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”Oh, oh, oh, oh, oh, sometimes I

get a good feeling, yeah I get a

feeling that I never never never

never had before, no no I get a

good feeling, yeah”

Good Feeling - Flo Rida
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Resumo da Tese apresentada ao Programa de Pós-Graduação em Geof́ısica do

Observatório Nacional como parte dos requisitos necessários para a obtenção do

t́ıtulo de Doutor em Geof́ısica.

INTERPRETAÇÕES QUALITATIVA E QUANTITATIVA DE DADOS

MAGNÉTICOS

Felipe Ferreira de Melo

Fevereiro/2020

Apresentamos uma nova abordagem metodológica para realizar a interpretação

qualitativa e duas melhorias metodológicas para realizar interpretações quantitativas

de dados magnéticos. Na primeira parte desta tese, propomos o uso da amplitude

do vetor da anomalia magnética para interpretar qualitativamente dados magnéticos

em baixas latitudes magnéticas, em grandes áreas. Os dados de amplitude são fraca-

mente dependentes da direção da magnetização, não requerem conhecimento prévio

da direção da magnetização da fonte e produzem máximos sobre as fontes causado-

ras. Assim, os dados de amplitude permitem a definição das posições horizontais,

das projeções horizontais das fontes e aproximadamente de suas extensões, princi-

palmente em baixas latitudes magnéticas, em que o campo magnético aumenta a

complexidade das anomalias, além do caso de anomalias com magnetização rema-

nente. Calculamos os dados de amplitude a partir da anomalia de campo total por

meio da técnica da camada equivalente e mostramos o desempenho desses dados

na interpretação qualitativa com testes sintéticos. Na aplicação a dados reais no

Cráton da Amazônia, norte do Brasil, os dados de amplitude localizam anomalias

destacadas na anomalia de campo total, que têm correlação com afloramentos identi-

ficados no mapa geológico. Além disso, os dados de amplitude sugerem a presença de

múltiplos corpos geológicos em subsuperf́ıcie seguindo um alinhamento das unidades

geológicas aflorantes. Para as interpretações quantitativas, propomos duas melho-

rias metodológicas na deconvolução de Euler. Assim, na segunda parte da tese,

lidamos com o espalhamento de soluções na deconvolução de Euler, selecionando

estimativas confiáveis da deconvolução de Euler através das derivadas verticais da

anomalia de campo total. A derivada vertical é utilizada por causa de sua habilidade

em localizar fontes já que o sinal decai rapidamente com o afastamento da fonte.

Para cada janela móvel de dados, calculamos o desvio padrão da derivada vertical
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da anomalia de campo total e definimos as estimativas confiáveis de localização da

fonte como aquelas estimativas obtidas pelas janelas móveis com os maiores desvios

padrão. O ı́ndice estrutural correto é definido com o maior agrupamento das es-

timativas confiáveis e a média dessas estimativas define a posição da fonte. Nossa

metodologia foi testada em cenários de múltiplas fontes e anomalias interferentes,

definindo com sucesso o ı́ndice estrutural correto e as profundidades das fontes. A

aplicação na anomalia magnética de Anitápolis, sul do Brasil, permitiu inferir a pre-

sença de um plug intrusivo e sua profundidade até o topo. Finalmente, na terceira

parte desta tese, propomos a definição do ı́ndice estrutural correto na deconvolução

de Euler através de estimativas do ńıvel de base. Mostramos matematicamente

que assumindo o ı́ndice estrutural correto sobre a fonte, em uma região definida

por patamares de estimativas horizontais ou verticais constantes, o desvio padrão

das estimativas do ńıvel de base é mı́nimo. Portanto, propusemos um novo critério

para determinar o ı́ndice estrutural correto por meio do desvio padrão mı́nimo das

estimativas de ńıvel de base. Testes em dados sintéticos mostram que a metodolo-

gia de estimativas do ńıvel dos base em plots de patamar supera as estimativas de

profundidade na definição do ı́ndice estrutural correto em cenários com anomalias

fortemente interferentes. Aplicamos a metodologia em dados magnéticos de parte

da prov́ıncia alcalina de Goiás, centro do Brasil, e os resultados sugerem que três

plugs intrusivos dão origem à anomalia de Diorama e fontes tipo dipolo produzem

as anomalias de Arenópolis e Montes Claros de Goiás.



Abstract of the Thesis presented to the National Observatory’s Graduate Program

in Geophysics as a partial fulfillment of the requirements for the degree of Doctor

in Geophysics.

QUALITATIVE AND QUANTITATIVE INTERPRETATIONS OF MAGNETIC

DATA

Felipe Ferreira de Melo

February/2020

We present a new methodological approach to accomplish a qualitative interpre-

tation and two methodological improvements to accomplish quantitative interpre-

tations of magnetic data. In the first part of this thesis, we propose the use of the

amplitude of the magnetic anomaly vector for interpreting qualitatively magnetic

data at low magnetic latitudes, in large areas. The amplitude data is weakly de-

pendent on the magnetization direction, require no prior knowledge of the source

magnetization direction and produce maxima over the causative sources. Thus,

the amplitude data allow the definition of the horizontal positions, the horizontal

projections of the sources and roughly their extensions, especially at low magnetic

latitudes, where the magnetic field increases the complexity of the anomalies, and

for anomalies with strong remanent magnetization. We compute the amplitude data

from the total-field anomaly via the equivalent source technique and show the per-

formance of these data in qualitative interpretation with synthetic tests. In the

application to real data on the Amazonian Craton, northern Brazil, the amplitude

data located anomalies highlighted on the total-field anomaly, which have correlation

to mapped outcrops on the geologic map. Moreover, the amplitude data suggest the

presence of multiple buried geologic bodies following a trend of the known outcrop-

ping geologic units. For quantitative interpretations we propose two methodological

improvements on Euler deconvolution. Thereby, in the second part of the thesis we

deal with the spray of solutions on Euler deconvolution selecting reliable Euler de-

convolution estimates throughout the vertical derivatives of the total-field anomaly.

The vertical derivative is selected because they of its ability to locate sources due

to its higher signal decay with distance. For each moving-data window, we compute

the standard deviation of the vertical derivative of the total-field anomaly and define

the reliable source-location estimates as those estimates obtained by the data win-

dows with the largest standard deviations. The correct structural index is defined
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with the tightest cluster of the reliable estimates and the mean of these estimates

define the source position. Our methodology was tested in scenarios of multiple

sources and interfering anomalies, successfully defining the correct structural index

and the depths of the sources. Application to the Anitápolis magnetic anomaly,

southern Brazil, allows inferring the presence of a plug intrusion and its depth to

the top. Finally, in the third part of this thesis we propose the definition of the

correct structural index in Euler deconvolution via base-level estimates. We math-

ematically show that assuming the correct structural index over the source, on a

region defined by plateaus of constant horizontal or vertical estimates, the standard

deviation of base-level estimates are minimum. Therefore, we have proposed a new

criterion for determining the correct structural index by means of the minimum

standard deviation of base-level estimates. Tests on synthetic data show that the

methodology of base-level estimates on plateau plots overcomes depth estimates in

defining the correct structural index in scenarios with strongly interfering anoma-

lies. We applied the methodology on magnetic data from part of Goiás Alkaline

Province, central Brazil, and the results suggest that three plug intrusions give rise

to the Diorama anomaly and dipole-like sources yield Arenópolis and Montes Claros

de Goiás anomalies.
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Chapter 1

Introduction

The magnetic method is the oldest and one of the most widely used geophysical ex-

ploration tool (Haldar, 2017), it has being used for exploration of iron ore deposits

since the seventeenth century (Nabighian et al., 2005). During the World War II,

the development of a fluxgate magnetometer for use in airborne submarine detection

(Reford and Sumner, 1964) was a landmark in exploration geophysics. Since then,

the magnetometers are employed in drill holes, mines, submarines, ships, ground sur-

veys, observatories, aircraft, drones, balloons, space shuttles and satellites (Hinze

et al., 2013). As a consequence, the magnetic method has a wild range of applica-

tions including from shallow subsurface exploration to crustal studies (Hinze et al.,

2013). Some applications of the magnetic method in shallow subsurface explorations

include geological studies in petroleum exploration (Busby et al., 1991; Curto et al.,

2012; Donovan et al., 1984), in mineral exploration (Gunn and Dentith, 1997; Louro

et al., 2014), geological mapping (Lourenço et al., 2014; Teskey et al., 1993) and

identification of unexploded ordnance (Gamey, 2008; Salem et al., 2001). However,

the magnetic method solely will not provide the complete and correct description

of the subsurface (Hinze et al., 2013). Therefore, it is normally employed jointly

with other geophysical methods, for example, the gravimetric (Marangoni et al.,

2016; Tontini et al., 2016), the radiometric (Airo and Loukola-Ruskeeniemi, 2004;

Gonçalves and Sampaio, 2013), the magnetotellurics (Gallardo et al., 2012) and the

seismic reflection (Adriano et al., 2018; Filina, 2019) methods.

The purpose of the magnetic interpretation is to improve our understanding

of the geology in subsurface (LaFehr and Nabighian, 2012). We can divide the

magnetic interpretation into two phases: qualitative and quantitative. Initially,

the interpretation phase is mainly qualitative and its objective is identifying and

isolating the anomalies (Hinze et al., 2013), as well as their correlations with mapped

rocks or geologic structures (Nabighian et al., 2005). In the second phase, the

quantitative interpretation uses techniques such as, for example, the automated

depth-estimation methods, to fast estimation of the depth to the top or to the center
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CHAPTER 1. INTRODUCTION 2

of the source, and the inversion methods, to estimate the geometries of the geologic

bodies or the physical-property distributions in the subsurface that can satisfy the

observed data (Barbosa and Silva, 2011; Hinze et al., 2013). Both qualitative and

quantitative interpretations are jointly used to elaborate geological conclusions from

the estimated (or interpreted) models (Nabighian et al., 2005).

The qualitative magnetic interpretation identifies the magnetic anomaly patterns

and, if available, correlates these patterns with the geological information. For re-

connaissance and regional geological mapping surveys, the qualitative interpretation

may be sufficient to allow the identification of the anomaly sources and the extrap-

olation of these geological informations into unknown areas (Hinze et al., 2013).

The first qualitative interpretation is usually performed in the total-field anomaly,

however the effects of the magnetization vectors of both the inducing field and the

remanent magnetic field generate anomalies that demand some transformation to

be understood, specially at low latitudes or when remanence is strong. Therefore,

the early stages of magnetic data interpretation generally involve the application of

mathematical filters to enhance or isolate anomalies of interest (Nabighian et al.,

2005). Some techniques to aid in the qualitative interpretation are the following.

The upward (or downward) continuation (Henderson and Zietz, 1949b) simulates the

acquisition of the magnetic data at a height above (or below) the real acquisition

of the data, attenuating (or enhancing) high frequency anomalies. The reduction

to the pole (Baranov, 1957; Gunn, 1975) transforms magnetic anomalies observed

at any latitude into the anomalies that would be produced at the pole (i.e., verti-

cal magnetization). The first (Hood, 1965) and the second (Henderson and Zietz,

1949a) vertical derivatives enhance high frequencies and the horizontal derivatives

(Glicken, 1955; Whitham, 1960) define the borders of the sources. The combination

of the derivatives generated new interpretation methods, such as the 3D analyti-

cal signal (Roest et al., 1992), which is nowadays called total gradient (Nabighian

et al., 2005), the tilt angle (Miller and Singh, 1994), the theta map (Wijns et al.,

2005) and the monogenic signal (Hidalgo-Gato and Barbosa, 2015). Comprehensive

reviews and comparisons of these and other methods, also known as edge detec-

tors, can be found in Pilkington and Keating (2009), Li and Pilkington (2016) and

Pilkington and Tschirhart (2017).

The quantitative magnetic interpretation extracts quantitative information from

magnetica data produced by geological sources in subsurface, which were measured

on (or above) the Earth’s surface. Some of these information are the geometry of

the geologic sources, the depths to the tops (or to the bottoms) of the geologic

sources and the magnetization contrast distribution in the subsurface. However,

due to inherent ambiguity of potential field methods, simultaneous determination of

all these information is impossible without complementary geological or geophysical
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information (Hinze et al., 2013). For example, via inversion tehcniques, Parker et al.

(1987), Li and Oldenburg (1996), Portniaguine and Zhdanov (2002) and Barbosa

and Silva (2006) estimated a physical-property distribution, given a fixed geome-

try. On the other hand, assuming a known physical-property contrast Zeyen and

Pous (1991), Nunes et al. (2008) and Hidalgo-Gato and Barbosa (2019) estimated

the source geometry. Some automated depth-estimation methods are the following.

The Werner deconvolution (Hartman et al., 1971; Ku and Sharp, 1983; Werner,

1953) assumes that a thin sheet (thin dike or a contact) produces the observed

total-field anomaly and estimates the dip, susceptibility and depth of the source.

The Naudy method (Naudy, 1971) estimates the depth and the type of the sources

with a moving-data window on a profile that cross correlates the observed pro-

file of the total-field anomaly with theoretical anomalies. The Euler deconvolution

(Thompson, 1982) is based on Euler homogeneous equation and was proposed to

work on profile data, on a moving-data window scheme. The Euler deconvolution

estimates the depth and type of the causative source, and was expanded to work

on gridded data by Reid et al. (1990) becoming the most popular method for fast

interpretation of potential field data. Comparisons of these and other automated

depth-estimation methods on profile data can be found in Li (2003). The advantage

of depth-estimation methods is that they are not affected by magnetization effects.

The disadvantage of the depth-estimation methods is the assumption of sources with

simple geometry. The inversion techniques are usually used to define the entirely

source, but as pointed before, they need a prior information about the source and

they are computationally cost. Usually, to provide an initial and fast quantitative

description of the subsurface, the automated depth-estimation methods are used.

Recently, the results from the automated depth-estimation methods can be used

as input to retrieve detailed characterization of the source using inversion methods

(Fregoso et al., 2015; Oliveira Jr et al., 2015; Paoletti et al., 2013).

In the first part of this thesis, we propose a new approach to perform a qualitative

interpretation of magnetic data with focus on remanent magnetization, over large

areas at low magnetic latitudes. In the second part of this thesis, we propose two new

methodologies to perform quantitative interpretation of magnetic data with focus on

Euler deconvolution, an automated depth-estimation method. All the development

on this thesis was performed in python language and it follows the open source code.

The codes are available in the repositories indicated in the methodology section of

each chapter.

In Chapter 2 we present a new approach to perform magnetic interpretation over

large areas at low magnetic latitudes. At these latitudes, the interpretation of the

total-field anomalies and the definition of the sources’ boundaries are not straight-

forward due to the magnetization direction of the incident field. The difficult in
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the interpretation increases in scenarios where the sources have remanent magne-

tization. Therefore, we propose the use of the amplitude of the magnetic anomaly

vector in the interpretation of the total-field anomaly at low magnetic latitudes, in

large areas. The amplitude data are weakly dependent on the magnetization di-

rection, hence the knowledge of the magnetization direction of the sources is not

required to perform the transformation. These data are computed from the total-

field anomaly using the equivalent layer principle and generate maxima over the

sources, thus allowing to define the horizontal position and roughly the extension

of the sources. We performed the interpretation of a large area of the Amazonian

Craton, northern Brazil, with the amplitude data and correlated the results with a

geologic map. The amplitude data highlight the position of the sources identified in

the total-field anomaly and mapped as outcrops in the geologic map. These results

may indicate new geologic bodies with clear alignment with the outcrops.

The second part of the thesis is focused on Euler deconvolution and is divided in

two chapters. Chapter 3 describes a methodology to deal with the spray of solutions

on Euler deconvolution estimates. The spray of solutions is an inherent problem

in Euler deconvolution because the technique solves a system of equations on a

moving-data window scheme and for each position of this window four parameters

are estimated. Thus, it is necessary to select the reliable solutions priorly to perform

a quantitative interpretation. In this chapter, we propose to select reliable Euler de-

convolution estimates throughout the vertical derivatives of the total-field anomaly.

The vertical derivatives of the total-field anomaly are good source locators because

its decay rate with the distance is one order higher than the decay rate of the total-

field anomaly. Here, for each position of the moving-data window we compute the

standard deviation of the vertical derivatives of the total-field anomaly and we de-

fine the reliable source-location estimates as those estimates that are obtained with

the largest standard deviations. Assuming tentative structural indices, the cluster

of reliable solutions over the source will define the nature of the source (geometry of

the source) and the mean of these estimates will define the position of the sources.

We applied the methodology of the Chapter 3 to the Anitápolis anomaly, southern

Brazil, and with the results we infer that a plug generated this anomaly and com-

puted its depth to the top at 0.67 km. In Chapter 3 we also computed base-level

estimates and plot the reliable estimates using our methodology. As we are select-

ing the solutions based on the standard deviation of the total-field anomaly inside

a moving-data window, the source-position and the base-level estimates are plotted

in the same positions and, thus, they cluster with the same structural index. This

is an advance in the understanding of the base-level estimates because it shows that

these estimates can also be used to define the correct structural index.

In Chapter 4 we plot the Euler estimates in plateau plots, i.e., for each struc-
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tural index, each estimate is plotted against the central position of the moving-data

window. In this kind of plot there is no need to select reliable estimates, all the

estimates are plotted and analyzed. This visualization allows the understanding of

the base-level estimates, defining the correct structural index in Euler deconvolution

via base-level estimates. We show that assuming the correct structural index the

base level estimates define plateaus of constant solutions over the source. More-

over, we show that the base-level estimates are non-linear and follow the pattern of

the total-field anomaly, even when no background anomaly is present in the data.

For isolated anomalies the depth or base-level estimates define the correct struc-

tural index, however for interfering anomalies only the base-level estimates define

the correct structural index, on this methodology. We perform an interpretation of

a large area in the Goiás Alkaline Province, central Brazil, and our results suggest

that three plug intrusions give rise to the Diorama anomaly and dipole-like sources

yielding Arenópolis and Montes Claros de Goiás anomalies.



Chapter 2

Amplitude of the magnetic

anomaly vector in the

interpretation of total-field

anomaly data at low magnetic

latitudes

This chapter has been submitted for publication in the journal Journal of Applied

Geophysics.

2.1 Summary

We propose the use of the amplitude of the magnetic vector (amplitude data) for

qualitative interpreting large areas at low magnetic latitudes. The amplitude data

are weakly dependent on the magnetization direction vector. Hence, the amplitude

data require no prior knowledge of the source magnetization direction. The ampli-

tude data produce maxima over the causative sources, allowing the definition of the

horizontal projections of the sources. This characteristic is attractive for interpre-

tation at low magnetic latitudes because at these regions the interpretation of the

total-field anomaly is not straightforward. We compute the amplitude data using

the equivalent-layer technique to transform the total-field anomaly data into the

three orthogonal components of the magnetic anomaly vector. We analyze the re-

sults of tests in synthetic data simulating a main geomagnetic field at high, mid and

low latitudes, with sources ranging from compact to elongated forms, including a

dipping source. These sources, that give rise to the simulated anomalies, have both

induced and strong remanent magnetizations. By comparing the amplitude data

6
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with the total gradient, we show that the amplitude data delineate the boundaries

of the sources in a better way. We apply both the amplitude data and the total

gradient to a real total-field anomaly over a large area of the Amazonian Craton,

northern Brazil, located at low magnetic latitudes. The amplitude data show a bet-

ter performance in delineating geologic bodies being consistent with the outcropping

intrusions in the geologic map. Moreover, the amplitude data revealed new geologic

bodies that were not present in the geologic map. The clear alignment of these new

bodies with the outcropping intrusions suggested the continuity of these intrusions

in depth. This result is a step forward in understanding this area, which has a poor

geological knowledge. Hence, the amplitude data can provide an apparent-geologic

map especially in areas at low latitudes with remanent magnetized bodies.

