rocks either in the direction or in the intensity. 

Hence, a future improvement to these inversions could be taken into account the 

presence of intra-basement mafic and ultramafic bodies giving rise to strongly 

interfering magnetic anomalies. 
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