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ABSTRACT

We have developed codes to calculate the local amplitude,
the local phase, and the local orientation of the nonscale and
the Poisson’s scale-space monogenic signals of potential-field
data in version 1.0 of the open-source program Monogenic.
The monogenic vector of a generic function is calculated in
the wavenumber domain and then transformed back into the
space domain to find the monogenic signal attributes. We
compare the use of the nonscale monogenic signal with the
Poisson’s scale-space monogenic signal in magnetic data.
This comparison shows that the latter can produce better re-
sults as an edge detection filter. The implementation of the
monogenic signal can be used to enhance other geophysical
data, such as seismic, ground-penetrating radar, gravity,
multiple-component gravity gradiometry, and magnetic gra-
dient data.

INTRODUCTION

Most edge detection filters in geophysical applications are based
on the derivative of the field. One of the most popular filters is
the 2D analytical signal proposed by Nabighian (1972). The 2D
analytical signal is the amplitude of the vector composed by the
horizontal and vertical derivatives of the data. Nabighian (1984) in-
troduces the 3D analytical signal, and Roest et al. (1992) propose
the total gradient. The total gradient is the amplitude of the vector
composed by the x- and y-horizontal derivatives and the vertical
derivative of the data. Gradient amplitude-based filters fail to enhance
strong and weak anomalies simultaneously. On the other hand, the tilt
angle (Miller and Singh, 1994) enhances weak and strong anomalies
produced by shallow- and deep-seated sources equally well.

One of the biggest problems of edge detection filters based on
derivatives, and especially the ones that use vertical derivatives, is
the enhancement of the noise content. Because of this, Hassan and
Yalamanchili (2013) propose the monogenic signal attributes of
magnetic data as a set of filters based on the Riesz transform that
do not use only the derivative of the data. The monogenic signal is
an image-processing tool proposed by Felsberg and Sommer (2001)
that can be applied to any kind of image data. In contrast with the
classic edge detection filters used in geophysical applications, the
monogenic signal is applied directly to the data and does not require
derivatives. Cooper (2014) proposes the zero-order analytical sig-
nal, which in practice is the same as the amplitude of the monogenic
signal proposed by Hassan and Yalamanchili (2013). Following
Felsberg and Sommer’s (2001) approach, Hidalgo-Gato and Bar-
bosa (2015) propose the Poisson’s scale-space monogenic signal
of a potential-field function as an edge detection filter. In this paper,
we refer to the monogenic signal attributes presented by Hassan and
Yalamanchili (2013) as the nonscale monogenic signal. In what fol-
lows, we refer to the scale-space monogenic signal presented by
Hidalgo-Gato and Barbosa (2015) as the Poisson’s scale-space
monogenic signal.
The nonscale and the Poisson’s scale-space monogenic signals

are 3D vectors composed of the data and its first-order Riesz trans-
form. The nonscale monogenic signal uses the original data,
whereas the Poisson’s scale-space monogenic signal uses the Pois-
son’s scale-space representation of the original potential-field data.
Hidalgo-Gato and Barbosa (2015) show that the Poisson’s scale-
space monogenic signal has better performance as an edge detection
filter than the nonscale monogenic signal. The latter can produce
smoothed or misshapen contacts of the bodies.
In this paper, we present the Python 2.7/3.5 program Monogenic

to calculate the nonscale and the Poisson’s scale-space monogenic
signal attributes based on the definitions introduced by Hidalgo-
Gato and Barbosa (2015). In addition, we make available the Python
script “synthetic.py” and the data “data.dat” to run our synthetic test
example.
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BUILDING THE POISSON’S SCALE-SPACE
MONOGENIC VECTOR

The Poisson’s scale-space monogenic signal of a potential-field
function fðx; yÞ, which is measured in a constant height (z ¼
constant), is a 3D vector given by

mðx; yÞ ¼
2
4 fbp
rxp
ryp

3
5; (1)

where fbp ≡ fbpðx; yÞ is the Poisson’s scale-space representation of
the original function fðx; yÞ filtered by a band-pass filter (Felsberg
and Sommer, 2001) and rxp ≡ rxpðx; yÞ and ryp ≡ rypðx; yÞ are, re-
spectively, the x- and y-components of the first-order Riesz transform
of fbp.
From the Poisson’s scale-space monogenic vector (equation 1),

we can define the following quantities in the 3D space: (1) the local
amplitude:

Aðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xp þ r2yp þ fbp2

q
; (2)

(2) the local phase:

φðx; yÞ ¼ tan−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xp þ r2yp

q
fbp

1
CA; (3)

and (3) the local orientation:

θðx; yÞ ¼ tan−1
�
ryp
rxp

�
(4)

Taking the Fourier transform of the Poisson’s scale-space
monogenic vector (equation 1), Hidalgo-Gato and Barbosa (2015)
show that the Fourier transform of each components is a 3D vector
given by

Mðu; vÞ ¼

2
664

p · F
i uffiffiffiffiffiffiffiffiffiffi

u2þv2
p · p · F

i vffiffiffiffiffiffiffiffiffiffi
u2þv2

p · p · F

3
775; (5)

where u and v are the wavenumbers in the x- and y-directions, re-
spectively, F ≡ Fðu; vÞ is the Fourier transform of the potential-
field data fðx; yÞ, i ¼ ffiffiffiffiffiffi

−1
p

and p ≡ pðhc; hf; u; vÞ is a band-pass
filter that maps the original function into the Poisson’s scale-space
representation, being defined as

p ¼
�
e−2πhf

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
− e−2πhc

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p �
; (6)

where hc > hf > 0 are the parameters related to the Poisson’s
scale-space representation (Felsberg and Sommer, 2001).
Alternatively, the nonscale monogenic signal can be constructed

from equation 5 by setting p ¼ 1. In this particular case, the three
components of the monogenic signal will be given by the original
data function, and its first-order Riesz transform; i.e.,

MNSðu; vÞ ¼

2
664

F
i uffiffiffiffiffiffiffiffiffiffi

u2þv2
p F

i vffiffiffiffiffiffiffiffiffiffi
u2þv2

p F

3
775: (7)

INSIDE THE MONOGENIC SIGNAL

In equations 5 and 7, iu and iv are the filters that transform a
function fðx; yÞ measured on a horizontal surface into first-order
derivatives with respect to the x- and y-directions, respectively. As
pointed out by Hidalgo-Gato and Barbosa (2015), these terms en-
hance the high-wavenumber contents. Nonetheless, if fðx; yÞ is a
potential-field function, then the filter 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
transforms this

function into its first-order vertical integration, which attenuates the
high-wavenumbers amplitudes. In addition, note that the filter p in
equation 6 represents a band-pass filter given by the difference be-
tween two upward-continuation filters at different observation lev-
els controlled by the parameters hc and hf . The combination of a
band-pass filter and the vertical integral transformation of a poten-
tial-field function makes the local amplitude, the local phase, and
the local orientation in the Poisson’s scale-space monogenic signal
less sensitive to noise than regular filters such as the total gradient
(Roest et al., 1992) and tilt angle (Miller and Singh, 1994).
We understand that a band-pass filter may attenuate and/or com-

pletely remove some signal wavelengths. The choice of the param-
eters hc and hf (equation 6) is done by trial and error to band pass
the wavelengths related to the noise contents. The best values of
these parameters will depend on the grid dimensions and the noise
level of the data. In practice, we verified that a good initial approxi-
mation for these parameters can be given by fixing hc close to the
grid spacing and setting hf to approximately 10% less than hc.
As compared with the Poisson’s scale-space monogenic signal,

the nonscale monogenic signal (equation 7) is easier to use because
it does not require tuning of the Poisson’s parameters (hc and hf in
equation 6) to band-pass filter the data. In fact, the nonscale mono-
genic signal (equation 7) uses the original data only. However, in
enhancing the weak magnetic responses of deep sources, the non-
scale monogenic signal can distort the boundaries of the sources. In
this paper, we present the open-source codes of both functions:
(1) the nonscale monogenic signal and (2) the Poisson’s scale-space
monogenic signal in the wavenumber domain.