2.2 Introduction

The qualitative interpretation of total-field anomaly at low latitudes is a hard task

due to the effects of the magnetization vectors either of the main geomagnetic field

or the source. As a result, the total-field anomalies are rarely centered over the

sources. However, even with these difficulties, the magnetic data are among the

most important geophysical data used as an auxiliary tool in geologic mapping. To

perform a fast qualitative interpretation of magnetic data aiming at yielding an

apparent-geologic mapping, two approaches are usually adopted: linear inversion

and linear transformation.

The linear inversion estimates a magnetization distribution (apparent-magnetization

mapping) by solving a constrained linear inverse problem in which a regularizing

function is minimized subject to fit the magnetic data. For example, Silva and

Hohmann (1984) and Medeiros and Silva (1996) used the zeroth- and first-orders

Tikhonov regularizations, respectively. Silva et al. (2010) combined minimization

of first-order entropy with maximization of zeroth-order entropy of the estimated

magnetization distribution. Barbosa and Silva (2011) presented a review of the en-

tropic regularization in comparison with the first-order Tikhonov regularization to

assist a geologist in obtaining a geologic map from magnetic data inversion. The

biggest bottleneck for the linear inversion of magnetic data to produce an apparent-

magnetization mapping is that it is computationally expensive.

Conversely, the second approach to yield an apparent-geologic mapping based

on the linear transformations of the magnetic data is much less computationally

expensive than the linear inversions. Linear magnetic transformations such as the

reduction to the pole (RTP) and the total gradient (also known as the 3D analytic

signal amplitude - 3D ASA) are widely used in the total-field anomaly to locate the

sources. The RTP transforms the total-field anomaly into one that would has been
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measured if the magnetization of the sources and ambient field were assumed to be

vertical (Nabighian et al., 2005). In practice, to perform the RTP transformation

the interpreter usually assumes that the sources have induced magnetization only.

However, the magnetic induction may not be true, which yields wrong reduced-to-

the-pole anomalies (Nabighian et al., 2005; Swain, 2000). Moreover, at low latitudes,

especially within ±15o, the RTP is unstable generating artifacts in the direction

of the main field declination (Silva, 1986). Therefore, a successful RTP needs to

overcome the unknown magnetization direction of the sources and the instability at

low magnetic latitudes. In this way, improvements of the RTP were proposed in both

space and Fourier domains to overcome these difficulties (Hansen and Pawlowski,

1989; Li et al., 2014; Li and Oldenburg, 2001; Mendonça and Silva, 1993; Silva, 1986;

Swain, 2000).

The total gradient is defined as the square root of the sum of the squares of

the partial derivatives of the total-field anomaly with respect to the x−, y− and

z−directions. MacLeod et al. (1993), from a practical point of view, applied the

total gradient (called 3D-ASA in Roest et al. (1992)) to locate the sources at low

magnetic latitudes. Since then, the total gradient is being used as a standard in-

terpretation technique at low magnetic latitudes, especially in Brazil. However,

Li (2006) demonstrated that the definition of the sources with the total gradient

is dependent on: i) the geometry of the source; ii) the magnetization direction of

the source; and iii) the magnetization direction of the inducing field, among oth-

ers. Therefore, at low latitudes and in areas with remanent magnetization the total

gradient of the magnetic data as a tool in geologic mapping may not be suitable.

The amplitude of the magnetic anomaly vector (amplitude data) is defined as

the square root of the sum of the squares of the three orthogonal components of

the magnetic vector. Stavrev and Gerovska (2000) shown that the amplitude of

the magnetic anomaly vector is weakly dependent of the magnetization direction.

Gerovska and Stavrev (2006) analyzed the amplitude data and other transforms

at low latitudes with synthetic and real isolated anomalies. Pilkington and Beiki

(2013) compared the amplitude data with the total gradient and the normalized

source strength, among others, for cases of remanent magnetization. One intrinsic

advantage of the amplitude data over the two former transforms is that the ampli-

tude data have the same scale of the total-field anomaly (nanotesla - nT), which

makes the interpretation more tangible, while both the total gradient and the nor-

malized source strength have units of derivative (nanotelsa per meter - nT/m). Li

et al. (2010) took advantage of the weak dependence of the amplitude of the mag-

netic anomaly vector on the magnetization direction to invert the amplitude data in

the presence of remanent magnetization. Other authors also adopted the amplitude

of the magnetic anomaly vector as the input for inversion in cases of remanence
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magnetization and self-demagnetization (Krahenbuhl and Li, 2017; Li et al., 2012;

Liu et al., 2013, 2015, 2017; Zuo et al., 2019). For a small area, Leão-Santos et al.

(2015) applied the methodology of Li et al. (2010) to mineral deposits at low lati-

tudes. Although Leão-Santos et al. (2015) focus on the inversion of the amplitude

data; they carried out, in a small-scale mineral exploration, a geologic interpretation

by correlating the estimated susceptibility distribution with the known geology and

mineralized zones from drilling.

In this work, we propose the use of the amplitude of the magnetic anomaly

vector to produce a qualitative interpretation in large-scale areas at low magnetic

latitudes. This qualitative interpretation might be, for example, an initial attempt to

produce an apparent-geologic map in large-scale prospecting during the early phase

of exploration program when neither the conventional geologic mapping has been

accomplished nor the exploration drilling has been planned. A second possibility of

this qualitative interpretation might be, for example, an improvement (or updating)

of an old geologic map, which were produced in a regional mapping scale. To

calculate the amplitude of the magnetic anomaly vector, we compute the three

orthogonal components of the magnetic vector from the total-field anomaly data

using the equivalent-layer technique. The results obtained with the amplitude of

the magnetic anomaly vector using synthetic and real data were compared with the

results using the total gradient. The synthetic tests show the good performance of

the amplitude data in generating maxima over the sources and thus defining the

horizontal projections of the simulated sources. These results remain in anomalies

generated by sources with strong remanent magnetization, located at high, mid

and low-latitudes. Application to a real data set over a large area of the Amazonian

Craton, north of Brazil, shows a striking correlation between the amplitude data and

the mapped geology. The most striking feature of our results is that they disclose,

possible, buried intrusions which were not mapped by the geologists. These new

buried intrusions seem reliable because they exhibit the continuity of the outcropping

intrusions.

2.3 Methodology

2.3.1 Total gradient

Let us adopt a right-handed Cartesian coordinate system with the x−axis pointing

northing, y−axis pointing easting and z−axis pointing downward. The total gradi-

ent, at the ith observation point (xi, yi, zi) , i = 1, . . . , N , of the total-field anomaly

is defined as:
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TGi ≡ TG (xi, yi, zi) =

√(
∂Ti
∂x

)2

+

(
∂Ti
∂y

)2

+

(
∂Ti
∂z

)2

, (2.1)

where Ti is the total-field anomaly and ∂/∂x, ∂/∂y and ∂/∂z are the partial derivatives

with respect to the coordinates of the observations in the x−, y− and z−directions

and evaluated at the ith observation point (xi, yi, zi). We computed the total gradi-

ent with the formulation of Uieda et al. (2013), where the horizontal derivatives are

computed in the spatial domain using finite differences and the vertical derivative

is computed in the wavenumber domain.

2.3.2 Amplitude of the magnetic anomaly vector

The amplitude of the magnetic anomaly vector, at the ith observation point (xi, yi, zi) , i =

1, . . . , N is given by:

Bi ≡ B (xi, yi, zi) =
√
B2
xi +B2

yi +B2
zi, (2.2)

where Bxi, Byi and Bzi are the three components of the magnetic anomaly vector in

the x−, y− and z−directions (Blakely, 1996) at the ith observation point (xi, yi, zi).

Although intuitive, the computation of the amplitude of the anomaly vector via

Fourier domain is not advisable in some scenarios because the computation in uneven

(or rugged) surfaces leads to wrong amplitude and shape results (Li and Li, 2014)

and, in addition, at low latitudes it produces artifacts (Leão-Santos et al., 2015).

Therefore, we computed the amplitude data from the total-field anomaly via the

equivalent-layer technique (Dampney, 1969).

The equivalent-layer technique approximates a discrete set of potential-field

observations produced by a 3D physical-property distribution by a 2D physical-

property distribution, which is continuous and infinite, defined on a layer. In

practice, a finite set of equivalent sources disposed in a layer with finite horizon-

tal dimensions and placed between two to six times the data spacing below the

observation surface approximates this 2D physical-property distribution (Dampney,

1969; Oliveira Jr et al., 2013). In our case, the discrete set of potential-field ob-

servations are a set of N observations of the total-field anomaly at the Cartesian

coordinates xi, yi and zi, where i = 1, . . . , N , which are arranged represented by

in the N -dimensional vector d. The equivalent sources, setting up the equivalent

layer, are a set of M dipoles distributed in a regular grid at a constant depth zo

(with zo > zi) and with horizontal coordinates xl and yl, where l = 1, . . . ,M .

The unknown physical-property distribution within the equivalent layer is given by

the magnetic-moment intensities of the M dipoles which are arranged in the M -

dimensional vector p. So, the total-field anomaly predicted by the equivalent layer
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described in matrix notation is:

d(p) = Gp, (2.3)

where dp is an N -dimensional vector whose ith element di(p) is the predicted total-

field anomaly data predicted at the ith observation point and G is the N×M matrix

of Green’s functions. The ilth element of the matrix G is the total-field anomaly at

the ith observation point produced by the lth equivalent source:

gil = cm
µ0

4Π
F̂ THilĥ, (2.4)

where cm is a scaling factor to transform from Tesla to nanotesla, µ0 is the perme-

ability of vacuum or the magnetic constant, F̂ and ĥ are three-dimensional unit vec-

tors with the direction cosines of the geomagnetic field and the magnetization vector

assigned to the equivalent sources, respectively. The 3×3 matrix Hil is given by the

second derivatives of the inverse distance function
(
r−1 =

[
(xi − xl)2 + (yi − yl)2 + (zi − zo)2]−1/2

)
with respect to the coordinates of the observations in the x−, y− and z−directions

and evaluated at the ith observation point (xi, yi, zi) and at the lth equivalent source

(xl, yl, zo). In this process, we assume the knowledge of the magnetization direction

of the main field and use these values for the magnetization direction of the sources.

The inverse problem of estimating the unknown magnetic-moment intensities,

the parameter vector p (in equation 2.3), from observed total-field data (do) is an

ill-posed problem because its solution is non-unique and unstable. A stable estimate

of p can be obtained by using a parameter-space approach with the zeroth-order

Tikhonov regularization (Tikhonov and Arsenin, 1977), i.e.:

p̂ =
(
GTG+ λI

)−1
GTdo, (2.5)

where the superscript T stands for transpose, λ is a regularizing parameter, I is an

identity matrix of order M and do is an N -dimensional vector whose ith element is

the observed total-field anomaly at the ith observation point. We define the optimum

λ using the L-curve criterion (Hansen, 1992). After estimating the magnetic-moment

distribution p̂ (equation 2.5),within the equivalent layer from the total-field anomaly,

we apply a linear transformation to obtain the three orthogonal components of the

magnetic anomaly vector and then compute the amplitude of the magnetic anomaly

vector with equation 2.2. This transformation is given by:

Bα = Tαp̂, (2.6)

where Bα, α = x, y and z, is an N -dimensional vector containing the transformed

field (the three orthogonal components of the magnetic anomaly vector) and Tα is
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an N ×M transformation matrix, i.e., an N ×M matrix of Green’s functions whose

elements are given by:

tαil = cm
µ0

4Π
Hα
il ĥ, (2.7)

where Hα
il is the αth row of the matrix Hil (the second derivatives of the inverse

distance function).

The classic equivalent-layer technique, used in this work, has its performance

limitations caused by the amount of data in solving the large linear system in

equation 2.5. However, to perform the computation in larger datasets there are

improvements of the equivalent-layer technique available (Davis and Li, 2011; Leao

and Silva, 1989; Li and Oldenburg, 2010; Oliveira Jr et al., 2013; Siqueira et al.,

2017).

All the software developed and used in this chapter is open source and was

made available in 2019. The algorithm was developed in Python language and

it is compatible with Python 2.7. The package with instructions is available at

https://github.com/ffigura/amplitude-vector-interpretation.

2.4 Synthetic tests

We tested the performance of the amplitude of the magnetic anomaly vector in

the interpretation of magnetic data in three distinct scenarios. In the first test,

the simulated field has vertical incidence, while in the second and third tests we

simulated fields at mid- and low-latitudes, respectively. The surveys were simulated

on the plane z = -0.15 km at a grid of 100 × 110 observation points in the north- and

east-directions, with regular spacing of 0.2 km. Figure 2.1 shows the prisms modeled

as magnetic sources (Uieda et al., 2013) and labelled P1-P4. The source P1 is an

inclined prism, dipping to the east, with top at 0.1 km, base at 2.1 km, width of 0.1

km, extension of 4 km and magnetization intensity of 7 A/m. The source P2 has

an ”L” shape, top at 0.2 km, base at 1.1 km and magnetization intensity of 3 A/m.

Three prisms generate the source P3, all with the same magnetization intensity of

1.5 A/m. The two small-upper prisms have 1 km of extension, top at 0.2 km and

base at 1 km, and the prism from below has extension of 4 km, top at 1 km and

base at 5 km. Finally, the source P4 has extension of 2 km, top at 0.2 km, base at

5 km and magnetization intensity of 1.5 A/m. In all synthetic tests, the total-field

anomalies were corrupted with pseudorandom Gaussian noise with zero mean and

standard deviation of 1 nT. For the computation of the amplitude data we placed

the equivalent sources at a depth zo = 0.5 km (two and a half times the grid spacing).

https://github.com/ffigura/amplitude-vector-interpretation
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Figure 2.1: Simulated and labelled sources for the synthetic tests: P1 is a source
simulating a dipping thin layer, P2 is an L-shaped source, P3 is a source generated
by the superposition of three prisms and P4 is a vertical prism simulating a vertical
intrusion.

2.4.1 Test 1 – Simulated field at high latitude and induced

magnetization

Figure 2.2a shows the total-field anomaly generated by a simulated geomagnetic field

with vertical incidence, in this test all sources (P1-P4) are magnetized by induction

only. The black polygons outline the horizontal projections of the simulated sources.

Figure 2.2b and 2.2c shows the total gradient and the amplitude of the magnetic

anomaly vector, respectively.

In the total gradient map (Figure 2.2b), the westernmost border of the source P1

is outlined; however, its easternmost border is not correctly enhanced. This happens

because the source P1 is dipping to the east. The total gradient (Figure 2.2b)

correctly outlines the sources P2 and P4; but fails in delimiting the source P3

completely. Notice that the total gradient enhances only the two shallow-seated

prisms that set up the source P3; however, the deep-seated prism is neither detected

nor delineated. Hence, the anomalies generated by the sources P1 and P3 have

not being correctly defined because the total gradient is based on derivatives, so it

enhances the short-wavelength components generated by the shallow-seated sources.

On the other hand, the amplitude of the magnetic anomaly vector generates max-

ima over the sources and provides an excellent definition of all sources’ boundaries

(P1-P4), as shown in Figure 2.2c. The amplitude data define the dipping source

P1 and the source P3 with maxima over the shallowest part, decreasing toward the

deepest part. This test demonstrates the potentiality of the amplitude of the mag-

netic anomaly vector (Figure 2.2c) in successfully defining the sources P1-P4 and
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thus aiding in qualitative geophysical interpretation. In fact, this result resembles

an anomaly generated by an induced field with vertical magnetization (Figure 2.2a)

or a correctly reduced-to-the-pole anomaly.

In this test, we estimated the magnetic-moment distribution p̂ (equation 2.5)

within the equivalent layer from the total-field anomaly (Figure 2.2a) to compute

the amplitude data (Figure 2.2c) by using equations 2.6, 2.7 and 2.2. Figure 2.2d

shows the L-curve highlighting the optimum regularizing parameter λ = 1−15, in

red. Figure 2.2e shows the residuals of the fitting, i.e., the difference between the

total-field anomaly (Figure 2.2a) and the predicted data (not shown). Notice that

the residuals are small as compared with the range of amplitudes of the total-field

anomaly (Figure 2.2a). Figure 2.2f shows histogram of the residuals, it has a bell

shape with mean µ = 0.01 nT and standard deviation σ = 0.83 nT, the red dashed

line is a Gaussian distribution generated with these values. These results show the

good fitting of the equivalent layer with the residuals exhibiting a Gaussian dis-

tribution. The good fitting of the equivalent layer allows us to use the estimated

magnetic-moment distribution (not shown) to compute the three orthogonal com-

ponents of the magnetic anomaly vector (equations 2.6 and 2.7) and, therefore, the

amplitude data (equation 2.2).

Figure 2.2: Test 1 – Test simulating an induced vertical magnetization. a) Total-
field anomaly. b) Total gradient. c) Amplitude of the magnetic anomaly vector. d)
L-curve highlighting the optimum regularizing parameter λ in red. e) Residuals. f)
Histogram of the residuals with the mean µ and the standard deviation σ, the dashed
red line is the fitted Gaussian distribution. Black polygons outline the horizontal
projections of the sources (labelled P1-P4).
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2.4.2 Test 2 – Simulated field at mid-latitude and remanent

magnetization

Figure 2.3a shows the total-field anomaly generated by a simulated geomagnetic

field at mid-latitude with inclination and declination of 45o. In this test, the prisms

P1-P3 have induced magnetization and the prism P4 has remanent magnetization

with inclination and declination of 60o. Figure 2.3b and 2.3c shows the total gradient

and the amplitude of the magnetic anomaly vector, respectively.

In the previous test, which simulates an induced vertical magnetization, most of

the maxima amplitudes of the total gradient are centered over the sources as shown

in Figure 2.2b. On the other hand, in this test, the maxima are over the southwest

parts of the sources (Figure 2.3b)because the total gradient is dependent on the

magnetization direction. Because of this characteristic, the source P4 cannot be

directly interpreted from the total gradient map (Figure 2.3b); differently from the

previous test (Figure 2.2b), where the horizontal projection of the source P4 can be

easily delimited. In addition, the deepest edge of the source P1 in Figure 2.3b is

less evident than in Figure 2.2b.

Figure 2.3c shows the amplitude data and, contrary to the total gradient, this

output shows its weakly dependence on the magnetization direction. Over all the

sources P1-P4 the maxima are well defined providing a good definition of most of

boundaries of the sources as shown in Figure 2.3c. Moreover, the amplitude data

(Figure 2.3c) are easier to interpret than the total-field anomaly (Figure 2.3a). It

is comparable to the map of the total-field anomaly with vertical incidence (Fig-

ure 2.2a), which in turn is the goal of a reduction to the pole. However, the ampli-

tude data are operationally simpler than the reduction to the pole of magnetic data

because the latter requires the knowledge about the source magnetization direction

whereas the amplitude data require only the knowledge about the magnetization

direction of the geomagnetic field. This advantage allows the source P4, which is

affected by remanent magnetization, to be enhanced in the amplitude data as shown

in Figure 2.3c.

