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ABSTRACT

We have developed a new iterative scheme for processing
gravity data using a fast equivalent-layer technique. This
scheme estimates a 2D mass distribution on a fictitious layer
located below the observation surface and with finite horizontal
dimensions composed by a set of point masses, one directly be-
neath each gravity station. Our method starts from an initial
mass distribution that is proportional to the observed gravity
data. Iteratively, our approach updates the mass distribution
by adding mass corrections that are proportional to the gravity
residuals. At each iteration, the computation of the residual is
accomplished by the forward modeling of the vertical compo-
nent of the gravitational attraction produced by all point masses
setting up the equivalent layer. Our method is grounded on the
excess of mass and on the positive correlation between the ob-
served gravity data and the masses on the equivalent layer.

Mathematically, the algorithm is formulated as an iterative least-
squares method that requires neither matrix multiplications nor
the solution of linear systems, leading to the processing of large
data sets. The time spent on the forward modeling accounts for
much of the total computation time, but this modeling demands
a small computational effort. We numerically prove the stability
of our method by comparing our solution with the one obtained
via the classic equivalent-layer technique with the zeroth-order
Tikhonov regularization. After estimating the mass distribution,
we obtain a desired processed data by multiplying the matrix of
the Green’s functions associated with the desired processing by
the estimated mass distribution. We have applied the proposed
method to interpolate, calculate the horizontal components, and
continue gravity data upward (or downward). Testing on field
data from the Vinton salt dome, Louisiana, USA, confirms
the potential of our approach in processing large gravity data
set over on undulating surface.

INTRODUCTION

Since the late 1960s, the equivalent-layer technique has been
used for processing potential field data. Mathematically, the equiv-
alent layer is a consequence of solving Laplace’s equation (Kellogg,
1929) in the source-free region above the observation surface using
the observed field as the Dirichlet boundary condition. Based on
potential theory, a continuous record of a potential field data pro-
duced by any source can be exactly reproduced by a fictitious, con-
tinuous, and infinite 2D physical-property surface distribution that
is called the equivalent layer. To our knowledge, Dampney (1969) is
the pioneer on the approximation of the continuous equivalent layer
by a discrete layer. In Dampney (1969), a discrete set of potential
field observations produced by any source can be exactly repro-
duced by a fictitious layer located below the observation surface

and with finite horizontal dimensions composed by a finite discrete
set of equivalent sources.
The equivalent-layer technique has been used for (1) interpolating

and gridding data (e.g., Cordell, 1992; Mendonça and Silva, 1994),
(2) computing the upward (or downward) continuation of data (e.g.,
Emilia, 1973; Hansen and Miyazaki, 1984; Li and Oldenburg, 2010),
(3) computing the reduction to the pole of magnetic data (e.g., Silva,
1986; Leão and Silva, 1989; Guspí and Novara, 2009; Oliveira et al.,
2013), (4) merging multiple data sets (Boggs and Dransfield, 2004;
Lane, 2004), and (5) jointly processing multiple components of
airborne gravity gradient data (e.g., Barnes and Lumley, 2011).
The classic equivalent-layer technique consists of constructing

a linear system of equations and solving a linear inverse problem to
estimate a set of coefficients describing a discrete layer of equivalent
sources. Usually, the equivalent-layer technique deals with large-
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scale matrix computations for processing large data sets. This disad-
vantage propels the development of computational strategies to make
the equivalent-layer technique computationally efficient. Leão and
Silva (1989) are the pioneers in designing a equivalent-layer scheme
that is able to efficiently handle large-scaled problems. They develop
a fast moving-window scheme spanning the whole data set. In this
scheme, the potential field processing is only computed at the center
of a small moving-equivalent-source window. Hence, Leão and Silva
(1989) solve several small linear systems, instead of solving a single
large linear system involving the entire equivalent layer. Following
the same strategy of solving successive small linear systems, Men-
donça and Silva (1994) propose the equivalent data concept. It
consists of obtaining automatically an equivalent data set that is a
data subset smaller than the total number of observations. In this
scheme, the interpolated surface that fits the chosen equivalent data
set al.o fits the remaining data automatically.
Following the strategy of compressing the linear system of equa-

tions associated with the equivalent-layer technique, Li and Olden-
burg (2010) use a wavelet compression and Davis and Li (2011)
combine an adaptive mesh and wavelet compression. Barnes and
Lumley (2011) reduce the computational load by grouping a set
of equivalent sources that lie distant from the ith observation into
an average equivalent source, leading to a sparse linear system. Oli-
veira et al. (2013) reduce the number of unknown parameters by
assuming that the physical-property distribution within the equiv-
alent layer can be approximated by a piecewise-polynomial func-
tion defined on a set of equivalent source windows. This procedure
estimates the polynomial coefficients for each equivalent source
window, and next, these coefficients are transformed into the physi-
cal-property distribution within an equivalent layer. Following the
strategy of using the equivalent-layer technique without solving a
system of linear equations, the physical-property distribution of
each equivalent source is updated iteratively. Xia and Sprowl
(1991) update the physical-property distribution by using the ratio
between the squared depth to the equivalent source and the gravi-
tational constant multiplied by the misfit between the measured and
the calculated anomalies at the measurement stations. Xia et al.
(1993) use an iterative scheme in the wavenumber domain. Cordell
(1992) updates the physical-property distribution by an iterative
procedure that removes the maximum residual until all residuals
become bounded by an envelope with a prefixed semiamplitude re-
lated to the expected noise level. Guspí and Novara (2009) modify
the iterative Cordell’s (1992) method to reduce the total-field
anomaly to the pole.
Faced with the demand for a fast and computationally efficient