COMPUTATIONAL DETAILS

We have implemented codes to calculate the local amplitude, the
local phase, and the local orientation of the nonscale monogenic sig-
nal and the Poisson’s scale-space monogenic signal in version 1.0 of
the open-source program Monogenic. The code was implemented in
Python 2.7/3.5 language and is executed using Anaconda2 64 bit.
The Anaconda Python is a freely available package that includes the
NumPy library, which is necessary to run the code. However, you
may run the code in any other Python 2.7 interpreter as long as the
NumPy library is installed. Our code is freely available online (http://
software.seg.org/2017/0002) under the Berkeley Software Distribu-
tion three-clause open-source license. Alternatively, all accompany-
ing material is available in an online repository (Hidalgo-Gato and
Barbosa, 2017).
In the program Monogenic v 1.0, we present two functions:

(1) nss_monogenic_signal (x, y, data, pad_pt, and pad_mode) and

F10 Hidalgo-Gato and Barbosa
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(2) pss_monogenic_signal (x, y, data, hc, hf, pad_pt, and pad_mode),
where x and y are the 2D arrays containing the north–south and east–
west coordinates, the data are a 2D array with the potential-field data to
be transformed, hc and hf are the scalars required by the Poisson’s
scale-space monogenic signal (equation 6), and pad_pt and pad_mode
are the parameters used to set the data padding. The choice of padding
parameters will be discussed later. If the Poisson’s scale-space param-
eters are passed to the pss_monogenic_singal function as None
(hc ¼ hf ¼ None), then the monogenic code will automatically cal-
culate default values following our recommendations. Both functions
return the local amplitude, the local phase, and the local orientation of
a 2D array. Equations 2–4 express these attributes in the case of the
Poisson’s scale-space monogenic vector.
In our algorithm, we assume a regular grid at a constant height

observation level (z = constant). For a computational convenience,
our algorithm calculates the three components of the monogenic
signal vector in the wavenumber domain and then transforms it back
into the space domain. Finally, we calculate the local amplitude,
local phase, and the local orientation of the monogenic signal.
The algorithm of both functions (nss_monogenic_signal and

pss_monogenic_signal) inside the file “monogenic.py” is summa-
rized in the following pseudocode:

Function monogenic_signal

Input←

( x ¼ north coordinates

y ¼ east coordinates

data ¼ input data

− pad the data
− calculate the fast Fourier transform
− calculate the Fourier wavenumbers
− calculate the x- and y-components of the first-order

Riesz transform
− transform the data and the Riesz components back into
the space domain

− remove the pad
− calculate the local amplitude, local phase, and local ori-
entation.

Output →

8<
:

local amplitude

local phase

local orientation

Note that the two components of the first-order Riesz transform in
the wavenumber domain (equations 5 and 7) have a singularity point
ð0; 0Þ. For this reason, we zero out the DC frequency of the Riesz
components of the monogenic signal vector. On the other hand, equa-
tion 6 is also zero at point ð0; 0Þ. This is the same as removing a
constant averaged value of the data, and it makes the scale-space
monogenic signal attributes independent of the DC component.
The fast Fourier transform (FFT) package inside the NumPy library
was used to transform the data in the wavenumber domain and cal-
culate the Fourier wavenumbers.

Data padding

To avoid edge effects using the fast Fourier transform, we extend
the 2D data array. We have included a padding function to expand
the data using three different modes: linear ramp, edge, and mean
values. The pad is included in both monogenic signal functions, and
the user can specify the mode (mode) and the number of points
(pad_pt) to expand the 2D array.

