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ABSTRACT

We have developed a new phase-based filter to enhance the
edges of geologic sources from potential-field data using the local
phase in the Poisson scale-space monogenic signal. The Poisson
scale-space representation of a potential-field data is equivalent to
performing an upward continuation of the data. We created a
band-pass filter by taking the differences between two Poisson
scale-space representations of the data. The local phase was de-
fined as the arctangent of the ratio of the magnitude of the x- and
y-components of the first-order Riesz transform of the filtered
data to these data. These components were computed in the
wavenumber domain and then transformed back into the space
domain by the inverse Fourier transform. In the wavenumber do-
main, we found that these components are the multiplication of

the Fourier transform of the filtered data by a Fourier-domain
kernel, which in turn is the multiplication of the first-order hori-
zontal derivative filter by the first-order vertical integral filter.
This operation is stable, making the local phase of the monogenic
signal quite insensitive to noise. We proved that if the data were
the vertical component fz of a conservative field F, the x- and
y-components of the first-order Riesz transform of fz were the
horizontal components fx and fy of F. Hence, the local ampli-
tude of the monogenic signal of fz is the 3D analytic signal am-
plitude of the scalar potential of F and the local phase resembles
the tilt angle (TILT). Tests on synthetic total-field anomalies and
a real aeromagnetic anomaly over the Pará-Maranhão Basin, Bra-
zil, showed that the local phase in the scale-space monogenic
signal had better performance than the TILT in delineating the
geologic contacts that were not seen in the original data.

INTRODUCTION

Edge detection is an important field in image processing to en-
hance discontinuities in a signal. In the geophysical literature, edge-
detection methods have been widely used on potential-field data.
Usually, these methods are derivative- and phase-based filters that
are often used to detect and delineate linear structures produced by
geologic contacts and source boundaries.
The derivative-based filters have been successfully used to

enhance short-wavelength anomalies produced by small and shal-
low sources. Examples of derivative-based filters are provided
in Grauch and Cordell (1987), Roest et al. (1992), Hsu et al.
(1996), Fedi and Florio (2001), Hansen and deRidder (2006),
and Cooper and Cowan (2007). Among the derivative-based filters,
the total-gradient filter proposed by Roest et al. (1992) is one of the
most popular filters. This filter is commonly referred to as the 3D
analytical signal amplitude (ASA), and is defined as the square root

of the square sum of the x, y, and z derivatives of potential-field data
fðx; y; zÞ ≡ f; i.e.,

ASAðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂f
∂x

�
2

þ
�
∂f
∂y

�
2

þ
�
∂f
∂z

�
2

s
: (1)

One disadvantage of derivative-based filters is their poor perfor-
mance in the presence of noise or poorer quality data. Another dis-
advantage is their poor performance in enhancing anomalies pro-
duced by shallow and deep bodies simultaneously.
Conversely, the phase-based filters have been usually used to en-

hance anomalies characterized by short- and long-wavelength spec-
tral contents produced by shallow and deep sources. Theoretically,
this is possible because the phase-based filters are grounded on a
ratio of derivatives allowing the enhancement of large- and small-
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amplitude anomalies equally well. Examples of phase-based filters
are provided in Miller and Singh (1994), Thurston and Smith
(1997), Verduzco et al. (2004), Wijns et al. (2005), Cooper and
Cowan (2006), and Zhang et al. (2014). Among the phase-based
filters, the tilt angle (TILT) (Miller and Singh, 1994) is the widely
used edge-detection method. The TILT is defined as the arctangent
of the ratio of the vertical derivative of the potential-field data to the
total horizontal gradient of the field; i.e.,

TILTðx; yÞ ¼ tan−1

 
∂f
∂zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð∂f∂xÞ2 þ ð∂f∂yÞ2
q

!
: (2)