equivalent-layer method able to handle large data sets, we devel-
oped a new iterative equivalent-layer technique that does not solve
linear systems. In our method, the equivalent layer is formed by a
set of point masses, each one directly beneath each observation
point. The iterative process starts from a mass distribution over
the equivalent layer, whose ith mass is proportional to the ith grav-
ity observation. Iteratively, the correction of the mass distribution
consists in adding to the ith mass a quantity that is proportional
to the ith gravity residual. In all mass distributions (initial and iter-
ative corrections), the coefficient of proportionality is given by the
ratio of the average area between data points to the constant 2πγ,
where γ is Newton’s gravitational constant. We validate our method
using synthetic and field examples.

METHODOLOGY

Consider a Cartesian coordinate system x − y − z with z being
positive downward, x directed toward the north, and y directed to-
ward the east. Let gðϵ; η; zoÞ be the gravity data produced by a
source distribution located entirely below the plane zo. In this work,
we consider that the gravity data are properly corrected from non-
gravitational effects, so that it represents the harmonic function de-
fining the vertical component of the gravitational attraction
produced by the sources. This means that, rigorously, the term grav-
ity data used throughout this work is consistent with the gravity
disturbance instead of the gravity anomaly. In this case, the Dirich-
let integral, which is also called the upward continuation integral
(Henderson, 1960, 1970), relates the gravity data gðϵ; η; zoÞ on
the plane zo to the gravity data gi ≡ gðxi; yi; ziÞ at an arbitrary point
ðxi; yi; ziÞ,

gi ¼
1

2π

Z þ∞

−∞

Z þ∞

−∞
gðϵ;η; zoÞ∂zθðxi − ϵ; yi − η; zi − zoÞdϵdη;

(1)

where zi < zo, i ¼ 1; : : : ; N, ∂zθðxi − ϵ; yi − η; zi − zoÞ ≡ ð∂θðxi −
ϵ; yi − η; zi − zoÞÞ∕∂z is the vertical derivative of the function:

θðx − ϵ; y − η; z − zoÞ ¼
1

r
; (2)

where r ¼ ½ðx − ϵÞ2 þ ðy − ηÞ2 þ ðz − zoÞ2�1∕2.
By multiplying and dividing equation 1 by γ (Newton’s gravita-

tional constant) and discretizing the integrand in a set of points
ðϵj; ηj; zoÞ; j ¼ 1; : : : ; N, the surface integral can be numerically
approximated by

gi ¼
XN
j¼1

mjaij; i ¼ 1; : : : ; N; (3)

where mj is the coefficients given by

mj ¼
Δsjg 0

j

2πγ
; j ¼ 1; : : : ; N; (4)

g 0
j ≡ gðϵj; ηj; zoÞ is the gravity data at the jth coordinate point
ðϵj; ηj; zoÞ, Δsj is an element of area centered at ðϵj; ηj; zoÞ, and
aij is a harmonic function given by

aij ¼ γ
ðzo − ziÞ

½ðxi − ϵjÞ2 þ ðyi − ηjÞ2 þ ðzi − zoÞ2�32
. (5)

This harmonic function represents the Green’s function of the ver-
tical component of the gravitational attraction exerted at the ith ob-
servation point ðxi; yi; ziÞ by a point mass located at the point
ðϵj; ηj; zoÞ.
Equation 3 represents the classic approach of the equivalent layer,

in which the gravity data gi at the ith observation point ðxi; yi; ziÞ
are approximated by the sum of the vertical component of the gravi-
tational attraction produced by a set of N fictitious equivalent
sources (e.g., point masses) distributed on a horizontal plane at con-
stant depth zo, each one with mass mj (equation 4). In matrix nota-
tion, equation 3 can be expressed as

G58 Siqueira et al.

D
ow

nl
oa

de
d 

06
/1

2/
17

 to
 2

00
.2

0.
18

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



g ¼ Am; (6)

where g is an N-dimensional predicted data vector whose ith
element is the gravity data gi (equation 3), A is an N × N sensitivity
matrix whose ijth element is defined by the harmonic function aij
(equation 3), andm is the parameter vector whose jth element is the
mass mj (equation 4) of the jth equivalent source. Notice that the
parameter vector m represents the physical-property distribution on
the fictitious layer of equivalent sources.
Given an N-dimensional observed data vector go whose ith

element is the observed gravity data goi at the point ðxi; yi; ziÞ,
the estimate of the parameter vector m (equation 6) yielding an
acceptable data fit usually involves the constrained optimization
problem of minimizing the function,

ϕðmÞ ¼ ϕgðmÞ þ μϕmðmÞ; (7)

where ϕmðmÞ is a regularizing function, μ is the regularizing param-
eter, and ϕgðmÞ is the data-misfit function defined as

ϕgðmÞ ¼ kgo − gk22; (8)

which represents the squared Euclidean norm of the difference be-
tween the observed data go and the predicted data g (equation 6).
In equation 7, for example, the regularizing function can be

the zeroth- or first-order Tikhonov regularizations (Tikhonov and
Arsenin, 1977; Aster et al., 2005). If, just for illustration, the zeroth-
order Tikhonov regularization is taken, the vector of parameter
estimates m� that minimizes the function ϕðmÞ (equation 7) can
be written as (Menke, 1989)

m� ¼ ðA⊤Aþ μIÞ−1A⊤go; (9)

where I is the identity matrix.
We stress that the linear system in the equivalent-layer problem

(equation 9) usually involves a prohibitively computational cost. To
overcome this difficulty, we propose an iterative equivalent-layer
strategy grounded on the excess mass constraint.