Figure 2.3d shows the L-curve highlighting the optimum regularizing parameter

λ = 1−15, in red. Figure 2.3e shows the residuals and Figure 2.3f shows the histogram

of the residuals. The residuals have small values when compared with the total-field

anomaly (Figure 2.3a) and this is reflected in the histogram with a bell shape with

mean µ = 0.06 nT and standard deviation σ = 0.92 nT, the red dashed line is a

Gaussian distribution generated with these values.
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Figure 2.3: Test 2 – Test simulating the field at mid-latitude with sources affected by
induction and remanent magnetizations. The source P4 has remanent magnetization
and the sources P1-P3 are magnetized by induction only. a) Total-field anomaly.
b) Total gradient. c) Amplitude of the magnetic anomaly vector. d) L-curve high-
lighting the optimum regularizing parameter λ in red. e) Residuals. f) Histogram of
the residuals with the mean µ and the standard deviation σ, the dashed red line is
the fitted Gaussian distribution. Black polygons outline the horizontal projections
of the sources (labelled P1-P4).

2.4.3 Test 3 – Simulated field at low latitude and remanent

magnetization

Figure 2.4a shows the total-field anomaly generated by a simulated field at low lat-

itude with inclination of −8o and declination of −20o. The sources P1 and P2 have

induced magnetization and the sources P3 and P4 have strong remanent magne-

tizations. The source P3 has the same inclination and declination of 45o and the

source P4 has the same inclination and declination of 60o. Notice that due to the

remanence, the sources P3 and P4 give rise to magnetic anomalies with reverse po-

larizations in comparison with the anomalies produced by the sources P1 and P2

that are magnetized by induction only. Figure 2.4b and 2.4c shows the total gradient

and the amplitude of the magnetic anomaly vector, respectively.

This third test simulates magnetic anomalies closer to a real-world scenario. We

note that the total gradient (Figure 2.4b) enhances neither the shallowest edge of the

source P1 nor its deepest edge. Rather, the total gradient (Figure 2.4b) enhances

only the westernmost corners of the source P1. The source P2 cannot be correctly

interpreted from the total gradient (Figure 2.4b), because there is a weak connection
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between the maxima of the total gradient over the south and north edges. Similarly

to the previous results (Figures 2.2b and 2.3b), the total gradient over the source

P3 exhibits the maxima over its shallowest parts (Figure 2.4b). We note that the

total gradient (Figure 2.4b) enhances the north and south boundaries of the source

P4, but it does not suggest an isolated source with flat top.

Figure 2.4c shows that the amplitude of the magnetic anomaly vector produces

a better location of all sources P1-P4 as compared with the total gradient (Fig-

ure 2.4b) even at low magnetic latitudes and in the presence of the strong remanent

magnetizations (sources P3 and P4). Similarly to previous amplitude data results

(Figures 2.2c and 2.3c), the horizontal projection of the shallowest edge of the source

P1 is reasonable delimited by the amplitude data (Figure 2.4c), but its deepest edge

is not defined. The source P2 is defined with higher amplitude in the east-west

prism than in the south-north prism; however, is still notable that a continuous

source gives rise to an isolated anomaly. These results over the sources P1 and P2,

which are magnetized by induction, show that the amplitude data are sensitive to

low magnetic inclinations; however, this sensitivity is slight, as shown by Stavrev and

Gerovska (2000). Even at low magnetic latitudes and in the presence of the strong

remanent magnetizations (sources P3 and P4), the amplitude data (Figure 2.4c)

disclose the sources P3 and P4.

Figure 2.4d shows the L-curve highlighting the optimum regularizing parameter

λ = 1−14, in red. Figure 2.4e shows the residuals and Figure 2.4f shows the histogram

of the residuals. In this test, the residuals also have small values when compared

with the total-field anomaly (Figure 2.4a), long wavelengths artifacts generated in

the direction of the magnetic declination are reflected in the computation of the

amplitude data (Figure 2.4c), however these artifacts have small amplitudes and do

not affect neither the computation of these data nor the qualitative interpretation.

The histogram has a bell shape with mean µ = 0.02 nT and standard deviation

σ = 1.85 nT, the red dashed line is a Gaussian distribution generated with these

values.

This test demonstrates the potentiality of the amplitude data (Figure 2.4c) in

defining the maxima over the sources, which aid in defining their locations, even at

low-magnetic latitudes and in the presence of sources with strong remanent magne-

tizations.
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Figure 2.4: Test 3 – Test simulating a field at low latitude with sources affected
by induction and remanent magnetizations. The sources P3 and P4 have remanent
magnetizations and the sources P1 and P2 are magnetized by induction only. a)
Total-field anomaly. b) Total gradient. c) Amplitude of the magnetic anomaly
vector. d) L-curve highlighting the optimum regularizing parameter λ in red. e)
Residuals. f) Histogram of the residuals with the mean µ and the standard deviation
σ, the dashed red line is the fitted Gaussian distribution. Black polygons outline
the horizontal projections of the sources (labelled P1-P4).

2.5 Application to real data set

The Amazonian Craton, northern Brazil, is one of the main tectonic units of the

South American Platform. (Almeida et al., 1981). Santos et al. (2000) divide the

Amazonian Craton in seven tectonic provinces and our study area is located in two

of these provinces: the Central Amazonian Province (CAP) and the Carajás Mineral

Province (CMP). According to Klein et al. (2017), this region of the CAP comprises

widespread volcano-plutonic associations, continental sedimentary covers, and small

and sparse (unmapped) basement inliers. However, the geological knowledge about

this area is poor because of the difficult access, devoid of detailed geologic mapping

and geophysical information (Klein et al., 2017). The CMP is a highly mineralized

metallogenic province known for its deposits of gold, copper, iron and manganese,

among others (Grainger et al., 2008).

The real aeromagnetic data (Carajás survey) were acquired between 2013 and

2014 (CPRM, 2015). The flight lines in the north–south direction were acquired ev-

ery 3 km, the tie lines were acquired every 12 km and the flight height was at 0.9 km.

Figure 2.5 a shows the geologic map of the study area at the scale 1:1,000,000, modi-
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fied from Vasquez et al. (2008). The main part of the study area is in the Iriri-Xingu

Domain, in the CAP, surrounded by the Rio Maria Domain, in the CMP. The thick

line in Figure 2.5a defines the border of the domains and the thin lines are the

mapped faults. The main occurrences in the Iriri-Xingu Domain are labelled in

Figure 2.5a as I1-I5, where I1 are effusions of andesite, I2 are effusions of rhyolite

and I3-I5 are granite intrusions. The main occurrences in the Rio Maria Domain are

labelled in Figure 2.5a as R1-R5, where R1 and R2 are granitoids, R3 is a greenstone

belt, R4-R6 are sedimentary covers (sandstones and shales) and R7 is a magmatic

intrusion. The inset shows the survey area in yellow, located in the north part of

Brazil, the study area in blue and the black star points to Serra Pelada mine.

Figure 2.5b shows the total-field anomaly of the study area with a grid of

147 × 104 points in the north and east directions, regularly spaced at 0.75 km. We

highlight some anomalies with arrows and labelled as A1-A5. Figure 2.5c shows the

total gradient using a normalized color scale with the cumulative distribution func-

tion. The total gradient emphasizes anomalies A1-A3, which are isolated and strong.

However, the total gradient did not highlighted A4 as an isolated source; rather, it

suggests multiple magnetic sources in a region where the total-field anomaly (Fig-

ure 2.5b) show a dipolar anomaly. Recall that the source P4 in test 3 was highlighted

in the south and north borders by the total gradient (Figure 2.4b) resembling that

two sources generated the anomaly, despite it be a single source (Figure 2.4a). As

shown, the characteristics of the source and of the incident field have strong effects in

the total gradient. Anomaly A5 is highlighted as a trend in the west-east direction.

For computing the amplitude data, we used the values of inclination of −8o and

declination of −20o (Chulliat et al., 2014). Figure 2.5d shows that the amplitude

data identify the maxima coincide with the anomalies A1-A5 (pinpointed by the

arrows). In this map, the anomalies A1 and A4 are identifiable as single sources.

Notice that in the total-field data of Figure 2.5b the anomaly A1 has opposite

phase in relation to the expected phase for the area, suggesting a strong remanent

magnetization. Recall that the source P4 in the test 3 simulated the shape of this

anomaly, as shown in Figure 2.4a. In the amplitude map (Figure 2.5d), the anomalies

A2, A3 and A5 have their shapes similar to the amplitude data of the source P3

in the synthetic tests (Figures 2.2c-2.4c). In Figure 2.5d, over the anomalies A2,

A3 and A5, the amplitude data show at least three maxima surrounded by lower

values that are not zero, but with amplitudes close to half of their maxima. Based

on our synthetic tests, this characteristic of the amplitude data suggests that the

magnetized sources that give rise to the anomalies A2, A3 and A5 may be a complex

geologic unit composed of wide and deep-seated bodies overlaid by small and shallow-

seated bodies.

As pointed before, the amplitude data of Figure 2.5 were generated via the
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Figure 2.5: Real data application. a) Geologic map, modified from Vasquez et al.
(2008), the labels correspond to the domains Rio Maria (R) and Iriri-Xingu (I).
The inset shows the survey in yellow and the study area in blue, the star locates
the Serra Pelada mine. b) Observed total-field anomaly. c) Total gradient. d)
Amplitude of the magnetic anomaly vector. The arrows point to notable anomalies
labelled A1-A5.

equivalent-layer technique (equations 2.5-2.7 and 2.2) by placing the layer at 3.75 km

deep (five times the grid spacing) and setting the regularizing parameter λ equal

to 1−19. Figure 2.6a shows the L-curve plotted on a log–log scale in which the

value of λ (red dot) closest to the corner of the L-curve is selected as the optimum

regularizing parameter in equation 2.5. Figure 2.6b shows the predicted total-field

anomaly by using the equivalent-layer technique (equation 2.3) and Figure 2.6c

shows the residuals between the predicted (Figure 2.6b) and the observed (Figure

2.5b) total-field anomalies. Notice that only random high frequency artifacts are

present in the residuals. Figure 2.6d shows the histogram of the residuals with

µ = -0.01 nT and σ = 1.98 nT, the red dashed line shows the fit of these data with

a Gaussian distribution. In this real data application, the data residuals (Figure

2.6c and 2.6d) are close to 0 nT; then, the data fitting is acceptable, the estimated
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magnetic-moment distribution (p̂ in equation 2.5 with λ = 1−19) can be accepted,

and the amplitude data (Figure 2.5d) can be obtained using equations 2.4, 2.7 and

2.2.

Figure 2.6: Real data application. (a) L-curve plotted on a log–log scale where the
optimum regularizing parameter λ is highlighted in red dot. (b) Predicted total-field
anomaly from the equivalent layer. (c) Residuals. (d) Histogram of the residuals
with the mean µ and the standard deviation σ, the dashed red line is the fitted
Gaussian distribution.

Figure 2.7 shows the amplitude of the magnetic anomaly vector (Figure 2.5d)

overlaid by a simplification of the geologic map where the intrusions are in transpar-

ent red polygons (Figure 2.5a). Notice in Figure 2.7 that the anomaly A1 correlates

with an outcropping intrusion I5. The anomalies A2 and A4 do not agree with

any outcropping geologic units in the geologic map. The anomaly A2 may suggest

the continuity in depth of a mapped intrusion I5 possibly masked by the overly-

ing effusions of rhyolite (I2 in Figure 2.5a) and the anomaly A4 may suggest a

buried structure overlaid by effusions of andesite (I1 in Figure 2.5a). The anomaly

A3 correlates with an outcropping intrusion I5 in the geologic map. Finally, the

northwest–southeast-trending anomalies A5 suggest the continuity of intrusions I5
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in depth.

Figure 2.7: Amplitude of the magnetic anomaly vector (Figure 2.5d) overlaid by
the outcropping intrusions (transparent red polygons) shown in the geologic map
(Figure 2.5a). The arrows point to notable anomalies labelled A1-A5.

2.6 Final Considerations

We have illustrated the potential of the amplitude of the magnetic anomaly vector

as an alternative method to locate the sources and to delimitate the boundaries,

even at low-magnetic latitudes and in the presence of sources with strong remanent

magnetizations. The amplitude data have the advantage of being weakly sensitive

to dipping sources, low magnetic inclinations and remanent magnetizations. One

advantage in the computation of the amplitude data over other techniques, for ex-

ample the RTP, is the required knowledge of the magnetization direction about the

incident field only, and not of the sources. The computation of the amplitude data

via the equivalent-layer procedure overcomes the computation via Fourier domain

because the latter fails at low latitudes, requires a regular grid of observations and a

flat observation surface. Another advantage of the amplitude data is related, intrin-

sically, to the physical nature of the amplitude data, which have the same unit of

the total-field data, thus allowing a tangible interpretation. Synthetic tests showed

that the amplitude of the magnetic anomaly vector have a superior performance in

enhancing the location of the sources as compared with the total gradient that is
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a standard procedure in magnetic interpretation, especially at low latitudes. The

interpretations of the amplitude data in scenarios simulating mid and low latitudes

are comparable to interpret magnetic anomalies produced by vertically magnetized

sources. In these conditions, the interpretation using either the total-field anomaly

or the total gradient fails. Application to a real aeromagnetic data close to the mag-

netic equator showed the potentiality of the interpretation with the amplitude data.

The interpretation of the amplitude data confirmed some outcropping intrusions

present in the geologic map. Moreover, the amplitude data revealed new geologic

bodies that were not present in the geologic map. The positions and the orientations

of these new geologic bodies suggested the continuity of outcropping intrusions in

depth. This result is a step forward in understanding this study area, which has

a poor geological knowledge. An attractive characteristic of the amplitude data as

a tool in enhancing the magnetic data is their potentiality to be used at the early

stages of an exploration program when the geologic knowledge is at the beginning.

In this scenario, the amplitude data can be jointly used with other data aiding ei-

ther in the geologic mapping or in the geophysical interpretation. In this way, the

amplitude data could provide quickly and conveniently an apparent-geologic map in

areas where the geology has only been mapped in reconnaissance fashion due to the

characteristics of the areas, e.g., poor access (forests and mountains) or poor rock

exposures. Finally, an important aspect of the amplitude of the magnetic anomaly

vector is its positive correlation with the geology and therefore with gravity data.

In future works, this aspect deserves to be explored.



Chapter 3

Reliable Euler deconvolution

estimates throughout the vertical

derivatives of the total-field

anomaly

This chapter has been improved and published ”Melo, F. F., Barbosa, V. C., 2020.

Reliable Euler deconvolution estimates throughout the vertical derivatives of the

total-field anomaly. Computers & Geosciences 138, 104436”.

3.1 Summary

We propose a novel methodology to select reliable Euler deconvolution estimates

throughout the vertical derivatives of the total-field anomaly grounded on the ca-

pability of this quantity to locate anomalies due to its higher signal decay with

distance. In applying Euler deconvolution to a small moving-data window, we com-

pute the standard deviation of the vertical derivatives of the total-field anomaly for

each data window. Then, we define the reliable source-location estimates as those

estimates that are obtained by using the data windows with the largest standard

deviations of the vertical derivatives of the total-field anomaly. For all tentative

values of the structural index (SI), the reliable estimates with tight clustering de-

fine the correct SI and the mean of these estimates define the source position. Our

methodology successfully works in two complex scenarios. In the first one, multiple

sources with distinct SI generate a total-field anomaly which in turn is corrupted

by an additive nonlinear background that simulates a regional field. This regional

field strongly interfere the anomalies produced by the sources, changing their am-

plitudes and shapes. In the second scenario, nearby sources give rise to strongly

24
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interfering anomalies. In both scenarios, our methodology correctly defines the SIs,

the horizontal positions and the depths of the causative sources. Application to

real magnetic anomaly from southern Brazil allows inferring the presence of a plug

intrusion.

3.2 Introduction

Euler deconvolution (Barbosa et al., 1999; Reid et al., 1990) is the most popular

technique for fast interpretation of potential-field data. It works with potential-field

measurements, their gradients, and a given integer number called the structural in-

dex (SI), which in turn depends on the nature (type) of the geologic source (Reid

et al., 2014; Reid and Thurston, 2014). Mathematically, Euler deconvolution as-

sumes a tentative SI, solves a system of equations in a moving-data window scheme

and estimates the four parameters: base level, horizontal and vertical positions of a

geologic source.

Traditionally, for each tentative SI, one map is generated where the estimates of

the source horizontal and vertical coordinates obtained by Euler deconvolution are

plotted. Specifically, the estimates of the source horizontal coordinates are plotted

in the plan view (x − y plane) of the study area (Reid et al., 1990), and usually

the source depth (vertical coordinates) estimates are plotted in different color or

size. In this case, base-level estimates are computed but usually neglected. When

the correct SI is used the estimates cluster over the source (Thompson, 1982). The

cumbersome with this plot is the large amount of solutions (Barbosa and Silva,

2011). In order to deal with the spray of solutions and define the correct SI some

authors developed some criteria, e.g., Thompson (1982) and Reid et al. (1990) ac-

cept solutions based on the depth uncertainty. Fairhead et al. (1994) computed the

maximum of the horizontal gradient of the reduced-to-the-pole anomaly to accept

solutions. Mikhailov et al. (2003) and Ugalde and Morris (2010) filtered solutions

using clustering techniques based on artificial intelligence and fuzz c-means, respec-

tively. FitzGerald et al. (2004) provided an overview on best practices to select the

solutions and proposed new ones for the extended Euler technique (Mushayandebvu

et al., 2001; Nabighian and Hansen, 2001). The FitzGerald et al. (2004) overview

totalizes 17 discrimination techniques aiming to select the more reliable Euler so-

lutions considering different SIs. The large amount of discrimination techniques

presented by FitzGerald et al. (2004) show the complexity of distinguishing reliable

Euler solutions from spurious ones considering distinct geologic scenarios. Uieda

et al. (2013, 2014) adapted the solution from Beiki and Pedersen (2010) ranking

the solutions based on the estimated error computed from all parameters. Alterna-

tively, Silva and Barbosa (2003), Melo et al. (2013) and Melo and Barbosa (2018)
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plot all estimates separately against the central position of the moving-data window,

resulting in four maps, one for each estimate. In this procedure, there is no need to

select reliable estimates or deal with the spray of solutions because all solutions are

plotted.

Some free codes are available to perform Euler deconvolution. For profile data

and not open source, Durrheim and Cooper (1998) estimated the position and base

level and Cooper (2006) obtained the dip and susceptibility from dikes with a mod-

ified version using the Hough transform. For gridded data, and not open source

code, FitzGerald et al. (2004) implemented the extended Euler. For gridded data

and open source codes, Gerovska and Araúzo-Bravo (2003) estimated the position

and the SI based on the properties of the differential similarity transformation and

Uieda et al. (2013, 2014) estimated the source position and the base level in the

standard way. The extended Euler (Mushayandebvu et al., 2001; Nabighian and

Hansen, 2001), implemented by FitzGerald et al. (2004), assumes a new system of

equations with the Hilbert transform. In this new system, the base level is set to

zero, as the result of the Hilbert transform of a constant.