Theoretically, the TILT filter was introduced to cope with the dif-
ficulty of derivative-based filters in enhancing edges of shallow and
deep bodies. However, in practice, low-amplitude anomalies might
be missed, as shown by Santos et al. (2012). The enhancement pro-
duced by the TILT is even worse when the magnetic anomalies also
have a high noise level. Hence, one challenge for edge detection in
potential-field data becomes enhancing weak and noisy anomalies.
Recently, Hassan and Yalamanchili (2013) introduce the mono-

genic signal as a method to enhance deep sources from magnetic
data. Mathematically, a complex function is defined with the 1D
signal (data profile) as the real part and its Hilbert transform as
the imaginary part. Similarly, the combination of a 2D signal
(gridded data) and its Riesz transform is called the monogenic sig-
nal (Felsberg and Sommer, 2001). Hence, the combination of a 2D
signal with its Riesz transform yields a generalization of the 2D
analytic signal, which is named the monogenic signal (Dong and
Kuang, 2015). Nabighian (1972) introduces the concept of the
analytic signal of the magnetic data profile using the Hilbert trans-
form, and Nabighian (1984) demonstrates the relation between the
vertical and horizontal gradients of a potential-field function and
their generalized Hilbert transform. Actually, the generalized Hil-
bert transform is the Riesz transform for 2D functions. Cooper
(2014) uses the generalized Hilbert transform to calculate the
zero-order analytical signal over the total magnetic intensity data.
We present a new approach for enhancing weak and noisy mag-

netic anomalies produced by the shallow- and deep-seated geologic
contacts. Like Hassan and Yalamanchili (2013), we use the concept
of the monogenic signal. In contrast with Hassan and Yalamanchi-
li’s (2013) approach, our method uses the local phase in the scale-
space monogenic signal (Felsberg and Sommer, 2004), which is
defined as the arctangent of the ratio of the magnitude of the x-
and y-components of the first-order Riesz transform of the filtered
data to these data. In the scale-space monogenic signal, the x- and y-
components of the first-order Riesz transform are improved by a
band-pass filter of the data. This procedure allows the enhancement
of magnetic responses with different amplitudes. Tests using syn-
thetic magnetic data and real aeromagnetic data showed that the
proposed filter is potentially useful in enhancing deep and shallow
geologic structures that control the basement of marginal basins.

METHODOLOGY

Monogenic signal

Felsberg and Sommer (2001) introduce the monogenic signal as
the combination of a 2D signal (gridded data) and its first-order
Riesz transform; hence, we start with a brief review of the Riesz
transform.

Let x and y be real variables describing a 2D Cartesian coordinate
system. The coordinate system represents the complex plane in
which any point of the plane is identified by the complex number
z ∈ Cwith z ¼ xþ iy and i ¼ ffiffiffiffiffiffi

−1
p

. Given a signal fðx; yÞ ¼ fðzÞ,
the nth-order Riesz transformation in the complex plane is defined
by Felsberg and Sommer (2001) as

RnffðzÞg ¼ RfRf : : : RffðzÞggg

¼ −
n
2π

Z
τ∈C

fðτÞ
ðz − τÞnkz − τk2−n dτ; (3)

where τ ∈ C with τ ¼ τx þ iτy.
The first-order Riesz transform in the complex plane is given by

R1ffðzÞg ¼ −
1

2π

Z
τ

ðx − τxÞ
kz − τk3 fðτÞ dτ

þ i
1

2π

Z
τ

ðy − τyÞ
kz − τk3 fðτÞ dτ; (4)

which can be rewritten as

R1ffðzÞg ¼ −rxffðzÞg þ iryffðtÞg; (5)

where rx and ry are, respectively, the x- and y-components of the
first-order Riesz transform of fðx; yÞ defined by

rxðfÞ ¼
x

2πðx2 þ y2Þ32 � fðx; yÞ; (6a)

and

ryðfÞ ¼
y

2πðx2 þ y2Þ32 � fðx; yÞ; (6b)

where the asterisk (*) represents convolution.
The monogenic signal is defined as a 3D vector given by

m ¼

2
64 f
rx
ry

3
75; (7)

where the component f ≡ fðx; yÞ represents the even part of the
signal and the components rx and ry (equations 6a and 6b) represent
the odd part of the signal. Let us consider a 3D coordinate system
defined by the components of the monogenic signal (f, rx, and ry)
as shown in Figure 1. Using this 3D vector representation of the
monogenic signal (Figure 1), we can define:
1) the local amplitude of the monogenic signal given by

Aðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y þ f2

q
; (8)

2) the local orientation of the monogenic signal given by

θðx; yÞ ¼ tan−1
�
ry
rx

�
; (9)
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3) the local phase of the monogenic signal given by

φðx; yÞ ¼ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2x þ r2y
q

f

�
: (10)