Excess-mass constraint

From Gauss’s theorem, the excess mass M of a body can be
uniquely estimated as the surface integration of the gravity data
gðx; y; z1Þ on a plane z1 divided by a constant (Grant and West,
1965); i.e.,

M ¼ 1

2πγ

Z þ∞

−∞

Z þ∞

−∞
gðx; y; z1Þdxdy: (10)

By substituting the upward continuation integral (equation 1) into the
excess massM (equation 10) and considering zi ¼ z1, i ¼ 1; : : : ; N,
we get a new expression of the excess of mass given by

M¼ 1

2πγ

zo−z1
2π

Z þ∞

−∞

Z þ∞

−∞
gðϵ;η;zoÞ

×
�Z þ∞

−∞

Z þ∞

−∞

1

½ðxi−ϵÞ2þðyi−ηÞ2þðz1−zoÞ2�32
dxdy

�
dϵdη:

(11)

Because the bracketed surface integral is equal to 2π∕zo − z1 (Bhat-
tacharyya, 1967), equation 11 is reduced to

M ¼ 1

2πγ

Z þ∞

−∞

Z þ∞

−∞
gðϵ; η; zoÞdϵdη: (12)

Equation 12 confirms that the excess mass M of a body is propor-
tional to the surface integration of the gravity data gðϵ; η; zoÞ on a
plane z ¼ zo above the sources.
At first glance, the similarity between the well-known expression

of the excess mass (equation 10) and the one given in equation 12
may seem strikingly obvious. This is not true because in equa-
tion 12, the horizontal plane z ¼ zo is the one in which the equiv-
alent sources are distributed and the gravity data gðϵ; η; zoÞ are over
this plane. Equation 12 is not just mathematical deduction devoid of
practical interest; rather, it will be used in this work.
Let us consider a sufficiently dense set of N gravity data

g ≡ ðg1; : : : ; gNÞ⊤, where gi is located at the ith coordinate point
ðxi; yi; ziÞ, with zi, i ¼ 1; : : : ; N, approximately constant. Then,
the surface integral in equation 10 can be approximated by

M ≈
1

2πγ
g⊤Δs; (13)

where

Δs ≡ ðΔs1; : : : ;ΔsNÞ⊤; (14)

is an N-dimensional vector whose ith element Δsi is an element of
area located at the vertical coordinate zi and centered at the hori-
zontal coordinates ðxi; yiÞ, i ¼ 1; : : : ; N. Similarly, the surface in-
tegral in equation 12 can be approximated by

M ≈
1

2πγ
g 0⊤Δs; (15)

where g 0 ≡ ðg1; : : : ; gNÞ⊤ is an N-dimensional vector whose jth
element g 0

j (equation 4) represents the gravity data at the horizontal
coordinates ðϵj; ηjÞ on the equivalent-layer plane located at depth
zo. By considering that the horizontal coordinates ϵj ¼ xi and
ηj ¼ yi; then the vector Δs is given in equation 14.
By combining the jth mass mj located on the equivalent layer at

ðϵj; ηj; zoÞ (equation 4) with equation 15, we obtain

M ≈
XN
j¼1

mj ¼ 1⊤m; (16)

where 1 is an N-dimensional vector with all elements equal to one.
From equations 13 and 16, we have

1

2πγ
g⊤Δs ≈ 1⊤m: (17)

Equation 17 shows that the sum of the gravity data g at the coor-
dinates ðxi; yi; ziÞ, i ¼ 1; : : : ; N, is approximately proportional to
the sum of the set of N masses forming the equivalent layer.
Let us assume a hypothetical equivalent layer that exactly

fits a sufficiently dense set of N observed gravity data
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go ≡ ðgo1; : : : ; goNÞ⊤, where goi is the observed gravity data at the ith
coordinate point ðxi; yi; ziÞ. Then, according to equation 17, we can
establish the following approximation:

1

2πγ
go⊤Δs ≈ 1⊤mo; (18)

where mo is an N-dimensional vector containing the mass distribu-
tion over a hypothetical equivalent layer.
By taking the difference between equations 17 and 18, we obtain

1

2πγ
r⊤Δs ≈ 1⊤Δm; (19)

where Δm ¼ mo −m is an N-dimensional vector containing mass
differences within the equivalent layer and r is an N-dimensional
residual vector of the gravity data; i.e.,

r ¼ go − g; (20)

where g is given in equation 6. Notice that equation 19 sets an ap-
proximated relationship between the sum of residuals r and the sum
of mass differences Δm within the equivalent layer. If we impose a
positive correlation between the residual gravity data r and the
masses Δm within the equivalent layer (equation 19), we obtain
a new relationship given by

~A−1r ¼ Δm; (21)

where ~A−1 is an N × N diagonal matrix defined by

~A−1 ¼ 1

2πγ
ΔS; (22)

and ΔS is an N × N diagonal matrix whose main diagonal is de-
fined the vector Δs (equation 14).
Equation 21 establishes an approximated linear relationship

between each element of the residual vector r and each element
of mass difference Δm. We refer to equation 21 as excess mass
constraint.