In this work, we analyze Euler deconvolution solutions selecting the reliable es-

timates throughout the moving-data windows with the largest standard deviations

of the vertical derivatives of the total-field anomaly. Synthetic tests with strongly

interfering anomalies show the robustness of our methodology to: i) select reliable

Euler estimates; ii) determine the SI correctly and; iii) locate the source positions.

These synthetic tests are produced by i) isolated sources in the presence of a non-

linear background simulating a regional field; and ii) multiple and closely separated

sources. The field results from the aeromagnetic data, southern Brazil, suggest that

a plug intrusion generates the Anitápolis anomaly.

3.3 Methodology

Let us adopt a right-handed Cartesian coordinate system with the x-axis pointing

to north, the y-axis pointing to east, and with the z-axis pointing downward. Reid

et al. (1990) defined the Euler deconvolution as:

(x− xo)
∂h

∂x
+ (y − yo)

∂h

∂y
+ (z − zo)

∂h

∂z
= η(b− h), (3.1)

where xo, yo and zo are source positions, x, y and z are the observation position,

h = h(x, y, z) is the total-field anomaly and ∂h/∂x, ∂h/∂y and ∂h/∂z are its gradients

with respect to the variables x, y and z, respectively. In equation 3.1, η is an integer

number, named structural index (SI), which depends on the source type and b is a

base level or data background. Details about the theory of Euler deconvolution are
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available in the Appendix A.

By applying Euler deconvolution with a moving-data window scheme using a

tentative value of SI, we obtain the estimated parameters x̂ko and ŷko (horizontal

source positions), ẑko (vertical source position) and b̂k (base level), for the kth position

of the moving-data window. Hence, equation 3.1 can be written as:

x̂ko
∂hj
∂x

+ ŷko
∂hj
∂y

+ ẑko
∂hj
∂z

+ ηb̂k = xj
∂hj
∂x

+ yj
∂hj
∂y

+ zj
∂hj
∂z

+ ηhi, (3.2)

where the subscript j is related to the jth observation position (xj, yj, zj) inside the

kth moving-data window. The estimates x̂ko , ŷ
k
o , ẑko and b̂k in each kth position of

the moving-data window are the Euler solutions to be visualized, which depend on

the assumed SI.

In matrix form, the solution of the system of equations described in equation

3.2, for each kth position of the moving-data window via the least-squares method

is:

pk = (Ak
T
Ak)−1Ak

T
dk, (3.3)

where pk is a vector with the four estimated parameters (x̂ko , ŷ
k
o , ẑko and b̂k), Ak

is the M × 4 sensitivity matrix whose elements of the jth row are: akj1 = ∂hj/∂x,

akj2 = ∂hj/∂y, akj3 = ∂hj/∂z and akj4 = η, j = 1, . . . ,M where M is the number of

observations in a moving-data window. The jth element of the M-dimensional data

vector dk is dkj = xj(∂hj/∂x) + yj(∂hj/∂y) + zj(∂hj/∂z) + ηhj. In equation 3.3, the

superscript T stands for transposed.

To perform the Euler deconvolution the derivatives of the gridded potential-field

data are computed in Fourier domain (Blakely, 1996). However, measured gradient

data can be used if available (Schmidt et al., 2004). In cases of low signal to ratio,

the filtering of random noise can be achieved prior to run the Euler deconvolution

(Florio et al., 2014). The data window is moved over the whole data grid and, at

each position of data window, the four Euler estimates (x̂ko , ŷ
k
o , ẑko and b̂k in equation

3.3) are obtained. We follow the recommendations of Reid et al. (2014) regarding the

size of the moving-data window related to the grid space and depth of investigation.

These authors stated that the window size must be greater than twice the measured

data grid interval and greater than half the desired depth of investigation.

In this work, we introduce a novel criterion to distinguish reliable solutions from

spurious ones. We keep only a percentage of the moving-data windows ranked by

the largest standard deviations of the vertical derivatives of the total-field anomaly

(third column of the sensitivity matrix in equation 3.3). This is achieved, in the

kth window, by computing the sample standard deviation (Gubbins, 2004) of the

vertical derivatives of the total-field anomaly:
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sk =

√∑M
j=1(akj3 − µk)2

M − 1
, (3.4)

where µk is the mean of the vertical derivatives of the total-field anomaly in the

kth window. Next, we select the moving-data windows with the largest standard

deviation and plot the corresponding Euler solutions for each tentative SI on distinct

plots. The percentage of moving-data windows selected is defined based on the

dataset; this selection is accomplished by decreasing the amount of selected solutions

until a cluster is defined over a source. The reliable selected estimates lie over the

sources, thus reducing the spray of solutions. The best SI is the one that produces

the tightest cluster of the source-position or the base-level estimates. Finally, the

mean of depth estimates defines the optimum depth to the top or to the center of the

source. Details about the plot of the solutions in Euler deconvolution are available

in the Appendix A.

The physical basis to the choice of reliable Euler solutions related to the data

windows with largest standard deviations of the vertical derivative of the total-field

anomaly is its ability to locate interfering anomalies due to its higher signal decay

with distance. In the interpretation of non-interfering anomalies via Euler decon-

volution, the largest standard deviations of other quantities - such as the total-field

anomaly or its horizontal derivatives - could also be employed to distinguish reliable

Euler solutions from spurious ones. However, these quantities fail in interpreting

interfering anomalies, whereas the vertical derivative of the total-field anomaly was

more robust.

All the software developed and used in this chapter is open source and was

made available in 2019. The algorithm was developed in Python language and it is

compatible with both Python 2.7 and Python 3.7. The package with instructions is

available at https://github.com/ffigura/Euler-deconvolution-python.

3.4 Synthetic tests

3.4.1 Test 1 - Distinct SIs and strong nonlinear magnetic

base level

Figure 3.1a shows four prisms that represent the sources of the simulated total-field

anomaly in Figure 3.1b. The prisms labelled P0-P3 in Figure 3.1a simulate geological

sources with distinct SIs. The prism P0 which simulates a contact has SI = 0, top

at 0.2 km and magnetization intensity of 0.3 A/m. The prism P1 simulates a thin

dike which has SI = 1, top at 0.6 km, 0.4 km width and magnetization intensity

of 2 A/m. The prism P2 which simulates a vertical intrusion has SI = 2, top

https://github.com/ffigura/Euler-deconvolution-python
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at 0.6 km, equal horizontal dimensions of 0.3 km and magnetization intensity of

10 A/m. Finally, the prism P3 simulates a spherical source which has SI = 3, radius

of 0.2 km, center at 1.050 km and magnetization intensity of 25 A/m. The sources

have induced magnetization with inclination of 60o and declination of −20o. We

simulated a survey on a regular grid of 120 x 140 observation points in the x− and

y− directions equally spaced at each 0.2 km and the survey height is simulated at

z = -0.1 km. Figure 3.1b shows the simulated total-field anomaly (Uieda et al.,

2013) corrupted with pseudorandom Gaussian noise with zero mean and standard

deviation of 0.1% of the maxima absolute amplitude of the data. Figure 3.1c shows

a simulated nonlinear background generated by the polynomial:

b(xj, yj) =
(xj + 10)(yj + 10)

5
, (3.5)

where the subscript j is related to the ith observation point (xj, yj). As pointed

in Melo and Barbosa (2018), this anomaly can simulate a regional field, a strongly

interfering anomaly, or a poor definition of the IGRF. Notice that this base level

has values of amplitudes higher than the anomalies in Figure 3.1b, thus generating

strongly interfering anomalies after its addition to the original data (Figure 3.1a).

Figure 3.1d shows the noise corrupted magnetic anomaly generated by the addition

of the total-field anomaly in Figure 3.1b with the nonlinear base level in Figure 3.1c.

Notice in Figure 3.1d that the superposition effect due to the addition of the sim-

ulated nonlinear base level (Figure 3.1c) yields a strong interference in the original

anomaly shown in Figure 3.1b. Therefore, the generated data (Figure 3.1d) no

longer have the same shape of the original anomalies (Figure 3.1b). In fact, at some

locations the amplitude of the magnetic data yielded by the nonlinear base level is

greater than twice the original anomaly (Figure 3.1b) generating strongly interfering

anomalies (Figure 3.1d). The black polygons in Figure 3.1b-d outlines the horizontal

projections of the simulated sources shown in perspective view in Figure 3.1a.

We run Euler deconvolution using the magnetic data shown in Figure 3.1d. We

use a moving-data window of 9 × 9 points solving equation 3.3, for each position of

the moving-data window and we kept the best 1182 estimates (8% of the solutions).

Here, we only select the Euler deconvolution estimates produced by the moving-

data windows with the largest standard deviations of the vertical derivatives of the

magnetic data (Figure 3.1d). By applying the Euler deconvolution to the interfering

synthetic magnetic data shown in Figure 3.1d, we will estimate the depths to the

tops of sources P0-P2 and the depth to center of the source P3 (Reid and Thurston,

2014).

Figure 3.2 shows the source-position and base-level estimates, respectively, for

all moving-data windows. Notice that the spurious solutions do not allow the iden-
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Figure 3.1: Synthetic test 1: Simulated sources and magnetic anomaly. (a) Simu-
lated sources P0-P3 represent a contact (SI = 0), a dike (SI = 1), a vertical intrusion
(SI = 2) and a spherical source (SI = 3), respectively. (b) Noise-corrupted total-field
anomaly (the noise standard deviation is 0.12 nT) generated by the sources shown
in panel a. (c) Nonlinear base level simulating a regional field. (d) Noise-corrupted
magnetic anomaly obtained by adding the total-field anomaly shown in panel b to
the nonlinear base level shown in c. The black polygons in panels b-d outline the
horizontal projections of the simulated sources shown in panel a.

tification of the sources, outlined by red polygons.

Figure 3.3 shows the results of the proposed methodology where the horizontal

position estimates (in circles) of the sources are displayed over the map of the mag-

netic anomaly (in grayscale) and the depth estimates are represented by different

colors. Figure 3.3a-d shows the Euler estimates assuming the SI = 0, 1, 2 and 3,

respectively. The tightest cluster of the estimates over the source P0 in Figure 3.3a

defines the depth to the top of the contact at 0.223 km. Figure 3.3b shows tight-

est cluster of the source-position estimates assuming the SI = 1, the correct one

for the source P1. In this cluster of estimates, the mean of the depth estimates is

0.627 km, which is very close to the depth to the top of the simulated thin dike P1.

In Figure 3.3c the tightest cluster of the estimates is over the source P2 because

we assume the SI = 2. The mean of the depth estimates in this cluster defines the
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Figure 3.2: Euler deconvolution estimates for all moving-data windows, red polygons
outline the sources. (a) Source-position estimates. (b) Base level-estimates.

depth to the top of the vertical intrusion at 0.627 km. In this test, the amplitude

of the magnetic anomaly due to source P2 (vertical intrusion) is the smallest one;

however, our methodology was able to retrieve the depth of the top of the source

P2 correctly. Finally, Figure 3.3d shows the tightest cluster of the source-position

estimates over the source P3 by assuming the SI = 3. The mean of depth estimates

over this source retrieves the depth to the center of the spherical source at 1.057 km.

Figure 3.4 shows the results of the proposed methodology where the base-level

estimates (shown in colored circles) are displayed over the map of the magnetic

anomaly (Figure 3.1d), shown in grayscale. Figure 3.4a-d shows the estimates as-

suming the SI = 0, 1, 2 and 3, respectively. As shown in Melo and Barbosa (2018),

the base-level estimates in Figure 3.4a have the amplitude amplified because the SI

is zero. As in the source-position estimates shown in Figure 3.3, the tightest cluster

of base level estimates defines the correct SI.

The definition of the correct SI in the results shown in Figure 3.3 and 3.4 is

possible because of the tightest clustering of the source-position and base-level esti-

mates. The nonlinear base level does not affect the proposed methodology because

we select the reliable Euler deconvolution estimates throughout the moving-data

windows with the largest standard deviations of the vertical derivatives of the data

(Figure 3.1d). Thus, we selected only the moving-data windows where a factual

source is present.

3.4.2 Test 2 - Nearby sources with remanence

Figure 3.5a shows a total-field anomaly generated by the sources P2 and P3 from

the previous test (Figure 3.1); the black polygons outline the horizontal projections

of the simulated sources. Here, the distance between these sources is 1.5 km and the
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Figure 3.3: Euler deconvolution source-position estimates (colored circles) over the
total-field anomaly (grayscale). Source-position estimates assuming (a) SI = 0 (b)
SI = 1, (c) SI = 2 and (d) SI = 3. The selected Euler estimates are the ones that
are obtained by using the data windows with the largest standard deviations of the
vertical derivatives of the total-field anomaly.

source P2 has remanent magnetization with inclination i = −60o, in the opposite

direction of both the source P3 and the geomagnetic field (i = 60o as shown in

Figure 3.1b). We simulated a survey on a regular grid of 60 × 50 observation points

in the x− and y−directions with grid spacing of 0.2 km along both directions.

The survey height is simulated at z = -0.1 km. The simulated total-field anomaly

was corrupted with pseudorandom Gaussian noise with zero mean and standard

deviation of 0.1% of the maxima absolute amplitude of the data.

At first glance, it may not seem possible to define if one source between the peaks

or more sources generated the anomaly in Figure 3.5a. Hansen and Suciu (2002)

treated the case of a local field induced by two bodies. However, according to the

authors all sources must have the same structural index, which is not the case in

this test. Therefore, their method is not suitable in this scenario. In the following,

we will show that our methodology succeeds. We run Euler deconvolution with a

moving-data window of 5 × 5 points and keep the best 51 estimates (2% of the
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Figure 3.4: Euler deconvolution base level estimates (colored circles) over the total-
field anomaly (grayscale). Base-level estimates assuming (a) SI = 0 (b) SI = 1,
(c) SI = 2 and (d) SI = 3. The selected Euler estimates are the ones that are
obtained by using the data windows with the largest standard deviations of the
vertical derivatives of the total-field anomaly.

solutions). In this test, the size of the window is smaller than the one used in the

previous test because the sources are closer.

Figure 3.5b-d shows the source-position and base-level estimates assuming the

SI = 2 and 3, respectively. The estimates (shown in colored circles) are displayed

over the map of the magnetic anomaly (Figure 3.5a), shown in grayscale. Compar-

ing source-position estimates in Figure 3.5b (using SI = 2) with the estimates in

Figure 3.5d (using SI = 3) and the base-level estimates in Figure 3.5c (using SI = 2)

with the estimates in Figure 3.5e (using SI = 3), we confirm that the tightest cluster

of Euler solutions for the source P2 occurs when we use the SI = 2 (Figure 3.5b and

3.5d) and the tightest cluster of Euler solutions for the source P3 occurs when we

use the SI = 3 (Figure 3.5d and 3.5e). Both tight clusters of the estimates of the

source positions and base levels are able to define the correct SIs. The mean of depth

estimates of the cluster of the Euler solutions shown in Figure 3.5b correctly defines

the depth to the top of the source P2 (prism) at 0.658 km. While the mean of depth
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Figure 3.5: Total-field anomaly and Euler deconvolution estimates (colored circles).
(a) Noise-corrupted total-field anomaly (grayscale) with the horizontal projection of
the sources P2 and P3 outlined by the black polygons. Euler estimates assuming
the SI = 2 (b) source-position and (c) base level. Euler estimates assuming SI = 3
(d) source position and (e) base level. The selected Euler estimates are the ones
that are obtained by using the data windows with the largest standard deviations
of the vertical derivatives of the total-field anomaly.

estimates of the tight cluster of the Euler solutions shown in Figure 3.5b correctly

defines the depth to the center of the source P3 (spherical source) at 1.028 km.

Hence, in this synthetic test simulating interfering magnetic anomalies, caused by

geologic sources closely separated from each other by short distances and remanently

magnetized, our methodology determines the SI and the depth estimates correctly.

3.4.3 Test 3 - Reliable estimates via other quantities?

We propose the use of the vertical derivatives of the total-field anomaly to define

reliable solutions in Euler deconvolution and show its performance in the previous

tests. However, one question that rises is why the horizontal derivatives of the total-

field anomaly or total-field anomaly cannot be used to define the reliable solutions

instead of the vertical derivatives?

First, let us analyze the performance of the horizontal derivatives in defining

reliable solutions. In order to perform this analyze we will revisit the ”Test 1 -

Distinct SIs and strong nonlinear magnetic base level”. Figure 3.6a-3.6c shows the
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derivatives of the total-field anomaly (Figure 3.1d) in the x−, y− and z−directions,

respectively. The black polygons outline the horizontal projections of the sources

shown in Figure 3.1a. Figure 3.6a shows the derivative of the total-field anomaly

along the x−direction, notice that the source P0 is not defined on this derivative,

this happens because this source is elongated in the x−direction. Furthermore, this

derivative defines only the edge of the source P1 and not all its extension. On the

other hand, the sources P2 and P3 are defined. Figure 3.6b shows the derivative of

the total-field anomaly along the y−direction, this derivative defines all the sources

P0-P3. However, the definition of all sources is only possible because the sources

P0 and P1 are elongated perpendicular to the direction of this derivative. Finally,

Figure 3.6c shows the derivativeof the total-field anomaly along the z−direction,

this is the derivative used in this work, and it defines all the sources P0-P3.

Figure 3.6: Derivatives of the total-field anomaly shown in Figure 3.1d. Deriva-
tives in the (a) x−, (b) y− and (c) z−directions. The black polygons outline the
horizontal projections of the sources shown in Figure 3.1a.

We run Euler deconvolution in the total-field anomaly (Figure 3.1d) with the

same parameters of the first test, where the moving-data window has 9 × 9 points

and we kept the best 8% of the solutions. However, in this test, the best estimates

were selected throughout the largest standard deviations of the derivatives in the

x−direction. Figure 3.7a-3.7d shows the Euler deconvolution estimates assuming the

SI = 0, 1, 2 and 3, respectively. As expected, because we have used the derivatives

in the x−direction (Figure 3.6a), none of the estimates are defining the source P0,

only spurious solutions appear close to this source. In addition, the estimates do

not cluster over the source P1, in fact, is not possible to distinguish a tight cluster

between the SI = 0 (Figure 3.7a) and the SI = 1 (Figure 3.7b). Notice that contrary

to the source-position estimates by using the vertical derivatives (Figure 3.3) the

estimates via the derivatives in the x−direction do not cluster over the sources

P2 (Figure 3.7c) and P3 (Figure 3.7c). The spray of these estimates has a direct

connection to the use of the derivatives in the x−direction (Figure 3.6a).

In order to define the correct SI for the sources P2 and P3 based on the derivatives

along the x−direction (Figure 3.7) we need to keep less solutions. Therefore, we
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Figure 3.7: Euler deconvolution source-position estimates (colored circles) plotted
over the total-field anomaly (grayscale). The selected Euler estimates are the ones
that are obtained by using the data windows with the largest standard deviations
of the x−derivatives of the total-field anomaly. Source-position estimates assuming
(a) SI = 0 (b) SI = 1, (c) SI = 2 and (d) SI = 3. The best 8% of the solutions were
kept.

run Euler deconvolution and keep the best 2% of the solutions. Figure 3.8a-3.8c

shows the source-position estimates for the SI 1, 2 and 3, respectively. Keeping less

solutions make the estimates vanish over the source P1 for all SIs. The solutions

cluster over the correct source for the SI 2 (Figure 3.8b) and the SI 3 (Figure 3.8c).