The linear ramp mode (linear_ramp) pads the data with a linear
ramp between zero and the edge values. This padding function will
always fill the edges of the padded array with zeros. The edge mode
(edge) fills all the padded area with the values of the closer edges,
whereas the mean values mode (mean) pads with the mean values of
each rows and columns.
The number of padding points (pad_pt) to be added to the origi-

nal data array in all directions is an integer number. For example, for
an original data array of 2 × 2 points and a pad_pt = 2, the extended
data array will have dimensions of 6 × 6 given by

�
4 9

7 6

�
¼> padding with line arramp

¼>

2
6666666664

0 0 0 0 0 0

0 1 2 4 2 0

0 2 4 9 4 0

0 4 7 6 3 0

0 2 4 3 2 0

0 0 0 0 0 0

3
7777777775
: (8)

Note that, in this example, we padded the array with a linear ramp
mode; thus, the values are decreasing to zero without changing the
center of the original data array. Big data expansions will increase
the computation time and may cause overflow. We performed some
synthetic tests using the three padding modes with different pad_pt
values. Our simulations show that a small number of padding points
is sufficient to avoid edge effects without affecting the computer
memory and processing time.

Figure 1. Synthetic test. Noise-corrupted total-field anomaly pro-
duced by the geologic model of Figure 2. The horizontal dashed lines
are the projection in the horizontal plane of the hinge line (black),
continental oceanic boundary (white), and the edges of the igneous
intrusion and the dike (gray). The vertical dashed lines are the transfer
zones between displacements in the basement.

Monogenic signal: A Python implementation F11
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After padding the data, we transform it to the wavenumber do-
main and calculate the Riesz components. Each Riesz component
and the data in the Poisson’s scale-space are then transformed back
into the space domain. Finally, we remove the pad restoring the data
array to its original size before calculating the monogenic signal
attributes.

SYNTHETIC MODEL APPLICATION

Figure 1 shows the computed noise-corrupted total-field anomaly
produced by a simulated passive margin basin. The 3D synthetic
model (Figure 2) illustrates a crustal thinning geologic set. It is pos-
sible to identify some geologic features, such as the hinge line
(dashed black line), the continental oceanic boundary (COB) (white
dashed line), an igneous intrusion in the middle of the oceanic crust
(dashed red lines), and a dike cutting the shallow basement in the
continental crust (dashed gray line). The top of the dike is located at
a 1500 m depth from the top of the basement.
The magnetic basement is uniformly magnetized by induction

with an intensity of 1.5 A∕m in continental crust and 2.5 A∕m
in oceanic crust. The igneous intrusion and the dike are also mag-
netized by induction with an intensity of 2.8 A∕m. All the geologic

bodies were magnetized with an inclination of −10° and a declina-
tion of −20°. We assume that there is no magnetization above the
basement. The edges of the geologic structures were extrapolated
constantly to avoid strong magnetic anomalies near the edges.
By using the implementation of Uieda et al. (2013), we calculate

the total-field anomaly produced by the geologic model shown in
Figure 2 at −100 m height on a regular grid of 200 × 200 observa-
tion points in the north–south and east−west directions leading to
grid spacing of 500 m along both directions. The magnetic anomaly
was then corrupted with pseudorandom zero-mean Gaussian noise
with a standard deviation of 2.5 nT.
The x-, y-, and z-coordinates (in meters) and the noise-corrupted

total-field anomaly (in nT) were exported to an ASCII file named
data.dat. The Python script synthetic.py that accompanies this paper
has the following structure: (1) open the data file, (2) calculate the
monogenic signal attributes, and (3) plot the maps. In addition to the
NumPy library, the Matplotlib is also required to run the script syn-
thetic.py. In addition, we padded the original data using the linear
ramp mode adding 10 points (pad_pt) in all directions before com-
puting the fast Fourier transform. We tested all three pad modes
implemented and concluded that all of them work well. In our tests,
we use only 10 padding points that correspond to 5% of the data

points in one direction of the grid.
Figures 3a–3c and 4a–4c show the local am-

plitude, the local phase, and the local orientation
of, respectively, the nonscale and the Poisson’s
scale-space monogenic signals applied to the to-
tal-field anomaly (Figure 1). To calculate the
Poisson’s scale-space monogenic signal, we used
hc ¼ 500 m and hf ¼ 450 m. Note that we used
hc close to the input grid spacing and hf 10%
less than hc as recommended before. The hori-
zontal dashed lines are the projection in the hori-
zontal plane of the hinge line (in black), COB (in
white), the edges of the igneous intrusion (in
red), and the dike (in gray). The dashed vertical
lines are the transfer zones between displace-
ments in the basement.
Our synthetic test simulates three different

types of anomalies (Figure 1). The igneous intru-
sion and the dike clearly produce, respectively,

Figure 2. Perspective view of the simulated passive margin model. The dashed lines are
the hinge line (black) and the continental oceanic boundary (white).