Fast iterative equivalent layer algorithm

We propose an iterative scheme for estimating a mass distribution
within an equivalent layer by minimizing the data-misfit function
ϕgðmÞ (equation 8) with the excess mass constraint (equation 21).
We consider a set of N point masses distributed in a layer located at
depth zo (Figure 1). We also consider that the horizontal position of
the ith point mass (ϵi; ηi) coincides with the horizontal position of
the ith observed gravity data (xi; yi). To use the excess mass con-
straint (equation 21) in our iterative method, we consider that, at the
kth iteration, the mass-distribution estimate m̂k over the equivalent
layer produces a predicted gravity data gk (equation 6). From now
on, the caret (∧) denotes an estimate.
From the excess mass constraint (equation 21), we impose iter-

atively that

rk − ~AΔm̂k ≈ 0; (23)

where 0 is the null vector, ~A is an N × N matrix defined as the
inverse of the matrix ~A−1 (equation 22), Δm̂k is the parameter
correction estimate at the kth iteration, and rk is the N-dimensional
residual vector of the gravity data at the kth iteration; i.e.,

rk ¼ go − Am̂k: (24)

Equation 23 imposes that, at the kth iteration, the mass correction
estimate Δm̂k must minimize the difference between the residuals
rk and the vector ~AΔm̂k. Hence, our goal is to find a Δm̂k such that
the difference between the vectors rk and ~AΔm̂k must be close
to zero.
Mathematically, this mass correction estimate Δm̂k can be found

by minimizing, at the kth iteration, the function

ϕðΔmkÞ ¼ kgo − Am̂k − ~AΔmkk22; (25)

with respect to Δmk. Differentiating equation 25 with respect to
Δmk and setting the result equal to null vector, we obtain, at the
kth iteration, the parameter correction estimate,

Δm̂k ¼ ~A−1rk; (26)

where the ith estimate is Δm̂k
i ¼ ðΔsirki Þ∕2πγ. This estimate

represents the excess mass constraint (equation 21). After esti-
mating the parameter correction vector at the kth iteration (equa-
tion 26), we update the mass distribution over the equivalent layer
such that

m̂kþ1 ¼ m̂k þ Δm̂k: (27)

The iterative process of our method starts with an initial approxi-
mation to the mass distributions over the equivalent layer given by

m0 ¼ ~A−1go; (28)

where the ith initial approximation is m0
i ¼ ðΔsigoi Þ∕2πγ. The iter-

ative process stops when the data-misfit function (equation 8) and
the estimated mass distribution over the equivalent data (equa-
tion 27) are invariant along successive iterations.

x
y

( , , )zi

zs x y= .
0

0

( )x , y , zi i i

i

Equivalent layer

i

Gravity
stations

Figure 1. Schematic representation of an equivalent layer com-
posed by a set of N point masses (black dots), one directly beneath
each gravity station (open circles). The ith point mass is located at
(ϵi; ηi, zo) and the ith observed gravity data (xi; yi, zi). The ith area
Δsi is ith element of the vector Δs (equation 14). For simplicity, a
regular grid is displayed; however, an irregular grid can be used, as
will be explained below.
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Iteratively, the fitted gravity data produced by the current
approximation are removed from the observations go, yielding a
residual anomaly (equation 20) that is now used to compute a
new parameter correction (equation 26). This iterative scheme
works because, in practice, we have a positive correlation between
the data and the parameter to be estimated in the equivalent layer.
Thus, the larger the residual anomaly, the larger the parameter cor-
rection; hence, the better will be the fitted gravity data in the next
iteration.
Finally, a desired linear transformation of the gravity data, such

as horizontal components, interpolation, and upward (or downward)
continuation, can be performed by

d 0 ¼ Tm̂; (29)

where d 0 is an L-dimensional vector of the desired transformation,
m̂ is the final estimated mass distribution on the equivalent layer,
and T is an L × N matrix whose elements are the Green’s function
of the desired transformed gravity data.
To compute the x- and y-components of the gravity data, the ijth

element of the matrix T is, respectively, equal to

Tij¼
γðxj−xiÞ

½ðxi−xjÞ2þðyi−yjÞ2þðzi−zoÞ2�3∕2
;

(30)

and

Tij¼
γðyj−yiÞ

½ðxi−xjÞ2þðyi−yjÞ2þðzi−zoÞ2�3∕2
;

(31)

where xi; yi, and zi are the ith coordinate point of
the ith observed gravity data and xj; yj, and zo
are the jth coordinate point of the jth equivalent
mass on the equivalent layer.
To compute the interpolated vertical compo-

nent of the gravitational attraction at the kth co-
ordinate point xk; yk, and zk, the kjth element of
the matrix T is

Tkj¼
γðzo−zkÞ

½ðxk−xjÞ2þðyk−yjÞ2þðzk−zoÞ2�3∕2
:

(32)

The upward (or downward) continuation of
the vertical component of the gravitational attrac-
tion is a special case of the interpolation, and
hence the element of the matrix T is also given
in equation 32. If zk is lower (or greater) than the
vertical coordinate of the measured data, then an
upward (or downward) continuation is done.