However, only a few solutions are shown and this might be not useful in scenarios

with more sources, as in this example.

Similarly to the derivative of the total-field anomaly along the x−direction, the

derivative along the y−direction fails in defining sources elongated in the y−direction

(not shown). Therefore, we must conclude that the use of the horizontal derivatives

of the total-field anomaly to select the reliable solution, instead the vertical deriva-

tive, fails.

Now, let us analyze the performance of the total-field anomaly in defining reliable

solutions. In order to perform this analyze we will revisit the ”Test 2 - Nearby
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Figure 3.8: Euler deconvolution source-position estimates (colored circles) defined
over the total-field anomaly (grayscale). The selected Euler estimates are the ones
that are obtained by using the data windows with the largest standard deviations
of the x−derivatives of the total-field anomaly. Source-position estimates assuming
(a) SI = 1, (b) SI = 2 and (c) SI = 3. The best 2% of the solutions were kept.

sources with remanence”. To this end, we performed two tests, in the first, we used

a moving-data window of 5 × 5 grid points (the same as in Test 2) and in the second

test, we used a moving-data window of 3 × 3 grid points.

Figure 3.9a and 3.9b shows the Euler deconvolution estimates of the total-field

anomaly shown in Figure 3.5 based on the largest standard deviations of the total-

field anomaly with SI 2 and 3, respectively, accepting 2% of the solutions. Notice

that all solutions are over the anomaly suggesting a single source; therefore we cannot

distinguish the two sources (P2 and P3). So, in an attempt to define the correct SI

we accepted fewer solutions. Figure 3.9c and 3.9d shows the Euler deconvolution

estimates assuming the SI 2 and 3, respectively, accepting 1.5% of the solutions.

Notice that the solutions over the source P2 are clustered for both SI = 2 (Figure

3.9c) and SI = 3 (Figure 3.9d), so it is not possible to define the correct SI for this

source. In addition, over the source P3 there is a spread of solutions in Figure 3.9c

and 3.9d and is also not possible to define the correct SI for this source.

In the second test, we used a moving-data window of 3 × 3 grid points in order

to check if a small size window would define correctly the sources. Figure 3.10a and

3.10b shows the Euler deconvolution estimates from the total-field anomaly shown

in Figure 3.5 based on the largest standard deviations of the total-field anomaly

with SI 2 and 3, respectively, accepting 1.5% of the solutions. Notice that the

solutions over the sources are not clustered in any of these cases, so we cannot

take conclusions about the correct SI. One might think that the acceptance of fewer

solutions would better determine the correct SI. Under this perspective, Figure 3.10c

and 3.10d shows the Euler deconvolution estimates based on the largest standard

deviations of the total-field anomaly with SI = 2 and 3, respectively, accepting 1%

of the solutions. In both results (Figure 3.10c and 3.10d), the solutions are clustered
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Figure 3.9: Euler deconvolution source-position estimates (colored circles) defined
over the total-field anomaly (grayscale). The selected Euler estimates are the ones
obtained by using the data windows of 5 × 5 points with the largest standard
deviations of the total-field anomaly. Source-position estimates accepting 2% of the
solutions assuming (a) SI = 2 and (b) SI = 3. Source-position estimates accepting
1.5% of the solutions assuming (c) SI = 2 and (d) SI = 3.

over the source P2 so, we cannot determine the correct SI. The solutions over the

source P3 are also clustered in both results (Figure 3.10c and 3.10d), so once more

is not possible to take conclusions about the correct SI.

The decay with distance of the vertical derivative of the total-field anomaly

is higher than the decay of the total-field anomaly. This fact combined with the

moving-data window scheme makes the vertical derivative of the total-field anomaly

a useful tool in distinguishing multiple geologic bodies giving rise to interfering

anomalies. In interpreting magnetic data with interfering anomalies produced by

multiple geologic bodies, the vertical derivative ability to distinguish multiple and

closely separated bodies is greater than the ability of the total-field anomaly itself.

This is the reason why the total-field anomaly does not work to select the reliable

Euler deconvolution estimates on cases of interfering anomalies.
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Figure 3.10: Euler deconvolution source-position estimates (colored circles) plotted
over the total-field anomaly (grayscale). The selected Euler estimates are the ones
obtained by using the data windows of 3 × 3 points with the largest standard
deviations of the total-field anomaly. Source-position estimates accepting 1.5% of
the solutions assuming (a) SI = 2 and (b) SI = 3. Source-position estimates accepting
1% of the solutions assuming (c) SI = 2 and (d) SI = 3.

3.5 Application to real data set

The Santa Catarina state in southern Brazil is characterized by the occurrence of

several alkaline and alkaline-carbonatitic bodies of Early to Late Cretaceous age.

The Anitápolis alkaline-carbonatite complex (132 Ma) is a small intrusion in the

Late Proterozoic Dom Feliciano mobile belt (Scheibe et al., 2005). The complex

shows a concentric zonation consisting of phlogopite clinopyroxenites and apatite-

biotite-magnetite clinopyroxenites surrounded by ijolites and nepheline syenites that

intrude Late Proterozoic granitic-gneissic rocks. A dyke like carbonatitic core of

about ten square meters crops out at the center of the complex in contact with phl-

ogopite clinopyroxenites (Comin-Chiaramonti et al., 2005). The phosphate deposit

of Anitápolis produces large amounts of phosphate fertilizers. Apatite is the only

mineral worth exploiting economically, and it corresponds to reserves of 206.5 Mt,

according to fresh rocks distribution from boreholes (Biondi, 2005). The study area
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(blue dot in Figure 3.11a) has a near surface well-known geology; however, the shape

and the depth of the magnetized source that gives rise to the Anitápolis anomaly

are unknown.

The aeromagnetic data (yellow polygon in Figure 3.11a) were acquired between

2009 and 2011 (CPRM, 2011) over the southeastern and southern Brazil. The flight

lines in the north–south direction were acquired every 0.5 km, the tie lines were

acquired every 10 km and the flight height was approximately constant at z = -

0.1 km. The data set in the study area is gridded every 0.125 km in the x− and

y−directions, and has 145 points northing and 121 points easting. Figure 3.11b

shows the Anitápolis anomaly over the study area (blue dot in Figure 3.11a); this

anomaly is approximately located at 27o48
′

south and 49o5
′

west (WGS84).

We run Euler deconvolution with a moving-data window size of 7 × 7 grid points.

Figure 3.11c and 3.11d shows source-position and base-level estimates assuming the

SI = 2 and Figure 3.11d and 3.11e show source-position and base-level estimates

assuming the SI = 3, respectively. We kept the best 31 estimates (0.2% of the

solutions) associate with the largest standard deviations of the vertical derivatives

of the total-field anomaly. A single source is identifiable by the tightest cluster of the

solutions assuming SI = 2 (Figure 3.11c and 3.11d). The mean of depth estimates

assuming the SI = 2 is equal to 0.677 km. Recall, that the SI = 2 defines a plug

source, so these estimated values define the depth to the top of a plug intrusion.
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Figure 3.11: Real data application - Euler deconvolution estimates. (a) Aeromag-
netic survey in yellow and the study area in blue dot. (b) Anitápolis total-field
anomaly. Euler estimates assuming the SI = 2 (c) source positions and (d) base
levels. Euler estimates assuming the SI = 3 (e) source positions and (f) base levels.
The selected Euler estimates are the ones that are obtained by using the data win-
dows with the largest standard deviations of the vertical derivatives of the total-field
anomaly.
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3.6 Final Considerations

We proposed a novel methodology to compute reliable Euler deconvolution esti-

mates. The spray of solutions is reduced selecting the moving-data windows with

the largest standard deviations of the vertical derivatives of the total-field anomaly.

The tightest cluster of source-position or base-level estimates plotted on the selected

moving-data windows with distinct SI defines the optimum SI. Finally, we defined

the depth of the sources with the mean the selected depth estimates. The robustness

of the methodology was proved on synthetic tests where the anomalies were sub-

ject to interfering anomalies. In these tests, our method was able to determine the

correct SI and to estimate the correct depth of the sources. Application to aeromag-

netic data from the southern Brazil leads us to infer that one vertical plug intrusion

generates the Anitápolis anomaly. This work is a step further in the selection of

reliable estimates in Euler deconvolution and in the understanding of the behavior

of the base-level estimates and how they can be used in the determination of the

structural index (shape of the magnetic source). Our methodology to define reliable

Euler solutions can be used with other discrimination techniques in any of the mod-

ification of the Euler deconvolution such as the extended Euler deconvolution. The

reliable Euler solutions can be combined in inversion methods to produce a detailed

definition of the anomalous source of the Anitápolis anomaly.



Chapter 4

Correct structural index in Euler

deconvolution via base-level

estimates

This chapter has been published ”Melo, F. F., Barbosa, V. C., 2018. Correct struc-

tural index in Euler deconvolution via base-level estimates. Geophysics 83 (6),

J87-J98”. This paper was nominated by the Geophysics editors to be highlighted in

”Geophysics Bright Spots”. ”Nature of the geologic source for potential field data”,

The Leading Edge, 37, Issue 12, 2018.

4.1 Summary

In most applications, Euler deconvolution aims to define the nature (type) of the

geologic source (i.e., the structural index, SI) and its depth position. However, Eu-

ler deconvolution also estimates the horizontal positions of the sources and the base

level of the magnetic anomaly. To determine the correct SI, most authors take ad-

vantage of the clustering of depth estimates. We have analyzed the Euler’s equation

to show that random variables contaminating the magnetic observations and its gra-

dients affect the base-level estimates if, and only if, the SI is not assumed correctly.

Grounded on this theoretical analysis and assuming a set of tentative structural

indices (SIs), we have proposed a new criterion for determining the correct SI by

means of the minimum standard deviation of base-level estimates. We performed

synthetic tests simulating multiples magnetic sources with different SIs. To produce

mid and strongly interfering synthetic magnetic anomalies, we added constant and

nonlinear backgrounds to the anomalies and approximated the simulated sources

laterally. If the magnetic anomalies are weakly interfering, the minima standard

deviations either of the depth or base-level estimates can be used to determine the

43
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correct SI. However, if the magnetic anomalies are strongly interfering only the min-

imum standard deviation of the base-level estimates can determine the SI correctly.

These tests also show that Euler deconvolution does not require that the magnetic

data be corrected for the regional fields (e.g., IGRF – International Geomagnetic

Reference Field). Tests on real data from part of Goiás Alkaline Province, Brazil,

confirm the potential of the minimum standard deviation of base-level estimates in

determining the SIs of the sources by applying Euler deconvolution either to total-

field measurements or total-field anomaly (corrected for IGRF). Our result suggests

three plug intrusions giving rise to Diorama anomaly and dipole-like sources yielding

Arenópolis and Montes Claros de Goiás anomalies.

4.2 Introduction

Euler deconvolution is one of the most popular techniques in potential field methods.

It is a semi-automatic interpretation technique proposed by Reid et al. (1990) that

allows fast processing of large datasets. The technique is grounded on Euler equation

for homogeneous functions (Hood, 1965; Thompson, 1982). Euler deconvolution

relates potential-field measurements, their gradients and a given integer number

called the structural index (SI), which in turn depends on the nature (type) of the

geologic source (Henderson and Zietz, 1948; Reid and Thurston, 2014; Smellie, 1956;

Stavrev and Reid, 2007; Uieda et al., 2014). Usually, Euler deconvolution assumes

a tentative SI and estimates four parameters: base level, horizontal and vertical

positions of an isolated and single-point geologic source.

One practical hindrance for Euler deconvolution is the need to assume a tentative

SI. The SI can only be an integer number (Mas-Colell et al., 1995; Ravat, 1996;

Reid et al., 2014; Reid and Thurston, 2014; Thurston, 2010); otherwise, the index

changes under the variation of the source-observation vector (Ravat, 1996; Reid and

Thurston, 2014). Assuming some tentative SI values, Thompson (1982) noticed the

relation between the use of the correct SI and a tight clustering in depth estimates,

and used this behavior to determine the correct SI. Others authors, like Reid et al.

(1990), followed this approach to propose slight modifications of Thompson (1982)

criterion for determining the SI. Following this approach other authors proposed

other techniques (Mikhailov et al., 2003; Ugalde and Morris, 2010) to treat the

spreading of depth solutions and define the correct SI. Silva et al. (2001) showed that

the criterion for determining the SI as the tentative value producing the smallest

solution scattering, that includes the depth estimates, is theoretically sound but

can fails in practice because of data noise. On the other hand, Barbosa et al.

(1999) showed that the minimum correlation between base-level estimates and profile

magnetic data in modulus gives the correct SI and Melo et al. (2013) used this
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approach in gridded magnetic data. Alternatively, some authors modified Euler

deconvolution and develop new techniques solving for SI and depth simultaneously

(Fedi et al., 2009; Hsu, 2002; Keating and Pilkington, 2004; Mushayandebvu et al.,

2001; Nabighian and Hansen, 2001; Stavrev, 1997) or deal with non-ideal sources

(Fedi et al., 2015; Florio and Fedi, 2014; Stavrev and Reid, 2007, 2010; Thurston,

2010).

According to Thompson (1982), it is hard to detect the anomalous field by itself

so he introduced the concept of base level which is a constant background value of

the field inside an evaluating data window. He stressed that the base level can be

generated, for example, by interfering anomalies or regional field. By handling the

Euler deconvolution mathematically, some authors assumed a constant and non-null

base level (Barbosa et al., 1999; Hsu, 2002; Reid et al., 1990; Thompson, 1982), a null

base level (Silva and Barbosa, 2003), linear base levels (Gerovska and Araúzo-Bravo,

2003; Stavrev, 1997) and nonlinear base levels (Dewangan et al., 2007; Pasteka,

2006). Although the base level is estimated by the Euler deconvolution, few authors

have used this estimate in practice. Fairhead et al. (1994), for example, estimated

and removed the base level the anomaly in order to estimate focused Euler solu-

tions in a two-step approach. Reid and Thurston (2014) stated that is possible to

determine the correct SI using the base-level estimates; however, these estimates

were only used by Barbosa et al. (1999) and Melo et al. (2013) to this end in a

straightforward way.

In this paper, we show that realizations of random variables contaminating the

potential-field measurements affect the base-level estimates if, and only if, the SI

is not assumed correctly. Hence, we propose a criterion to determine the SI based

on the standard deviation of the estimates of base-level using different values of SI.

The optimal SI is one that produces the smallest standard deviation of the base-level

estimates. In our tests, we noticed that even for strongly interfering anomalies, the

minimum standard deviation of base-level estimates gives the correct SI; however, it

fails if the anomaly is not produced by a single-point source. We also confirmed that

anomalies generate nonlinear base-level estimates even when the true simulated base

level added to the data is constant or null. This happens not only because of the

interfering anomalies but also because base-level estimates have a nonlinear pattern

that mimics the potential-field anomalies even inside the current moving-data win-

dow. Here, we show that anomaly interference produced by the presence of nonlinear

background and nearby anomalies makes the criterion for determining the correct SI

based on the smallest scattering of depth estimates unfeasible. Conversely, we certify

the good performance of our approach in determining the correct SI by assuming

null, constant and nonlinear backgrounds that were added to the data. We applied

our methodology to total-field measurements and total-field anomaly (corrected for
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IGRF) from a portion of Goiás Alkaline Province located in central Brazil, and the

numerical results are similar. Both applications determine the same SI and mean

depths for the geologic sources in the study area. These results show that the prior

remove of the IGRF is not mandatory in Euler deconvolution application. The esti-

mated base level reveals a nonlinear pattern that mimics the pattern of the anomaly.

The Diorama anomaly is the main target alkaline intrusion to be interpreted in the

study area. Our result suggests that Diorama anomaly is generated by more than

one plug intrusion. We also expanded our interpretation using Euler deconvolution

to other anomalies in the study area (e.g., Arenópolis, Montes Claros de Goiás and

Córrego dos Bois). However, some of the results may not be reliable because the

magnetic sources may not behave as single-point sources violating the concept of

Euler homogeneity.

4.3 Methodology

Euler deconvolution is defined by Reid et al. (1990):

x̂o
∂hi
∂x

+ ŷo
∂hi
∂y

+ ẑo
∂hi
∂z

+ ηb̂ = xi
∂hi
∂x

+ yi
∂hi
∂y

+ zi
∂hi
∂z

+ ηhi, (4.1)

where η is the SI, b is a base level or background value, xo, yo and zo are source

positions, x, y and z are the observation position, h = h(x, y, z) is the total-field

anomaly and ∂hi
∂x

, ∂hi
∂y

and ∂hi
∂z

are the gradients of anomaly with respect to the

variables x, y and z, respectively. We use a tentative SI in equation 4.1, in a

moving-data window scheme, and the estimated parameters are x̂o and ŷo (horizontal

positions of the source), ẑo (vertical position of the source) and b (base level). The

caret (hat) denotes an estimated quantity. Details about Euler deconvolution are

available in the Appendix A.

Here, we extend and modify the criterion of Barbosa et al. (1999) for determining

the best SI for gridded data. By applying Euler deconvolution with a moving-data

window scheme and the correct SI, η, over a region that encompass the anomaly,

we obtain the estimated parameters x̂ko , ŷ
k
o , ẑko and b̂k for the kth position of the

moving-data window. Hence, equation 4.1 can be written as:

x̂ko
∂hki
∂x

+ ŷko
∂hki
∂y

+ ẑko
∂hki
∂z

+ ηb̂k = xki
∂hki
∂x

+ yki
∂hki
∂y

+ zki
∂hki
∂z

+ ηhki , (4.2)

where the subscript i is related to the ith observation position (xi, yi, zi) inside the

kth moving-data window.

By assuming a wrong SI, µ, we obtain the estimates x̀ko , ỳ
k
o , z̀ko and b̀k and
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equation 4.1 can be rewritten as:

x̀ko
∂hki
∂x

+ ỳko
∂hki
∂y

+ z̀ko
∂hki
∂z

+ µb̀k = xki
∂hki
∂x

+ yki
∂hki
∂y

+ zki
∂hki
∂z

+ µhki . (4.3)

By subtracting equation 4.3 from equation 4.2 and rearranging the terms, we

obtain:

(x̀ko − x̂ko)
∂hki
∂x

+ (ỳko − ŷko )
∂hki
∂y

+ (z̀ko − ẑko )
∂hki
∂z

+ µb̀k − ηb̂k = (µ− η)hki . (4.4)

Let’s assume that additive random noises ε1, ε2, ε3 and ε4 contaminate, respec-

tively, the terms
∂hki
∂x

,
∂hki
∂y

,
∂hki
∂z

and hki . Accordingly equation 4.4 can be rewritten

as:

(x̀ko − x̂ko)
[
∂hki
∂x

+ ε1

]
+ (ỳko − ŷko )

[
∂hki
∂y

+ ε2

]
+ (z̀ko − ẑko )

[
∂hki
∂z

+ ε3

]
+

µb̀k − ηb̂k = (µ− η)
[
hki + ε4

]
.