Figure 3. Enhancements of the total-field anomaly of Figure 1 using the (a) local amplitude, (b) the local phase, and (c) the local orientation of
the nonscale monogenic signal. The horizontal dashed lines are the projection in the horizontal plane of the hinge line (black), continental
oceanic boundary (white), and the edges of the igneous intrusion (red) and the dike (gray). The vertical dashed thin lines are the transfer zones
between displacements in the basement.

F12 Hidalgo-Gato and Barbosa
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3D and 2D magnetic anomalies. On the other hand, the hinge line
and the COB produce signals that can be locally approximated by
2D magnetic anomalies.
Note that neither the nonscale (Figure 3) nor the Poisson’s scale-

space monogenic signal (Figure 4) is able to enhance the edges of the
igneous intrusion because the magnetization vector is not vertical and
the intrusion produces a 3D magnetic anomaly. On the other hand,
the 2D anomaly produced by the dike is very well-enhanced using the
monogenic signal attributes even in the case of a nonvertical mag-
netization vector. These results are expected because, as shown by
Hidalgo-Gato and Barbosa (2015), the enhancement of 2D magnetic
anomalies with the monogenic signal does not require a vertical mag-
netization vector. Rather, in case of 3D magnetic anomalies the mag-
netization vector must be vertical to enhance the true boundaries of
the source by using the monogenic signal.
Taking into account these results, one might think that the mono-

genic signal of a nonvertical magnetization source can only be used to
enhance 2D magnetic anomalies. However, we note that even locally
2D magnetic anomalies such as the hinge line and the COB high-
lighted in Figures 1 and 2 can be enhanced using the monogenic sig-
nal attributes in the presence of nonvertical magnetization.
The main difference between the nonscale and the Poisson’s

scale-space monogenic signal is that the amplitude and phase of the
latter produces sharper contacts, as shown in Figures 3 and 4. The
most striking feature of the local phase in the Poisson’s scale-space
monogenic signal (Figure 4b) is that it enhances the edges of the
dike, the hinge line, and the COB better than the local phase in the
nonscale monogenic signal (Figure 3b).
As shown in Figures 3c and 4c, the local orientation of the mono-

genic signal of a potential field function has not produced a mean-
ingful enhancement of any features of the geologic sources.

CONCLUSION

We have presented the program Monogenic, a Python 2.7/3.5
package of two functions to calculate the nonscale and the Poisson’s
scale-space monogenic signals of a 2D data. Both monogenic signal
functions return the local amplitude, the local phase, and the local
orientation of a potential-field data or any kind of 2D array. Com-
pared with the Poisson’s scale-space monogenic signal, the non-
scale monogenic signal is easier to use because the former

requires band-pass filtering the data, whereas the nonscale mono-
genic signal requires only the original data set. However, the Pois-
son’s scale-space monogenic signal yields a sharper image of
boundaries of the geologic bodies than the nonscale monogenic sig-
nal. We demonstrated the use of the monogenic signal by applying it
to synthetic magnetic data. The Python script synthetic.py contains
the algorithm to run our synthetic example. This example was run
using specific Poisson’s scale-space parameters. However, users
can try different Poisson’s scale-space parameters for the same syn-
thetic model. Finally, we stress that the application of the nonscale
and the Poisson’s scale-space monogenic signals to enhance other
geophysical data (e.g., seismic, ground-penetrating radar, gravity,
multiple-component gravity gradiometry, and magnetic gradient
data) has no methodological obstacles.
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