Computation performance

In the classic equivalent-layer technique, the
number of flops (an acronym for floating-point
operations designed to carry out operations such

as addition, subtraction, multiplication, and division) required to
construct fc and solve fs the linear system of N equations in N
unknowns (equation 9) are, respectively,

fc ¼ N3 þ N þ 2N2; (33)

and

fs ¼
1

3
N3 þ 2N2: (34)

In this analysis, we consider the solution of the linear system
through the Cholesky factorization.
In our iterative equivalent-layer scheme, it is noticeable that the

solution of linear systems is not required (equations 26–28). The
number of flops in our scheme depends on the required number
Nit of iterations and the mathematical operations in equations 26
and 27, and it is given by

f ¼ Nitð3N þ 2N2Þ; (35)

where N is the number of gravity observations, and thus, the num-
ber of equivalent sources.
Figure 2 shows a graph of the number of observations N versus

the computational demands using flops in the equivalent-layer

a)

b)

Figure 2. Graph of the number of observations N versus the floating-point operations
required in the classic and in the fast iterative equivalent-layer techniques. The solid
black thick lines show the floating-point operations (flops) required in the classic equiv-
alent-layer technique that consists of the sum of equations 33 and 34. The adorned gray
curves show the flops required in the fast iterative equivalent-layer technique (equa-
tion 35) using different numbers of iterations (10–110) and with the number of obser-
vations varying from (a) 10 to 500 and (b) 500 to 90,000.
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technique. The flops required in the classic equivalent-layer tech-
nique are shown in the solid black line by summing equations 33
and 34. The adorned gray curves show the flops required in the fast
iterative equivalent-layer technique using different numbers of iter-
ations (equation 35).
By comparing the total number of flops required to estimate an

equivalent layer via our method (the adorned gray curves in Fig-
ure 2) with the classic approach (the solid black line in Figure 2),
we note that if the number of observations N is less than 500, the
classic equivalent layer is better than our approach (Figure 2a).
However, if the number of observations N is greater than 500
(Figure 2b), our approach has a much better computational effi-
ciency, even using a large number of iterations (e.g., greater
than 90).

SOLUTION STABILITY AND PRACTICAL
PROCEDURES

Solution stability

We analyze numerically the solution stability obtained by the fast
iterative equivalent-layer technique. By using a noise-free gravity
data g, we estimate a mass distribution m over the equivalent layer.
Next, we contaminate the noise-free data g with Q different se-

quences of pseudorandom numbers, generating different noise-cor-
rupted gravity data gol, l ¼ 1; : : : ; Q. From each gol, we estimate a
mass distribution m̂l over the equivalent layer.
Then, for each noise-corrupted data gol and estimated mass dis-

tribution m̂l, we computed the following quantities:

δml ¼ km̂l −mk2
kmk2

; l ¼ 1; : : : ; Q; (36)

and

δgl ¼ kgol − gk2
kgk2

; l ¼ 1; : : : ; Q: (37)

These quantities (equations 36 and 37) were calculated by using
three different approaches: (1) the fast iterative equivalent-layer
technique, (2) the classic equivalent-layer technique with zeroth-or-
der Tikhonov regularization (equation 9), and (3) the least-squares
method (equation 9 with μ ¼ 0).
According to the following inequality (Strang, 1988; Aster et al.,

2005):

δml ≤ κδgl; l ¼ 1; : : : ; Q; (38)

the quantity δml (equation 36) is proportional to δgl (equation 37),
where κ is the proportionality constant. For the classic equivalent-
layer technique with zeroth-order Tikhonov regularization (equa-
tion 9) and the least-squares method (equation 9 with μ ¼ 0),
the constant κ represents the condition number of the matrices
ðATAþ μIÞ and ðATAÞ, respectively. A large κ indicates an unsta-
ble inverse problem, whereas a small κ indicates a stable inverse
problem. Therefore, the slope of the line produced by plotting
δml (equation 36) as a function of δgl (equation 37) indicates
the stability of the classic equivalent-layer technique with zeroth-

order Tikhonov regularization (equation 9) and the least-squares
method (equation 9 with μ ¼ 0).
In this work, we use the set ofQ estimated mass distributions m̂l

obtained by applying (1) the fast iterative equivalent-layer tech-
nique, (2) the classic equivalent-layer technique with zeroth-order
Tikhonov regularization (equation 9), and (3) the least-squares
method (equation 9 with μ ¼ 0) for generating three graphs of
δml (equation 36) versus δgl (equation 37). For each graph, we
applied a linear regression and used the estimated slope of the fitted
straight line to quantify the solution stability. Although our method
does not solve a linear system, we used this approach to quantify the
solution stability.

Practical procedures: Choice of zo and Δs

The practical procedures to use the fast iterative equivalent-layer
technique require the choice of (1) the depth of the equivalent layer
(zo) and (2) the small areas to form the vector Δs (equations 14 and
22). Figure 1 shows zo and the ith small area Δsi related to the ith
gravity observation that composed the vector Δs.
The applications of our method show that, in practice, the equiv-

alent layer can be placed at a constant depth zo varying from 300 to
700 m below the average height of the gravity observations. An
effective way to check if the choice of zo was correctly done con-
sists in verifying if the final estimated mass distribution yields an
acceptable data fit. If the fitting is unsatisfactory, the depth of the
equivalent layer must be changed.
Our method requires the definition of an average area between

data points. The ith gravity data are associated with the ith area
(Δsi in Figure 1) that composes the vector Δs (equations 14 and
22). In practice, an average area between data points can be com-
puted by dividing the whole survey area (inm2) by the total number
of observations. In this case, to all elements of the vector Δs will be
assigned the computed average area. We can also compute a set of
average areas, each one associated with a particular smaller region
than the whole survey area. For example, let us assume a gravity
survey with two flight patterns (I and II) each one with different
number of data points per flight line and covering different regions
(I and II) with distinct areas (in m2). In this case, two average areas
between data points can be computed, each one associated with one
flight pattern (I and II). If the ith gravity observation lies inside the
region I, the ith element of the vector Δs (equation 14) is computed
by dividing the area of the flight pattern I (region I) by the number
of data points in this region. Otherwise, if the ith gravity observation
lies inside the region II, the ith element of the vectorΔs is computed
by dividing the area of the flight pattern II (region II) by the number
of data points in this region.