(4.5)

As shown by Silva and Barbosa (2003), the estimates of the horizontal source

positions are not affected by the choice of the SI, because these estimates do not

depend on the SI. Hence, even assuming a wrong structural index, µ, we have that

x̀ko = x̂ko and ỳko = ŷko . As result, the first and second terms on the left-hand side of

equation 4.5 are very close to zero. Thus, rearranging equation 4.5, we have:

b̀k =
ηb̂k

µ
+

(ẑko )− z̀ko
µ

[
∂hki
∂z

+ ε3

]
+

(
1− η

µ

)[
hki + ε4

]
. (4.6)

Notice that the second and third terms on the right-hand side of equation 4.6

are corrupted with random variables (ε3 and ε4). Hence, estimates of base level

can be affected by uncertainties in the total field data hki and its vertical gradient
∂hki
∂z

. However, random variables do not affect base-level estimates if, and only if,

we assume the correct structural index (i.e., if µ = η). Only in this case, we have

z̀ko = ẑko ) and the second and third terms on the right-hand side of equation 4.6 are

negligible. Therefore, equation 4.6 shows that the presence of random noise will

affect the base-level estimates if we do not correctly assume the structural index

(i.e., if µ 6= η). In this case, the terms (ẑko )−z̀ko
µ

[
∂hki
∂z

+ ε3

]
and

(
1− η

µ

) [
hki + ε4

]
in

equation 4.6 will be non-negligible.

Let us assume a set of L moving-data windows and thus a set of L base-level

estimates using either a wrong SI (b̀1, . . . , b̀L) or the correct SI (b̂1, . . . , b̂L). Thus,

the standard deviation of base-level estimates obtained over the anomaly will be

minimum only if the SI is correctly assumed (i.e., µ = η).

In our approach we provisionally assigned a tentative SI. For each SI, we estimate
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four parameters x̂o, ŷo ,ẑo and b̂ which are plotted against the central position of

the moving-data window forming maps as proposed by Silva and Barbosa (2003).

The maps of x̂o and ŷo form plateaus over the anomaly (Melo et al., 2013; Silva

and Barbosa, 2003); however plateaus may not be clearly formed for depth (ẑo) and

base level (b̂) estimates in the presence of interfering anomalies. By assuming any

tentative SI, we propose to evaluate the standard deviation of base-level estimates

over an area delineated by depth estimates that lie over the anomaly. In the presence

of interfering anomalies, we delineate this area using the approach of Melo et al.

(2013) which is defined through the intersection of mapped plateaus on horizontal

estimates (x̂o and ŷo). The minimum standard deviation of a set of estimated base

levels will define the correct SI. With the knowledge of the correct structural index

the average of depth estimates in the area previously selected can give one solution

per anomaly (Melo et al., 2013). Figure 4.1 is a flow chart that shows the steps of

our methodology

Figure 4.1: Flow chart of the methodology to define the correct structural index
(SI) in Euler deconvolution via base-level estimates.

All the software developed and used in this chapter is open source and was
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made available in 2019. The algorithm was developed in Python language and it is

compatible with both Python 2.7 and Python 3.7. The package with instructions is

available at https://github.com/ffigura/Euler-deconvolution-plateau.

4.4 Synthetic tests

We applied our methodology to different geological scenarios where the magnetic

sources are approximated by simple geometry (Hinze et al., 2013). However, these

simple geometries represent real geological bodies such as: a semi-infinite prism

simulating a fault (SI = 0), a line of poles simulating a vertical sheet or thin dike

(SI=1), a point pole simulating a vertical cylinder or a plug/pipe (SI=2) and a

dipole simulating a sphere or a magmatic chamber/Unexploded Ordnance (UXO)

(SI=3).

In the first test, we assume a null background value and an isolated anomaly. In

the second test, we assume a constant background value, simulating the magnetic

field on a region. In the third test, we simulate a nonlinear background; this back-

ground can be generated by a strong magnetic source or poor definition of the IGRF.

Finally, in the last test, we simulate both constant and nonlinear backgrounds and

approximate the sources distance, generating strongly interfering anomalies more

close to real-world scenario.

In all tests, except in the first where SI 0 is not used, we run Euler deconvolution

using tentative SIs of 0, 1, 2 and 3. The moving-data window size is 9× 9 grid points,

following the recommendation of Reid et al. (2014) about window size, grid space

and depth of investigation. Throughout these tests, values of declination, inclination

and total-field intensity were based on Chulliat et al. (2014), and derivatives were

calculated in Fourier domain (Blakely, 1996). All anomalies were corrupted with

pseudorandom Gaussian noise with zero mean and standard deviation of 0.01 nT.

We assume a coordinate system with x-axis increasing north, y-axis increasing east

and z-axis increasing down, in all tests the surveys were simulated on plane z = 0 km.

In the first test, the survey was simulated in a grid of 240 × 200 observation points in

the north and east directions, with a regular equal space of 0.1 km in both north and

east directions. In this test we simulate the the values of declination and inclination

of the geomagnetic field at the city of Dakar - Senegal (Chulliat et al., 2014). In all

other tests, values of declination, inclination and total-field intensity simulated the

field in the city of Phoenix - USA (Chulliat et al., 2014). Also, the surveys were

simulated in a grid of 325 × 300 observation points in the north and east directions,

with a regular equal space of 0.2 km in both north and east directions.

https://github.com/ffigura/Euler-deconvolution-plateau
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4.4.1 Test 1 - Null background

Figure 4.2 shows the synthetic noise-corrupted total-field anomaly produced by a

single pole (SI = 2). The simulated geomagnetic field has inclination of 7o and

declination of −7o, with null intensity. The single pole is located at xo = 12 km,

yo = 10 km, zo = 0.5 km and has magnetization intensity of 1 A/m.

Figure 4.2: total-field anomaly generated by a single pole (SI = 2). The simulated
magnetic field has inclination of 7o and declination of −7o.

Figure 4.3a-c shows depth estimates from Euler deconvolution assuming SIs 1,

2 and 3, respectively. For depth estimates, plateaus of solutions appear only when

the correct SI is used (Figure 4.3b). When the wrong SI is used, depth estimates

do not define a plateau; rather they form a cavity (Figure 4.3a) or a prominence

(Figure 4.3c).

Figure 4.3d-f shows base-level estimates from Euler deconvolution assuming SIs

1, 2 and 3, respectively. Base-level estimates exhibit the same behavior of depth

estimates, for isolated sources. Plateaus of solutions appear only when the correct SI

is used (Figure 4.3e). When the wrong SI is used, base-level estimates do not define

a plateau; rather they form a cavity (Figure 4.3d) or a prominence (Figure 4.3f).

Besides that, notice that base-level estimates mimics the total-field anomaly shape

(Figure 4.2).

Based on the identified plateau in the plot of depth estimates shown in Fig-

ure 4.3b, we selected we selected all the depth and base-level estimates that fall in

this area. With these estimates, we calculated the standard deviation in order to

define the correct SI. Table 4.1 confirms that the minima standard deviations either

of the depth or base-level estimates define the correct SI, highlighted in boldface,

for the case of isolated sources.
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Figure 4.3: Euler deconvolution estimates for the single pole with null base level.
Depth estimates (a) - (c) and base-level estimates (d) - (f) asssuming SI: 1, 2 and
3, respectively. Estimates assuming the correct SI generates a plateau of correct
values, while cavities or buldges appear when the wrong SI is used.

Table 4.1: Standard deviation of depth and base-level estimates for the null back-
ground. Minimum standard deviation for each source is highlighted in boldface.

ẑo b̂
SI = 1 0.121 15.706
SI = 2 0.006 0.031
SI = 3 0.124 5.239
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4.4.2 Test 2 - Constant background

Figure 4.4 shows the synthetic noise-corrupted total-field anomaly produced by semi-

infinite prism (SI = 0), a line of 1220 poles (SI = 1) separated by grid distance, a

single pole (SI = 2) and a sphere (SI = 3) of radius 0.5 km. The simulated geo-

magnetic field has inclination of 59o and declination of 10o with constant intensity

of 47500 nT. The prism with magnetization intensity of 1 A/m extends from in-

finitely along the x-direction, from 10 km to the infinite along the y-direction and

in depth from 0.5 km to infinite. The line of poles is located at yo = 45 km and

zo = 1.8 km and extends from xo = 15 to infinite, each pole has magnetization

intensity of 0.5 A/m. The single pole is located at xo = 45 km, yo = 25 km and

zo = 2 km, with magnetization intensity of 5 A/m. Finally, the sphere is magnetized

uniformly, with magnetization intensity of 5 A/m, magnetization inclination of of

9o and declination of −32o. The sphere is located at xo = 25 km, yo = 25 km and

zo = 1.5 km. Although applied to a constant base level, the results show in this test

was also applied to a null base level (not shown), i.e., magnetic anomaly corrected

for IGRF. By inspecting Figure 4.4 qualitatively, we can note a subtle distortion

of the data isovalue curves that indicates weakly interfering anomalies due to the

proximity between the simulated sources.

Figure 4.4: (a) Noise-corrupted total-field anomaly generated by a semi-infinite
prism (SI = 0), a line of poles (SI = 1), a single pole (SI = 2) and a sphere (SI = 3).
The simulated geomagnetic field with intensity of 47500 nT has inclination of 59o

and declination of 10o. The dipole is magnetized uniformly, with magnetization
intensity of 5 A/m, magnetization inclination of 9o and declination of −32o, while
the other sources are magnetized by induction only.

Figure 4.5a-d shows depth estimates from Euler deconvolution assuming SIs of

0, 1, 2 and 3, respectively. For depth estimates, plateaus of solutions appear only

when the correct SI is used, for non or weakly interfering anomalies. When the
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wrong SI is used, depth estimates do not define a plateau; rather they form a cavity

or a bulge. A plateau of depth estimates is clearly evident in Figure 4.5a over the

edge of the prism because the correct SI = 0 is used; whereas in Figure 4.5b-d we

can see buldges for the depth estimates of this source. The same occurs for the line

of poles, single pole and dipole, with respect to their correct structural indices.
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Figure 4.5: Euler deconvolution estimates for anomaly with constant background
(Figure 4.4). Depth (a) – (d) and base-level (e) – (h) estimates assuming SIs of 0,
1, 2 and 3, respectively. Depth estimates assuming the correct SI form a plateau
of correct values, whereas estimates using the wrong SI do not form a plateau and
have wrong values. Base-level estimates using the correct SI has minimum values
compared to the ones estimates using the wrong SI. For each source, the plateau
areas, where the methodology is applied, are outlined by dashed rectangles. These
areas were defined by the plateaus on the depth estimates shown in a – d.



CHAPTER 4. CORRECT STRUCTURAL INDEX IN EULER DECONVOLUTION VIA BASE-LEVEL ESTIMATES55

Table 4.2 shows standard deviations of depth estimates using four different SI

values for each source and considering this test with a constant background. The

minimum standard deviation for each source (highlighted in boldface) occurs if the

correct SI is used.

Table 4.2: Standard deviation of depth estimates for the constant background. Min-
imum standard deviation for each source is highlighted boldface.

Source SI = 0 SI = 1 SI = 2 SI = 3
Prism 0.002 0.277 0.555 0.8334
Line of
poles

0.109 0.017 0.113 0.222

Monopole 0.095 0.057 0.051 0.086
Dipole 0.102 0.068 0.041 0.037

Figure 4.5e-h shows base-level estimates from Euler deconvolution assuming SIs

of 0, 1, 2 and 3. These estimates fall at the same positions as depth estimates (Fig-

ure 4.5a-d) and exhibit the same pattern when the correct SI is used. Specifically,

a plateau of constant base-level estimates is exhibited when the correct SI is used

while cavities or bulges appear when the wrong SI is used. Thus, comparing at the

same source position using different SI is easy to identify that the smallest variation

of the base-level estimates at source location indicates the correct SI. Additionally,

notice that the base-level estimates mimic the magnetic anomaly (Figure 4.4).

Table 4.3 shows standard deviations of base-level estimates using four different SI

values for each simulated source. The minimum standard deviation for each source

is in boldface. As expected, for each source, the standard deviation is minimum

using the correct SI. Once the correct SI is defined, the mean depth calculated in

the same area gives the correct depth of the sources.

Table 4.3: Standard deviation of base-level estimates for the constant background.
Minimum standard deviation for each source is highlighted boldface.

Source SI = 0 SI = 1 SI = 2 SI = 3
Prism 86.436 124.742 124.949 125.040
Line of
poles

2959.662 4.451 15.550 20.226

Monopole 1869.891 9.835 2.989 4.169
Dipole 3244.212 21.072 5.074 1.970

This test shows that the minima standard deviations calculated either from base-

level estimates (Table 4.3) or from depth estimates (Table 4.2) are able to correctly

define SI in the presence of constant background. Also, this test shows that a con-

stant background does not interfere in Euler deconvolution estimates. Therefore, the
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magnetic data does not need to be previously corrected for IGRF to the application

of Euler deconvolution.

4.4.3 Test 3 - Nonlinear background

Here, we generated a synthetic total-field anomaly (Figure 4.6a) produced by the

same sources and magnetization direction of the previous test. In this test, a simu-

lated nonlinear background (Figure 4.6b) is added to the original data (Figure 4.6a)

by:

b(xi, yi) =
(xi + 10)× (yi + 10)

30
, (4.7)

giving rise the noise-corrupted magnetic anomaly (Figure 4.6c) to be used in Euler

deconvolution. In equation 4.7, the subscript i is related to the ith position of

the observation (xi, yi). This polynomial can simulate a regional field, a strongly

interfering anomaly or a poor definition of the IGRF. Notice that the nonlinear

background (Figure 4.6b) has high values of the same order of magnitude as the

original data (Figure 4.6a) producing strongly interfering anomalies, as displayed in

Figure 4.6c.
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Figure 4.6: Nonlinear background anomaly. (a) Noise-corrupted total-field anomaly
generated by a prism (SI = 0), a line of poles (SI = 1), a single pole (SI = 2) and
a dipole (SI = 3). The simulated geomagnetic field with intensity of 47500 nT has
inclination of 59o and declination of 10o. The dipole is magnetized uniformly, with
magnetization intensity of 5 A/m, magnetization inclination of 9o and declination
of −32o, while the other sources are magnetized by induction only. (b) Nonlinear
polynomial to simulate a regional field. (c) Noise-corrupted magnetic anomaly ob-
tained by adding the total-field anomaly shown in a to the nonlinear polynomial
shown in b.
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In Figure 4.7a-d we can see depth estimates from Euler deconvolution assuming

SIs of 0, 1, 2 and 3, respectively. Figure 4.7b shows the plateau on the depth esti-

mates over the line of poles with a too slight difference compared with Figure 4.5b.

In contrast, by comparing Figure 4.7c-d with Figure 4.5c-d, we notice that depth

estimates of the correct sources for SIs 2 and 3 do not form plateaus and show dif-

ferent shapes. This means that the depth estimates are affected by the presence of a

nonlinear background. In a case like this, where the plateaus are not clearly defined

on depth estimates (Figure 4.7c-d) we use the procedure of (Melo et al., 2013) which

delineates the plateau areas, in order to determine in our work the best SI, through

the intersections of the plateaus formed on the horizontal estimates (x̂o and ŷo).

Figure 4.8 shows the horizontal estimates using Euler deconvolution applied to

noise-corrupted magnetic anomaly 4.6c in the presence of nonlinear background.

Figure 4.8a-d shows the estimates x̂o and Figure 4.8e-h shows the estimates ŷo

assuming SIs of 0, 1, 2 and 3, respectively. Because, these horizontal estimates (x̂o

and ŷo) are less sensitive to interfering anomalies than estimates ẑo, the intersections

of the plateaus of x̂o (Figure 4.8a-d) and (Figure 4.8e-h) are used in this test to

delineate the areas (shown in dashed rectangles in Figure 4.7a-d), which are used to

determine the best SI.
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Figure 4.7: Euler deconvolution estimates for anomaly with nonlinear background.
Depth (a) – (d) and base-level (e) – (h) estimates assuming SIs of 0, 1, 2 and 3,
respectively. For each source, the plateau areas, where the methodology is applied,
are outlined by dashed rectangles. These areas were defined by the intersection of
mapped plateaus on horizontal estimates.
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Figure 4.8: Euler deconvolution estimates for anomaly with nonlinear background.
x̂o(a) – (d) and ŷo (e) – (h) estimates assuming SIs of 0, 1, 2 and 3, respectively.
For each source, the plateau areas, where the methodology is applied, are outlined
by dashed rectangles.

Table 4.4 shows the standard deviations for depth estimates in the presence

of nonlinear background, the minimum standard deviation for each source is in

boldface. For both prism and the line of poles, the minima standard deviations of

depth estimates indicate the correct sources. However, in contrast with the previous
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test, the minimum standard deviation for the pole indicates SI = 1 and for the dipole

indicates SI = 2, which are the wrong SIs for these sources. Let us recall that the

correct SI to a pole-like source is SI = 2 and a dipole-like source is SI = 3. Thus, the

presence of a nonlinear background gives rise some interference in depth estimates.

Table 4.4: Standard deviation of depth estimates for the non-linear background.
Minimum standard deviation for each source is highlighted boldface.

Source SI = 0 SI = 1 SI = 2 SI = 3
Prism 0.003 0.232 0.468 0.703
Line of
poles

0.109 0.047 0.113 0.223

Monopole 0.099 0.078 0.098 0.143
Dipole 0.120 0.092 0.081 0.099

Figure 4.7e-h shows the base-level estimates from Euler deconvolution assum-

ing SIs of 0, 1, 2 and 3, respectively. The presence of a nonlinear background

yields interfering anomalies (Figure 4.6c) that lead to strongly deformed base-level

estimates (Figure 4.7e-h). Thus, this presence makes it much harder to ”see” in Fig-

ure 4.7e-h the plateaus which were clearly viewed in the previous test with a constant

background (Figure 4.5e-h). Table 4.5 shows the standard deviations of base-level

estimates for the nonlinear background test. The minima standard deviations of

base-level estimates, in boldface, confirm the correct SI of each source.

Table 4.5: Standard deviation of base-level estimates for the null background. Min-
imum standard deviation for each source is highlighted boldface.

Source SI = 0 SI = 1 SI = 2 SI = 3
Prism 98.227 115.501 116.438 116.752
Line of

monopoles
3129.689 21.849 27.660 31.178

Monopole 1862.679 11.252 5.748 6.383
Dipole 2161.655 15.889 5.532 2.974

This test shows that the minimum standard deviation of base-level estimates

(Table 4.5) is more robust than the minimum standard deviation of depth estimates

(Table 4.4) to define the correct SI when a nonlinear background exists. The min-

imum standard deviation of depth estimates does not give the correct SI for all

sources; it fails for the monopole and for the dipole cases. In addition, the non-

linear background does not need to be previously removed to perform the Euler

deconvolution when base-level estimates are used to define the correct SI.
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4.4.4 Test 4 - Strongly interfering anomalies with constant

and nonlinear background

Here, we moved the position of the single pole to xo = 25 km and yo = 38 km and

the dipole to xo = 20 km and yo = 38 km in order to give rise strongly interfering

anomalies; the other sources were kept at the same position. Also, we added a

nonlinear background (Figure 4.6b) to the original data (not shown) and a constant

background of 47500 nT (as in test 2, Figure 4.4). Figure 4.9 shows the simulated

interfering magnetic data, where we note how hard is to distinguish and locate

correctly the pole-like and the dipole-like sources.

Figure 4.9: Strongly interfering anomalies with constant and nonlinear background.
Noise-corrupted total-field anomaly generated by a prism (SI = 0), a line of poles
(SI = 1), a single pole (SI = 2) and a dipole (SI = 3). The simulated geomagnetic
field with intensity of 47500 nT has inclination of 59o and declination of 10o. The
dipole is magnetized uniformly, with magnetization intensity of 5 A/m, magnetiza-
tion inclination of 9o and declination of −32o, while the other sources are magnetized
by induction only. The same nonlinear background generated in Figure 4.6b was
added to the anomaly.

Figure 4.10a-d shows depth estimates from Euler deconvolution assuming SIs of

0, 1, 2 and 3, respectively. Like the previous test plateaus on depth estimates are

not clearly defined for the single pole 4.10c and dipole 4.10d. The poorly disclosed

plateaus in Figure 4.10c-d exhibit a smoothing oscillation being bounded by abrupt

variations of the depth estimates. These results differ from the plateaus shown in

Figure 4.5c (single pole) and Figure 4.5d (dipole) in the case of synthetic test sim-

ulating weakly interfering anomalies (Figure 4.4). The plateaus for the application

of the methodology are outlined by dashed rectangles and are defined through the

intersection of horizontal estimates (Figure 4.11).
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Figure 4.10: Euler deconvolution estimates for strongly interfering anomalies with
constant and nonlinear background. Depth (a) – (d) and base-level (e) – (h) esti-
mates assuming SIs of 0, 1, 2 and 3, respectively. For each source, the plateau areas,
where the methodology is applied, are outlined by dashed rectangles. These areas
were defined by the intersection of mapped plateaus on horizontal estimates.

Again, this test shows that the depth estimates are influenced by interfering

anomalies, generated either by close sources or by nonlinear background. As in the

previous test, we use the intersection of mapped plateaus on horizontal estimates
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to delineate the areas to compute the standard deviations. Figure 4.11a-d shows x̂o

estimates and Figure4.11e-h shows ŷo estimates of Euler deconvolution assuming SIs

of 0, 1, 2 e 3, respectively. The intersection of these estimates define the areas for

the application of our methodology, these areas are defined by dashed rectangles.
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Figure 4.11: Euler deconvolution estimates for strongly interfering anomalies with
constant and nonlinear background. x̂o (a) – (d) and ŷo (e) – (h) estimates assuming
SIs of 0, 1, 2 and 3, respectively. For each source, the plateau areas, where the
methodology is applied, are outlined by dashed rectangles.

Here, the minima standard deviations of depth estimates (Table 4.6) of the prism

and the line of poles are able to correctly determine the SIs equal to 0 and 1.

However, the minima standard deviations for depth estimates (Table 4.6) of the

single pole and the dipole indicate a wrong SI = 1, since the true ones are SI = 2
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(in the case of a pole-like source) and SI = 3 (in the case of a dipole-like source).

Table 4.6: Standard deviation of depth estimates for the constant and non-linear
background. Minimum standard deviation for each source is highlighted boldface.

Source SI = 0 SI = 1 SI = 2 SI = 3
Prism 0.003 0.291 0.587 0.883
Line of

monopoles
0.100 0.038 0.115 0.213

Monopole 0.169 0.136 0.188 0.301
Dipole 0.149 0.134 0.155 0.201

Figure 4.10e-h shows the base-level estimates from Euler deconvolution by as-

suming SIs of 0, 1, 2 and 3, respectively. As in the previous test, the locations

of the pole-like and dipole-like sources are not clearly defined through the base-

level estimates. Notice that these estimates have the same pattern of the anomaly

(Figure 4.9).

Table 4.7 confirms that the minima standard deviations of base-level estimates

are able to correctly determine the SIs, even if the anomalies strongly interfere (Fig-

ure 4.9). Although the minima standard deviations of base-level estimates indicate

the correct sources (marked in boldface in Table 4.7), the differences in the standard

deviations for different SIs are quite small. This happens because Euler deconvo-

lution is applied to strongly interfering anomalies (Figure 4.9). Contrary to the

results shown in Table 4.3, where the minima standard deviations are very distin-

guishable because the Euler deconvolution is applied to weakly interfering anomalies

(Figure 4.4).

Table 4.7: Standard deviation of base-level estimates for the constant and non-linear
background. Minimum standard deviation for each source is highlighted boldface.

Source SI = 0 SI = 1 SI = 2 SI = 3
Prism 56.307 77.423 77.994 78.188
Line of

monopoles
1534.905 1958 20.280 21.493

Monopole 2477.599 15.632 13.560 15.741
Dipole 3076.670 24.874 11.760 9.125

In this test, we also show that base-level estimates are more robust than depth

estimates to define the correct SI when strongly interfering anomalies are generated

either by nearby sources or by a nonlinear background. The smallest scattering of

depth estimates failed in determining the correct SI (e.g., pole and dipole cases,

see Table 4.6). Finally, we stress that there is no theoretical restriction in applying

the Euler deconvolution to total-field measurements without removing either any

constant or nonlinear backgrounds.
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4.5 Application to real data set

The Goiás Alkaline Province (GAP) is a region in the central part of Brazil sub-

ject to mafic-alkaline magmatism (Marangoni and Mantovani, 2013). The region

is characterized by mafic-ultramafic alkaline complexes (plutonic intrusions) in the

northern portion, subvolcanic alkaline intrusions (diatremes) in the central part and

volcanic products (kamafugite lava flows) in the south with several dikes through-

out the area (Dutra and Marangoni, 2009; Dutra et al., 2012; Junqueira-Brod et al.,

2005). Thirteen anomalies are notable in the total-field magnetic map of GAP (Du-

tra et al., 2012; Marangoni and Mantovani, 2013) and these intrusions have remanent

magnetization (Dutra et al., 2014; Marangoni et al., 2016).

The real aeromagnetic data were acquired between June and November of 2004

with financial support from the government of the state of Goiás, Brazil (LASA and

S.A., 2004). The flight lines in direction north-south were acquired every 500 m

and tie lines in east-west direction every 5 km. The flight height was approximately

constant at 100 m and the interval between the measurements was 0.1 s, this in-

terval resulted in one measurement at each 8.2 m, approximately. The dataset is

gridded with the same size in the x and y directions, 125 m, as originally done

by the data-acquisition company (LASA and S.A., 2004). Figure 4.12a shows the

total-field anomaly Figure 4.12b shows the IGRF and Figure 4.12c shows total-field

measurements in the northern portion of the GAP (Junqueira-Brod et al., 2002),

and the inset shows the location of the GAP. In Figure 4.12a - c, the numbers indi-

cate the main alkaline intrusions in this region: 1 – Montes Claros de Goiás complex;

2 – Diorama; 3 – Córrego dos Bois complex; 4 – Fazenda Buriti complex; and 5 -

Arenópolis. The main study area is Diorama and it is delineated by a dashed line.

Note by Figure 4.12b that the IGRF variation is approximately of 100 nT in the

whole area, these values are small and almost linear when compared to the total-field

anomaly of the main anomalies in the area (Figure 4.12a).
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Figure 4.12: Real data set application. The numbers indicate the main alkaline
intrusions in this study area: 1 – Montes Claros de Goiás complex; 2 – Diorama;
3 – Córrego dos Bois complex; 4 – Fazenda Buriti complex; and 5 - Arenópolis. The
main objective of the study is Diorama, delineated with a dashed line. The inset
shows the location of GAP. (a) Total-field anomaly, (b) IGRF and (c) Total-field
measurements.

Junqueira-Brod et al. (2002) presented a detailed geological study of this area.

According to these authors, the Montes Claros de Goiás complex is an outcrop with

28 km2 of superficial area formed by dunes, peridotites, pyroxenites, gabbros and
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syenites. The ultramafic rocks form two nuclei that rise to the southwest and north,

separated by a central syenitic intrusion. The Arenópolis intrusion is an elongated

body generated by three distinct lithologic types: pyroxenite, melteigites and syen-

ite, the latter outcrops. The Córrego dos Bois complex consist of two domes, mainly

of dunites, covering an area of 33 km2. The structure is surrounded by a narrow and

discontinuous intrusion of syenite and being intruded by dykes. The Fazenda Buriti

complex covers an area of 35 km2 and consists of olivine clinopyroxenite, melagab-

bro, syenogabbro and syenite (Dutra et al., 2012). Finally, in Diorama area are

common subvolcanic intrusions, dikes, plugs and sills of picrite (Marangoni et al.,

2016).

Here, we apply Euler deconvolution to the whole area, but focus our interpre-

tation on the magnetic anomaly over the Diorama alkaline intrusion (Dutra et al.,

2014; Marangoni et al., 2016; Oliveira Jr et al., 2015). The Diorama is our tar-

get anomaly because its shape resembles a weakly interfering anomalies produced

by isolated sources. However, we interpret the main alkaline intrusions that yield

the strongest magnetic anomalies (labeled 1-5 in Figure 4.12a-c) in our study area.

Although, we interpret the strongest magnetic anomalies, we stress that there are

many other weak anomalies that can generate interferences. We run Euler decon-

volution with a moving-data window size of 9 × 9 grid points. Figure 4.13 shows

horizontal estimates, x̂o and ŷo respectively, of the study area, grid lines are plotted

every 1.5 km. The plateaus in Figure 4.13 delineate the the main anomalies in the

area.

Figure 4.14 shows depth estimates, ẑo, assuming SIs 2 and 3, respectively. Depth

estimates assuming other indices will not be shown because there are no large

plateaus identified either in horizontal (Figure 4.13) or depth estimates maps. Fig-

ure 4.14 shows many forms that seem plateaus on depth estimates. The selected

plateau areas are indicated by the first letter of the name of the anomalies and delin-

eated by rectangles in Figure 4.14. Notice that over the Diorama anomaly we iden-

tified three plateaus (D1– D3 in Figure 4.14), we also could identify these plateaus

using Euler deconvolution with a window size of 15 × 15 points (not shown). On

the other hand, we could not clearly identify any plateau over the anomaly Fazenda

Buriti (labeled 4 in Figure 4.14).

Figure 4.15a-b shows base-level estimates for the total-field anomaly (Figure reffig:real-

1a) and Figure 4.15c-d shows base-level estimates for the total field measurements

(Figure 4.12c) assuming SI 2 and 3, respectively. In both figures, the estimates fol-

low the same pattern of the anomalies shown in Figure 4.12a and 4.12c and exhibit

nonlinear patterns of the strong and the weak anomalies. Besides, a possible poor

definition of IGRF in South America can also contribute to this nonlinear pattern

(Marangoni et al., 2016).
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Figure 4.13: Horizontal estimates (a) x̂o and (b) ŷo of GAP, contour lines are plotted
each 1.5 km.

We applied our methodology and calculated the standard deviations of base-

level estimates from total-field anomaly (Table 4.8) and total-field measurements

(Table 4.9) assuming SIs of 0, 1, 2 and 3. As expected, the results from both Tables

are the same and the minima standard deviations of base-level estimates highlighted

in boldface. Based on this analysis, we may infer that the alkaline intrusion of

Diorama is generated by three plug intrusions (D1– D3 in Figure 4.14). Also, the

results point that Arenópolis (A1) and Montes Claros de Goiás (CM1) are dipole-like

sources and Córrego dos Bois (C1) is generated by line of poles. The unrealistic result

about Córrego dos Bois complex (labeled 3 in Figure 4.12) is expected because this

anomaly does not resemble to be produced by an ideal single-point source and thus

the Euler’s solutions are not reliable. In fact, it seems that it is generated by complex

source or multiple sources (non-ideal source). Let us recall that Euler deconvolution

is grounded on Euler theorem equation for homogeneous functions; hence it should

only be applied to limited situations where it can be expected to work and under

the premises previously discussed. As pointed out by Barbosa and Silva (2011),
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Figure 4.14: Depth estimates assuming (a) SI = 2 and (b) SI = 3. The plateau
areas, where the methodology is applied, are outlined in rectangles with the first
letters of the name of the anomalies.

there is still more to be done to improve Euler deconvolution in order to reduce

its disadvantages (e.g., its poor performance in interpreting anomalies produced by

non-ideal sources) but without losing its advantage (e.g., computational efficiency).

Table 4.8: Standard deviation of base-level estimates for the total-field anomaly of
GAP. Minimum standard deviation for each source is highlighted boldface.

Source SI=0 SI=1 SI=2 SI=3
D1 5737.862 32.958 19.833 23.129
D2 36391.828 397.293 367.469 378.203
D3 18222.783 157.004 152.233 162.431

CB1 48968.695 735.151 895.069 958.207
A1 61613.215 466.475 238.997 216.590

MC1 45359.930 780.363 663.217 643.712

The most striking feature of Tables 4.8 and 4.9 is the small differences in the

standard deviations for different SIs. Like the synthetic test using strongly inter-
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Figure 4.15: Base level estimates of total-field anomaly assuming (a) SI = 2 and
(b) SI = 3 and base level estimates of total-field measurements assuming (c) SI = 2
and (d) SI = 3. The areas where the methodology are applied are indicated with the
first letters of the name of the anomalies and outlined in rectangles in Figure 4.14.

Table 4.9: Standard deviation of base-level estimates for the total field measurements
of GAP. Minimum standard deviation for each source is highlighted boldface.

Source SI=0 SI=1 SI=2 SI=3
D1 5704.204 32.492 19.851 23.163
D2 36571.570 393.546 367.408 377.060
D3 17892.637 156.249 151.961 162.679

CB1 49128.473 735.896 893,910 959.535
A1 61534.789 462.392 237.158 215.245

MC1 45298.429 777.376 665.279 646.095

fering anomalies (Figure 4.9 and Table 4.7), in the real dataset (e.g., the Diorama

anomaly in Figure 4.12) the differences in the standard deviations for different SIs

are small (Tables 4.8 and 4.9). Likewise, the real data (Figure 4.12) exhibit strongly

interfering anomalies.
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4.6 Final Considerations

By analyzing the Euler’s equation, we show that realizations of random variables

contaminating the potential-field measurements and its gradients affect the base-

level estimates if, and only if, the structural index (SI) is not assumed correctly. We

proposed a methodology to define the correct SI based on the minimum standard

deviation of base-level estimates. For each tentative SI, we calculate the standard

deviation of base-level estimates over the geological source which, in turn, is de-

fined by the areas depicted as plateau-shaped depth estimates or plateau-shaped

horizontal estimates. We tested our methodology with different sources, related

to different the structural indices and achieved the correct SI even in the case of

strongly interfering anomalies. We show that base-level estimates have a non-linear

pattern that mimics the anomaly shape, even when the background field is null. We

also show that Euler deconvolution does not require that the observed total field

be corrected either from constant or nonlinear backgrounds like IGRF or regional

tendency. Actually, the presence of backgrounds and nearby sources affects depth

estimates, but they do not affect base-level estimates. Consequently, the determi-

nation of the correct SI based on any criterion grounded on the depth estimates

can fail. Rather, the proposed criterion for determining the correct SI based on the

minimum standard deviation of base-level estimates is sound. Application to a real

dataset followed the expected theoretical behavior and we infer that the alkaline

intrusion over Diorama (Goiás, Brazil) is generated by three plugs, based on SI = 2

defined from our methodology. We applied our methodology in total-field measure-

ments and total-field anomaly (corrected for IGRF) and the numerical results are

basically the same. Both results indicate the same SI for the Diorama alkaline in-

trusion and show that the magnetic data does not need to be corrected for IGRF

previously to the application of Euler deconvolution. Applications in areas where the

anomalies do not even resemble to be generated by single-point source (ideal source)

have impracticable and unpredictable results. Euler deconvolution is grounded on

Euler theorem equation for homogeneous functions; hence, theoretically, it should

only be applied to geological situations where it can be expected to work and under

the premises it was developed for working. However, complex geological scenarios

should not be ignored; ergo, there is still room for improvement in order to modify

and adapt Euler deconvolution equation to non-ideal sources.
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Conclusions

This thesis contributes to the qualitative and the quantitative interpretations of

magnetic data. In the qualitative interpretation, we proposed the use of the am-

plitude of the magnetic anomaly vector in the interpretation of total-field anomaly

data at low magnetic latitudes in large areas. In the quantitative interpretation of

magnetic data we deal with Euler deconvolution and proposed a reduction of the

spray of the Euler estimates and a new criteria to define the correct structural index.

The developments on this thesis were made using the python language and we made

available the open source codes in the methodology sections of each chapter.

Some previous papers published in the literature have been used the amplitude

of the magnetic anomaly vector for interpreting (or estimating) isolated magnetic

sources in small areas. Differently, we used the amplitude data to produce a fast

qualitative interpretation of interfering anomalies produced by multiple, complex,

and closely separated 3D geologic sources over a large area at low magnetic lati-

tudes. In this thesis, the amplitude data are used to assist a geologist in producing

(or improving) an apparent-geologic map. The main advantage of the amplitude

data is its weakly dependence on the magnetization direction. This aspect turns the

amplitude data attractive to interpret areas at low latitudes with remanent magne-

tized bodies. Therefore, in this thesis, we propose the use of the amplitude data as

an initial attempt to yield an apparent-geologic map either in large-scale areas at

low latitudes with remanent magnetized bodies or in areas where the conventional

geologic mapping are not feasible to be accomplished due to the features of the

terrain (e.g., rugged topography, dense forests, poor rock exposures). Important

anomalies that are not clearly seen in either total-field anomaly map or in filtered

map (such as reduced-to-pole or total gradient maps) may show up in the amplitude

data map. The interpretation of the amplitude data computed in a large region of

the Amazonian Craton, at low latitudes in northern Brazil, matches the behavior

described in the synthetic tests which includes centered anomalies present in the

total-field anomaly map and correlated with the known outcropping rocks in the
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geological map of the region. More than that, the amplitude data provide a plausi-

ble geophysical interpretation of the unmapped geology suggesting multiple buried

geologic bodies following a trend of the know outcropping geologic units.

In the quantitative interpretation of magnetic data, we propose two new method-

ologies in the classic Euler deconvolution method that contribute to solve two well-

known drawbacks: the spray of Euler solutions and the definition of the correct

structural index. In our first quantitative interpretation, we propose a methodology

to reduce the spray of Euler solutions by selecting the reliable solutions as those es-

timated from the moving-data windows with the greatest standard deviations of the

vertical derivatives of the total-field anomaly. Our methodology to select the reliable

Euler solutions can be combined with other methods to reduce the spray of Euler

solutions and it can be used in other Euler extensions as the extended Euler method.

We show that this methodology is able to distinguish the four possible structural

indices and works in a scenario with interfering anomalies. Real data application

makes it possible to infer the nature of the Anitápolis anomaly, southern Brazil, as

a plug-like intrusion, which represents a geologically meaningful hypothesis.