TESTS WITH SYNTHETIC DATA

We investigate the performance of the proposed fast equivalent-
layer technique in interpolating, calculating horizontal components,
upward- and downward-continuing the synthetic gravity data pro-
duced by 18 3D prisms with density contrasts varying from −0.5 to
0.5 g∕cm3. The simulated gravity data shown in Figure 3a are con-
taminated with Gaussian noise having a mean of zero and standard
deviation of 0.067 mGal. The data are calculated over a simulated
observation surface (Figure 3b). We used an irregular grid totaling
21,095 observation locations whose positions are shown in Fig-
ure 3c. We set the equivalent layer at constant depth 400 m. Because
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the simulated survey pattern has survey lines with different line
spacing (dots in Figure 3c), we used three small areas to form
the vector Δs that is used in equations 14 and 22. In this way,
we divided the survey area into three distinct regions I–III shown
in Figure 3c. If the ith gravity observation lies inside regions I and
III, the ith element of the vector Δs (equation 14) is set to
13;416.0 m2. On the other hand, if the ith gravity observation lies
inside the region II, the ith element of the vector Δs is set to
5797.95 m2. The estimated mass distribution (not shown) after
30 iterations of the fast equivalent-layer technique yields the fitted
gravity anomaly shown in Figure 4a. Figure 4b shows the gravity
residuals, defined as the difference between the observed and the
predicted gravity data. The residuals appear normally distributed,
with a mean of 0.0 mGal and a standard deviation of 0.07 mGal
as shown in the histogram of residuals (inset in Figure 4b). For most
of the area, the gravity residuals are approximately 0 mGal; then,
the data fitting is acceptable, the estimated mass distribution can
be accepted, and the desired data processing can be done, as shown
below.

Horizontal components and interpolation

By using equation 29, we compute the x- and y-components of the
gravity data with the estimated mass distribution m̂ within the equiv-
alent layer (not shown) through equations 30 and 31, respectively.
The true and predicted north–south components of gravity data

are shown in Figure 5a and 5b, respectively. The residuals (Fig-
ure 5c), defined as the difference between the true and predicted
north–south components of gravity data, appear normally distrib-
uted, with a mean of 0.0 mGal and a standard deviation of
0.04 mGal. Figure 6a and 6b shows the true and predicted east–west
components of gravity data. Figure 6c shows the corresponding re-
siduals (the true minus predicted east–west components of gravity
data). The histogram of residuals resembles a normal distribution
with a mean of 0.0 mGal and a standard deviation of 0.03 mGal.
Both histograms of the residuals of the horizontal components of
the gravity data (insets of Figures 5c and 6c) corroborate the accep-
tance of the predicted north–south (Figure 5b) and east–west (Fig-
ure 6b) components of the gravity data by our method.
By using equation 32, we compute the interpolated vertical com-

ponent of the gravitational attraction (Figure 3a) at a regular grid
(not shown) consisting of 170 lines with 7000 points. These lines
set up an interpolated pattern with 100 lines oriented north–south at
168 m spacing and 70 lines oriented east–west at 163.3 m spacing.
The interpolated data were computed at the uneven surface shown
in Figure 7a. Figure 7b and 7c shows the theoretical and interpo-
lated vertical component of the gravitational attraction. The resid-
uals (Figure 7d) and the histogram of residuals certify the good
performance of our method in interpolating the vertical component
of the gravitational attraction.

Upward and downward continuations

We perform upward and downward continuations of the synthetic
gravity data (Figure 3a) on the same horizontal coordinates
(Figure 3c) of the original data. The upward- and the downward-
continued gravity data (Figure 8) were computed at variable
z-coordinates (equation 32). Specifically, the z-coordinates in the
upward continuation (Figure 8a) are calculated by subtracting
from each z-coordinate of each observation point (Figure 3b) at

a constant value of 500 m. Conversely, the z-coordinates in the
downward continuation (Figure 8b) are calculated by adding from
each z-coordinate of each observation point (Figure 3b) at a con-
stant value of 100 m. Figure 8c and 8d shows the residuals and

a)

b)

c)

Figure 3. (a) Noise-corrupted gravity data (in grayscale map and
contour curves) computed on (b) the simulated observation surface
(in grayscale map). (c) The simulated flight line pattern with 21,095
observation locations (dots). The horizontal projections of the
18 sources are shown in panel (c) in black lines.
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the histograms of the residuals (insets) in which residuals are de-
fined as the difference between the true (not shown) and the up-
ward- and the downward-continued gravity data. Because the
residuals are approximately 0 mGal and the standard deviations
are small, either the upward- or the downward-continued gravity
data are accepted.

ANALYSIS OF SOLUTION STABILITY

We conducted a numerical analysis to investigate the solution sta-
bility of the fast iterative equivalent-layer technique. We first simu-
lated noise-free gravity data produced by the same 18 sources
described in the previous section. The data are calculated at
−100 m height, on a regular grid of 55 × 55 observation points,
with a grid spacing of 200 and 290.9 m along the x- and y-direc-
tions, respectively. We set an equivalent layer located at 200 m deep
being composed by 55 × 55 point masses, one directly beneath each
gravity observation.
First, we estimate three mass distributions m over the equivalent

layer from the noise-free gravity data g by using (1) the fast
iterative equivalent-layer technique, (2) the classic equivalent-layer

technique with zeroth-order Tikhonov regularization (equation 9),
and (3) the least-squares method (equation 9 with μ ¼ 0).
Next, we generate Q ¼ 40 sequences of pseudorandom noise,

and thus generate 40 sets of noise-corrupted gravity data
(gol;l ¼ 1; : : : ; 40). Each sequence of pseudorandom noise has a

a)

b)

Figure 4. (a) Fitted gravity anomaly produced by the fast equiva-
lent-layer technique. (b) Gravity residuals, defined as the difference
between the synthetic noise-corrupted gravity data in Figure 3a and
the predicted data in (a). The inset in (b) shows the histogram of
gravity residuals shown in panel (b), with its mean μ and standard
deviation σ in mGal.

a)

b)

c)

Figure 5. (a) True and (b) computed north–south components of
gravity data. (c) Residuals, defined as the difference between the
true in panel (a) and computed in panel (b) north–south components
of the gravity data. The inset in panel (c) shows the histogram of
residuals with its mean μ and standard deviation σ in mGal.
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Gaussian distribution with zero mean and standard deviation vary-
ing from 1% to 10% of the maximum value of the noise-free gravity
data. From the lth noise-corrupted gravity data gol, we estimate
three mass distributions m̂l over the equivalent layer by using

a)

b)

c)

Figure 6. (a) True and (b) computed east–west components of grav-
ity data. (c) Residuals, defined as the difference between the true in
panel (a) and computed in panel (b) east–west components of the
gravity data. The inset in (c) shows the histogram of residuals with
its mean μ and standard deviation σ in mGal.

a)

b)

c)

d)

Figure 7. (a) Simulated uneven surface topography (in grayscale map)
inwhich the gravity datawill be interpolated. (b) True and (c) computed
interpolated gravity data. (d) Residuals, defined as the difference be-
tween the true (not shown) and computed (shown in panel [c]) inter-
polated gravity data. The inset in panel (d) shows the histogram of
residuals with its mean μ and standard deviation σ in mGal.
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(1) the fast iterative equivalent-layer technique, (2) the classic
equivalent-layer technique with the zeroth-order Tikhonov regulari-
zation (equation 9), and (3) the least-squares method (equation 9
with μ ¼ 0).
Then, we compute three sets of 40 δml and δgl;l ¼ 1; : : : ; 40

by using equations 36 and 37, respectively. In Figure 9a, the red,
green, and yellow dots represent the 40 results obtained with the fast
iterative equivalent-layer technique, the classic equivalent-layer
technique with the zeroth-order Tikhonov regularization and
least-squares method, respectively. By applying the linear regres-
sion, we obtain three fitted straight lines (red, green, and yellow
lines in Figure 9a) whose estimated slopes represent the stability
of the solution.
Notice in Figure 9a that the estimated slope obtained with the

least-squares solutions (yellow line) is much greater than produced
either by the fast iterative equivalent-layer technique (red line) and
the classic equivalent layer with zeroth-order Tikhonov regulariza-
tion (green line). The most striking feature in Figure 9a is that the
estimated slopes produced by the fast iterative equivalent-layer
technique (red line) and the zeroth-order Tikhonov regularization
(green line) are close to each other. This result suggests that our
method produces a stable solution.

By increasing the data set to an 85 × 85 regular grid of observa-
tions and applying this analysis, we obtained new estimated slopes
(Figure 9b). As expected, the estimated slope obtained with the
least-squares solutions (yellow line, in Figure 9b) is much greater
than the one obtained in Figure 9a. However, we stress that the
estimated slopes produced by the fast iterative equivalent-layer
technique (red line in Figure 9b) and the classic equivalent-layer
technique with the zeroth-order Tikhonov regularization (green line
in Figure 9b) are close to each other and close to those ones esti-
mated in Figure 9a. Similarly to the previous stability test, this new
result confirms that our method produces stable solution even if the
number of observations is increased.

TESTS WITH FIELD DATA

We test the proposed method on a real gravity data set over the
Vinton salt dome, which lies within the onshore Gulf of Mexico
located in southwestern Louisiana, USA. The dome is characterized
by a massive cap rock extending above the salt rock (Coker et al.,
2007). According to Ennen and Hall (2011) and Oliveira and Bar-
bosa (2013), this cap rock is embedded in sediments characterized
by intercalated layers of sandstone and shale.