In our second quantitative interpretation, the base-level estimates were used

to define the correct structural index in Euler deconvolution. Grounded on Eu-

ler’s equation - which indicates that random variables contaminating the magnetic

anomaly and its gradients affect the base-level estimates if, and only if, the struc-

tural index is assumed wrongly - our methodology proposed the minimum standard

deviation of base-level estimates for determining the correct structural index in Euler

deconvolution. We also show that a magnetic background anomaly does not interfere

in the definition of the structural index and on the depth estimates. On the applica-

tion of our methodology in the Goiás Alkaline Province, central Brazil, we infer that

the Diorama anomaly was generated by three plug intrusions and the Arenópolis

and Montes Claros de Goiás anomalies were generated by dipole-like sources, these

anomalies seems to be generated by ideal single-point sources. Moreover, we call

attention that the Euler deconvolution always generates solutions, however these

solutions may be unrealistic if it is applied to anomalies produced by sources that

do not behave as single-point geologic source.

The qualitative and quantitative methods presented in this thesis can be used

together in a future study. A possible scenario is the computing of the amplitude

of the magnetic anomaly vector and the Euler deconvolution from the total-field

anomaly with the overlaying of the results.



Bibliography

Adriano, L. B., Menezes, P. T., Adriano, M. S., Cunha, A. S., Cabrera, M. H.,

Silva, D. S., Moura, L. P., 2018. Jequitinhonha basin: Structural aspects,

relationship with igneous activity, and hydrocarbon exudations. Interpre-

tation 6 (1), T51–T60.

Agarwal, B., Srivastava, S., 2009. Analyses of self-potential anomalies by conven-

tional and extended euler deconvolution techniques. Computers & Geo-

sciences 35 (11), 2231–2238.

Airo, M.-L., Loukola-Ruskeeniemi, K., 2004. Characterization of sulfide deposits

by airborne magnetic and gamma-ray responses in eastern finland. Ore

Geology Reviews 24 (1), 67 – 84, ores and organic matter.

Almeida, F., Hasui, Y., Brito Neves, B., R.A., F., 1981. Brazilian structural

provinces: an introduction. Earth-Science Reviews 17, 1–29.

Baranov, V., 1957. A new method for interpretation of aeromagnetic maps: Pseudo-

gravimetric anomalies. Geophysics 22, 359–383.

Barbosa, V. C., Silva, J. B., 2006. Interactive 2d magnetic inversion: A tool for aid-

ing forward modeling and testing geologic hypotheses. Geophysics 71 (5),

L43–L50.

Barbosa, V. C., Silva, J. B., 2011. Reconstruction of geologic bodies in depth

associated with a sedimentary basin using gravity and magnetic data.

Geophysical Prospecting 59 (6), 1021–1034.

Barbosa, V. C., Silva, J. B., Medeiros, W. E., 1999. Stability analysis and improve-

ment of structural index estimation in euler deconvolution. Geophysics

64 (1), 48–60.

Barbosa, V. C., Silva, J. B., Medeiros, W. E., 2000. Making euler deconvolution ap-

plicable to small ground magnetic surveys. Journal of Applied Geophysics

43 (1), 55–68.

76



CHAPTER 5. CONCLUSIONS 77

Beiki, M., Pedersen, L. B., 2010. Eigenvector analysis of gravity gradient tensor to

locate geologic bodies. Geophysics 75 (6), I37–I49.

Biondi, J., 2005. Brazilian mineral deposits associated with alkaline and alkaline-

carbonatite complexes. In: P., C.-C., C.B., G. (Eds.), Mesozoic to Ceno-

zoic Alkaline Magmatism in the Brazilian Platform. Vol. 1. Edusp/Fapesp,

São Paulo, pp. 707 – 750.

Blakely, R. J., 1996. Potential theory in gravity and magnetic applications. Cam-

bridge University Press.

Busby, J., Peart, R., Green, C., Ogilvy, R., Williamson, J., 1991. A search for

direct hydrocarbon indicators in the formby area. Geophysical Prospecting

39 (5), 691–710.

Cella, F., Fedi, M., 2012. Inversion of potential field data using the structural

index as weighting function rate decay. Geophysical Prospecting 60 (2),

313–336.

Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., Woods,

A., Ridley, V., Maus, S., Thomson, A., 2014. The us/uk world magnetic

model for 2015-2020. NOAA National Geophysical Data Center, Boulder,

CO.

Comin-Chiaramonti, P., Gomes, C., Censi, P., Speziale, S., 2005. Carbonatites

from southeastern brazil: a model for the carbon and oxygen isotope. In:

P., C.-C., C.B., G. (Eds.), Mesozoic to Cenozoic Alkaline Magmatism in

the Brazilian Platform. Vol. 1. Edusp/Fapesp, São Paulo, pp. 629 – 656.

Cooper, G., 2006. Obtaining dip and susceptibility information from euler decon-

volution using the hough transform. Computers & geosciences 32 (10),

1592–1599.

CPRM, 2011. Project: Aerogeophysical survey paraná-santa catarina: Survey and
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Appendix A

Theory of Euler deconvolution

A.1 Euler’s theorem for homogeneous functions

Euler deconvolution (Reid et al., 1990) is based on Euler’s homogeneous function.

By definition (Mas-Colell et al., 1995), if the function f(x1, . . . , xk) is homogeneous

of degree N if ∀ t > 0, we have:

f(tx1, . . . , txk) = tNf(x1, . . . , xk), N = . . . ,−1, 0, 1 . . . . (A.1)

If f(x1, . . . , xk) is homogeneous of degree N and has continuous first order par-

tial derivatives (Sokolnikoff et al., 1966), then Euler’s theorem for homogeneous

functions (Irving and Mullineux, 1959) is:

(x1
∂

∂x1

+ x2
∂

∂x2

+ . . .+ xk
∂

∂xk
)f(x1, . . . , xk) = Nf(x1, . . . , xk). (A.2)

One way to achieve Euler’s theorem for homogeneous functions (equation A.2)

is deriving equation A.1. Assuming f(x1, . . . , xk) = f(x, y, z), we will take the

derivatives of equation A.1 with respect to t:

d

dt
f(tx, ty, tz) =

d

dt
tNf(x, y, z). (A.3)

Developing the left side of equation A.3:

d

dt
f(tx, ty, tz) =

∂

∂x
f(tx, ty, tz)

d

dt
(tx)+

∂

∂y
f(tx, ty, tz)

d

dt
(ty)+

∂

∂z
f(tx, ty, tz)

d

dt
(tz).

(A.4)

Going ahead with the derivation of A.4:

d

dt
f(tx, ty, tz) = x

∂

∂x
f(tx, ty, tz) + y

∂

∂y
f(tx, ty, tz) + z

∂

∂z
f(tx, ty, tz). (A.5)
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Now, taking the derivative of the right hand side of equation A.3:

d

dt
tNf(x, y, z) = NtN−1f(x, y, z). (A.6)

Replacing equations A.5 and A.6 in equation A.3:

x
∂

∂x
f(tx, ty, tz) + y

∂

∂y
f(tx, ty, tz) + z

∂

∂z
f(tx, ty, tz) = NtN−1f(x, y, z). (A.7)

For convenience, let’s assume t = 1 in equation A.7:

x
∂

∂x
f(x, y, z) + y

∂

∂y
f(x, y, z) + z

∂

∂z
f(x, y, z) = Nf(x, y, z). (A.8)

Equation A.8 is exactly equation A.2, which in turn is the Euler homogeneous

equation.

A.2 Euler’s theorem applied to single-point sources

Henderson and Zietz (1948) used the equation that describes the field generated by

magnetic single pole and the line of poles in order to perform interpretation. Smellie

(1956), extended the work of Henderson and Zietz (1948) to a dipole and a line of

dipoles. These authors have shown how single-point sources can represent simple

geological bodies. Magnetic single-point sources generate fields that have the form:

f(x, y, z) =
G√

(x− xo)2 + (y − yo)2 + (z − zo)2)
n , (A.9)

where (xo, yo, zo) are source coordinates, (x, y, z) are observation coordinates, G is a

constant that depends on the source geometry and magnetic susceptibility contrast

but does not depend on the position (x, y, z) and n is the constant related to the

decay rate of the anomaly and depends on the geometry of each body.

Single-point sources generate fields that can be described by equation A.9 and

respect Euler’s homogeneous equation. This fact can be proven by using the Euler’s

homogeneous function theorem (equation A.1) and multiplying a constant t to the

source and to the observation coordinates in equation A.9:

f(tx, ty, tz) =
G√

(tx− txo)2 + (ty − tyo)2 + (tz − tzo)2)
n . (A.10)

Developing equation A.10:

f(tx, ty, tz) =
G√

t2 [(x− xo)2 + (y − yo)2 + (z − zo)2)]
n , (A.11)
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finally:

f(tx, ty, tz) =
G

tn
√

(x− xo)2 + (y − yo)2 + (z − zo)2)
n . (A.12)

Replacing equation A.9 in the right hand side of equation A.12:

f(tx, ty, tz) = t−nf(x, y, z). (A.13)

Equation A.13 shows that single-point sources generate a field that are homogeneous

functions of degree −n.

Hood (1965) and Slack et al. (1967) showed that fields generated by magnetic

point-sources are described by homogeneous functions. These authors were the first

to use the Euler homogeneous equation for geological interpretation. By assuming

the knowledge of η, Hood (1965) estimated the depth of bodies. On the other hand,

Slack et al. (1967) estimated the depth and nature of the body simultaneously.

Assuming that the anomalous magnetic field is defined by:

H(x, y, z) = f(x, y, z), (A.14)

these authors used Euler homogeneous equation as:

x
∂

∂x
H(x, y, z) + y

∂

∂y
H(x, y, z) + z

∂

∂z
H(x, y, z) = −ηH(x, y, z), (A.15)

where −η = N is the constant that describes the rate of decay of the field.

A.3 Euler deconvolution

Thompson (1982) proposed a method called ”Euldph” that is based on Euler’s

homogeneous function and applied it in profile data (2D case). Thompson (1982)

called the decay rate constant (Hood, 1965; Slack et al., 1967) of structural index (SI

- η) and used the method to 2D profile data assuming an acquisition at ground level

z = 0. This author proposed that a moving-data window scheme should be used,

where at each moving-data window position the system of equations A.8 is solved,

assuming a tentative SI. Moreover, Thompson (1982) noticed that the magnetic

anomaly by itself was rarely recorded due to regional fields or interfering anomalies.

Therefore, he proposed that the anomalous field is disturbed by a constant value in

each window:

h(x, y, z) = H(x, y, z) + b, (A.16)

where h(x, y, z) is the total-field anomaly and b is the base level or background, which

represents a constant value (in nT). Therefore the system of equations proposed and
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solved by Thompson (1982) is:

xo
∂h

∂x
+ zo

∂h

∂z
+ ηb = x

∂h

∂x
+ ηh. (A.17)

The system of equations A.17 can be solved for each moving-data window po-

sition using least squares. For each moving-data window position the parameters

estimated are: the horizontal and vertical positions of the source and the base level,

assuming a tentative SI. Thompson (1982), noticed that using tentative SI the cor-

rect depth estimates are close to each other, generating the tightest cluster of Euler

solutions, if the correct SI is used. With this knowledge, he proposed a statistical

criterion to determine the correct SI based on the grouping of the depth estimates.

Reid et al. (1990) expanded the work of Thompson (1982) to gridded data and

called the method, popularly known, as Euler deconvolution. In addition, these

authors deduced mathematically the SI for magnetic anomalies generated by dike

and geological contact and gravimetric anomaly generated by a finite step. Euler

deconvolution has the following formulation:

x̂o
∂hi
∂x

+ ŷo
∂hi
∂y

+ ẑo
∂hi
∂z

+ ηb̂ = xi
∂hi
∂x

+ yi
∂hi
∂y

+ zi
∂hi
∂z

+ ηhi, (A.18)

where hi = h(xi, yi, zi) is the ith observation of the total-field anomaly in coordinates

(xi, yi, zi).
∂hi
∂x

, ∂hi
∂y

, and ∂hi
∂z

are the field derivatives with respect to the coordinates x,

y and z and η is the SI related to the nature or geometry of the source. The estimated

parameters are x̂o,ŷo and ẑo related to the horizontal and vertical coordinates of the

source, and b̂ is a base level (i.e., a background value). Therefore, solving this

linear system of equations provides four parameters, assuming a tentative SI. Euler

deconvolution works over the entire data set using a moving-data window scheme.

At each moving-data window position, this system solves the system and estimates

four parameters. The moving-data window is shifted along the whole data set, one

grid position per time, thus overlapping the observations in the moving-data window.

Table A.1 shows the SIs used in Euler deconvolution and its relation with: mag-

netic sources, geometric and geological forms. Barbosa et al. (1999) showed that SI

values close to zero can be used and they do not generate instability in the system

of equations. However, they stressed that if SI is zero, the base level cannot be

determined.

Figure A.1 shows some magnetic single-point sources and its geometric relation-

ship (Table A.1) used in Euler deconvolution.

Euler deconvolution was initially proposed for processing aeromagnetic data

(Reid et al., 1990), however it was extended to process ground data (Barbosa et al.,

2000), gravimetric data (Marson and Klingele, 1993; Reid et al., 2003; Stavrev,
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Table A.1: SIs used in Euler deconvolution and its relation to magnetic sources,
geometric and geological forms. Source: Cella and Fedi (2012); Hinze et al. (2013);
Reid et al. (1990); Reid and Thurston (2014); Stavrev (1997); Thompson (1982).

Structural index (η)
Magnetic

source
Geometric

source
Geologic source

Estimated
depth

0
Sheet of poles

/ Vertical prism

Sheet in ”L” /
Infinity vertical

prism

Infinity contact
/ fault

Top

1 Line of poles
Finite sheet /

Horizontal prism
Vertical dike Top

2
Horizontal

line of dipoles
Horizontal cylinder Horizontal pipe Center

2
Pole / Vertical line

of dipoles
Vertical cylinder

Plug /
Vertical pipe

Top

3 Dipole sphere
Magmatic chamber

/ UXO
Center

Figure A.1: SIs of magnetic single-point sources. Modified from Hinze et al. (2013).

1997), gradiometric data (Zhang et al., 2000), satellite data (Ravat et al., 2002) and

spontaneous potential data (Agarwal and Srivastava, 2009).

A.4 Plot of the solutions

The plot of the Euler estimates plays a crucial role in the Euler deconvolution

because the correct SI is determined from it. There are two ways to plot Euler

estimates: i) the classic plot, where for each SI, the horizontal coordinates estimates

obtained for each position of a moving-data window are plotted in the plan view of

the study area and the depth estimates are represented by different color, and ii) the

plateau plot, where for each SI, every Euler estimate is displayed against the central

position of the moving-data window. Therefore, an explanation and differentiation

between the classic plot of Euler deconvolution estimates (Reid et al., 1990) and the

plateau plot (Barbosa et al., 1999; Melo and Barbosa, 2018; Melo et al., 2013) is

necessary.

For a visual convenience, let us consider the kth and (k + 1)th moving-data
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windows located over a geologic source. Figure A.2a shows a schematic pictorial

representation of the classic plot of Euler estimates from a total-field anomaly with

vertical magnetization assuming the correct SI, where the red rectangle outlines the

horizontal projections of the source. In this plot, the kth and (k + 1)th estimates

are shown such as displayed in Reid et al. (1990). In this classic plot, the estimates

of the horizontal coordinates x̂o and ŷo are plotted on the x − y plane (north-east

plane), and the depth estimate ẑo is plotted using color depth scale. Specifically, we

are using colored circles to locate the estimates. Over the source and assuming the

correct SI the horizontal and vertical estimates have values that are very close to the

true source coordinates producing therefore the tightest cluster of source-position

estimates. Usually the estimates b̂ are neglected, although they are calculated in

equation 3.3. Here, the base-level estimates are plotted in the same way as depth

estimates (Figure A.2a). Figure A.2b shows the base-level estimates b̂ for the correct

SI in the same estimates of horizontal coordinates (shown Figure A.2a) and using a

color scale in nanotesla.

Figure A.2: Schematic pictorial representation of the classic plot of Euler deconvo-
lution estimates for the correct SI over a source, outlined by a red rectangle. The
kth and (k+1)th horizontal coordinate estimates show x̂ko and ŷko plotted at its plan
(x, y) position, (a) ẑo and (b) b̂ are plotted using colored circles according to their
color bars.

Figure A.3a-d shows a schematic pictorial representation of the plateau plot of

the Euler deconvolution estimates assuming the correct SI, such as in Melo and

Barbosa (2018); Silva and Barbosa (2003). These data windows are located over

a geologic source outlined by the red rectangle in Figure A.3a-d. For each po-

sition of the moving-data window and assuming a tentative SI, the estimates x̂ko

(Figure A.3a), ŷko (Figure A.3b), ẑko (Figure A.3c) and b̂k (Figure A.3d) are plot-

ted against the xj− and yj−coordinates of the center of the moving-data window

producing four maps (Figure A.3a-d). Each map displays one of the four Euler

estimates (each element of the parameter vector in equation A.18). Notice that the
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plateau plot of the Euler estimates does not select or filter any estimate; this plot

displays all estimates. For a graphical convenience, we highlight two estimates, with

black dots, located at the central positions (xj, yj) and (xj+1, yj+1) of the kth and

(k + 1)th moving-data windows. If the correct SI is used, these estimates, over the

source, form plateaus because the estimates from different moving-data windows are

very close to each other. The minimum standard deviation of depth estimates, for

the case of isolated or weakly interfering anomalies, defines the correct SI. For the

case of mid or strongly interfering anomalies, the minimum standard deviation of

base-level estimates defines the correct SI (Melo and Barbosa, 2018). The intersec-

tion of the plateaus on the horizontal coordinate estimates (shown in Figure A.3a

and b) defines the region to compute the standard deviation of depth (or base level)

estimates.

A.5 Traditional definition of the correct SI

A practical impediment to the application of Euler deconvolution is the need to

presume a tentative SI. Because the Euler deconvolution is grounded on homoge-

neous functions the SI can only be integer (Mas-Colell et al., 1995; Ravat, 1996;

Reid et al., 2014; Reid and Thurston, 2014; Thurston, 2010); otherwise, the index

changes under the variation of the source-observation vector (Ravat, 1996; Reid and

Thurston, 2014). Assuming integer SIs, Thompson (1982) noticed the relationship

between the correct SI and depth estimates. This author noticed that the correct SI

produces the lowest scattering of solutions and thus proposed a method to determine

the correct SI. Therefore, Thompson (1982) proposed the acceptance of solutions

satisfying the inequality:
ẑo
ησzo

> 20, (A.19)

where ẑo is the estimated depth, η is the SI and σzo is the standard deviation of zo

estimates. Silva et al. (2001) showed that the criterion for determining the SI as

the tentative value that produces the minimum scattering of the solutions, which

includes the depth estimates, is theoretically solid, but may fail in practice because

of the noise in the data.

Reid et al. (1990) followed the approach of the clustering of solutions and pro-

posed their widely accepted and used methodology to define the correct SI with a

variation of the methodology of Thompson (1982). Reid et al. (1990) proposed the

acceptance of solutions satisfying the inequality:

σzo
ẑo

< 0.15. (A.20)
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Figure A.3: Schematic pictorial representation of the plateau plot of Euler decon-
volution estimates for the correct SI over a source, outlined by a red rectangle. The
estimates (a) x̂ko , (b) ŷko , (c) ẑko and (d) b̂k are plotted against the central position of
the moving-data window. We highlight two estimates, with black dots, located at
the central positions (xj, yj) and (xj+1, yj+1) of two moving-data windows.
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