We used the vertical component of the
gravitational attraction (Figure 10a) over the ob-
servation surface (Figure 10b) along flight lines
at one sample per second. This data set was pro-
vided by Bell Geospace Inc. The flight lines are
250 m apart away from the dome and 125 m apart
directly over the dome, with control lines spacing
of 1 km (Figure 10c). To apply the fast equiva-
lent-layer technique, we set the equivalent
layer at a constant depth of 450 m. We use a
similar approach as in the synthetic case and
divide the survey area into three regions (I–III,
Figure 10c) with different small areas to form
the vector Δs that is used in equations 14 and
22. For regions I and III, we set an area of
13;403 m2 and for region II, we set an area of
5710 m2.
From the first approximation of the mass dis-

tribution (m0 in equation 28), the fast equivalent-
layer technique estimates, at the 30th iteration,
the final mass distribution (not shown) produced
the predicted data shown in Figure 11a. The re-
siduals (the difference between the observed and
the predicted data) show a reasonable fit of the
observed data (Figure 11b). Notice that the resid-
uals have a mean close to zero and a standard
deviation of 0.07 mGal (Figure 11c). These small
residuals, for most of the study area, indicate that
the estimated mass distribution can be used in the
data processing.
Figure 11c and 11d shows the upward- and

downward-continued gravity data, respectively
(Figure 10a). Either the upward or the downward
continuations were accomplished from the un-
even observation surface (Figure 10b) to an
uneven surface (not shown). The upward (down-
ward) continuation was performed by subtracting
(adding) from each z-coordinate of each observa-

a) b)

c) d)

Figure 8. (a) Upward-continued and (b) downward-continued gravity data. Residuals of
(c) upward-continued and (d) downward-continued gravity data. The residuals are de-
fined as the difference between the true (not shown) and the continued gravity data. The
insets in (c and d) show the histograms of residuals with their corresponding mean μ and
standard deviation σ in mGal.
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tion point (Figure 10b) a constant value of 500 m (100 m). The
continued results are reasonable because the upward-continued
gravity data are more dominated by long wavelengths, whereas
the downward-continued gravity data contain much short-wave-

length variations. This real test totaled 11,494 observations. We
stress that the number of flops required by the classic equiva-
lent-layer technique (equations 33 and 34) is 2.02 × 1012, whereas
the fast iterative equivalent-layer technique requires 7.93 × 109

flops (equation 35).
a)

b)

Figure 9. Stability tests with a grid of (a) 55 × 55 and (b) 85 × 85
observations. The horizontal and vertical axes represent the data and
the parameter variations given in equations 36 and 37, respectively.
The red, green, and yellow dots represent the 40 results obtained with
the fast iterative equivalent-layer technique, the classic equivalent-
layer technique with the zeroth-order Tikhonov regularization and
the least-squares method, respectively. The red, green, and yellow
lines represent the fitted straight lines whose estimated slopes are
the condition numbers (κ in equation 38) obtained by applying a
linear regression to the 40 results obtained with the fast iterative
equivalent-layer technique (red dots), the classic equivalent-layer
technique with the zeroth-order Tikhonov regularization (green dots),
and least-squares method, respectively (yellow dots). The condition
numbers of our method and the classic equivalent-layer technique
with the zeroth-order Tikhonov regularization are very close to each
other, demonstrating that our method yields stable solutions.

a)

b)

c)

Figure 10. Vinton salt dome, Louisiana, USA. (a) Observed gravity
data. (b) Observation surface. (c) Available flight lines.
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CONCLUSIONS

We have developed a new fast iterative equivalent-layer tech-
nique for processing gravity data grounded on excess mass con-
straint. Our algorithm has low processing time and computer
memory usage because there are neither matrix multiplications
nor linear systems to be solved. We set up an equivalent layer with
an ensemble of point masses, one directly beneath each observation
point. Iteratively, our approach estimates the mass distribution that
fits the gravity data within the measurement errors. Start with an
initial approximation to a mass distribution proportional to the grav-
ity observation; then, iteratively, we estimate a mass distribution
correction that is proportional to the residual gravity anomaly. This
mass distribution correction is the excess mass constraint. At each
iteration, the ith mass correction, located beneath the ith gravity
station, must partially explain the ith gravity residual. The positive
correlation between the gravity data and the mass distribution over
the equivalent layer guarantees the efficiency of the proposed iter-
ative method. In this way, the larger the residual gravity anomaly,
the larger the mass correction, hence, the better will be the fitted
gravity data in the next iteration. We have accomplished a numerical
analysis of the solution stability of the fast iterative equivalent-layer
technique. This analysis reveals that this technique estimates stable
mass distributions such as the classic equivalent-layer technique
with the zeroth-order Tikhonov regularization.
Because our method sets one point mass per observation point,

the number of gravity observations is crucial for its efficiency. It can
fail for processing a small number of sparsely spaced gravity ob-
servations. Conversely, our method is fast and makes feasible
the use of the equivalent-layer technique for processing large grav-
ity data sets measured on uneven surfaces in which the Fourier-
based methods are no longer valid. Tests on synthetic data con-
firmed the potential of our method in interpolating, calculating hori-
zontal components, and upward (or downward) continuing the
gravity data. Tests on field data from the Vinton salt dome, Loui-
siana, USA, confirm the potential of our approach in processing a
large gravity data set over an undulating surface.
The fast iterative equivalent-layer technique is grounded on the

excess mass constraint which in turn establishes that the total
anomalous mass is proportional to the surface integration of the
gravity data measured on a plane. Hence, this technique requires,
theoretically, that the gravity data be measured on a horizontal
plane. However, our results show that the technique works very well
in the case of an uneven observation surface. In this way, future
research is required to study the feasibility of applying this tech-
nique to data measured on a rugged observation surface.
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