The Riesz transform in the wavenumber domain

Let us assume that the functions fðx; yÞ, rx (equation 6a) and ry
(equation 6b) have Fourier transforms given by F, Rx, and Ry, re-
spectively. Taking the Fourier-convolution theorem — which
states that the convolution in the space domain transforms to a
multiplication in the wavenumber domain — and using the Fourier
transformations

F
�

x

2πðx2 þ y2Þ32
�

¼ i
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p (11)

and

F
�

y

2πðx2 þ y2Þ32
�

¼ i
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p ; (12)

the x- and y-components of the first-order Riesz transform (equa-
tions 6a and 6b) can be easily computed, in the wavenumber do-
main, as

Rxðu; vÞ ¼ i
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p F; (13a)

and

Ryðu; vÞ ¼ i
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p F; (13b)

where u and v are inversely related to wavelengths in the x- and y-
directions, respectively.

Scale-space monogenic signal

The scale-space technique handles image structures at different
scales by representing a signal as a one-scale-parameter family
without changing the sizes of the structures. By assuming a non-
negative scale parameter h, Felsberg and Sommer (2004) define
the Poisson space-scale representation fpðx; y; hÞ as the convolu-
tion of the signal fðx; yÞ with the Poisson kernel distribution; i.e.,

fpðx; y; hÞ ¼
h

2πðh2 þ x2 þ y2Þ32 � fðx; yÞ: (14a)

In the wavenumber domain, the Poisson scale-space representa-
tion of the signal fðx; yÞ is given by

Fp ≡ Fffpg ¼ e−2πh
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
F; (14b)

which is exactly equal to the upward continuation of the potential-
field data at the continuation height h.
The scale parameter h controls the degree of resolution applied to

the signal. For example, if h tends to zero, the scale-space repre-

sentation fpðx; y; hÞ of the signal fðx; yÞ is the signal itself. The
larger the value of h the lesser the details of the structures without
changing the dimensions of the data. This means that an increase in
h leads to a decrease in the resolution of the scale-space represen-
tation fpðx; y; hÞ of the signal fðx; yÞ.
To enhance low- and high-wavenumber features, Felsberg and

Sommer (2004) propose a band-pass filter using a combination of
coarse hc and fine hf Poisson-scale parameters with hc > hf > 0.
In the wavenumber domain, this can be performed by the difference
between two Poisson scale-space representations of the signal
fðx; yÞ using the two Poisson-scale parameters hc and hf; i.e.,

Fbp ¼
�
e−2πhf

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
− e−2πhc

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p �
F: (15)

Equation 15 is the Poisson scale-space representation of the sig-
nal fðx; yÞ filtered by a band-pass filter, which is accomplished by
the difference between the upward continuations of the signal at two
elevations of hf and hc. Hence, the unit of hf and hc will be the
same as the data grid unit.
Like the monogenic signal (equation 7), the Poisson scale-space

monogenic signal of fðx; yÞ filtered by a band-pass filter is a 3D
vector defined, in the wavenumber domain, as

mp ¼

2
64Fbp

Rxp

Ryp

3
75; (16)

where Fbp is given by equation 15 and Rxp and Ryp are, respec-
tively, the x- and y-components of the first-order Riesz transform
of Fbp expressed by

Figure 1. Schematic representation of monogenic signal vector m
(equation 7) in 3D Euclidean space. The component f ≡ fðx; yÞ is
the signal, and the components rx and ry are the x- and y-compo-
nents of the first-order Riesz transform of the signal. The local am-
plitude, local orientation, and local phase of the monogenic signal
are Aðx; yÞ; θðx; yÞ, and φðx; yÞ, respectively.
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Rxpðu; vÞ ¼ i
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p Fbp; (17a)

and

Rypðu; vÞ ¼ i
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p Fbp: (17b)

In terms of computational details, the local amplitude and the
local phase in the Poisson scale-space monogenic signal of fðx; yÞ
filtered by a band pass are computed in two steps. In the first step,
we compute the elements of the vectormp (equation 16) using equa-
tions 15, 17a, and 17b. Because these components are computed in
the wavenumber domain, the second step consists in transforming
the elements of mp back into the space domain by the inverse Fou-
rier transform. Finally, we calculate the local amplitude and local
phase. These procedures are extremely rapid, allowing an efficient
interpretation of the edges of geologic sources from large data sets.

FUNDAMENTAL RELATIONS

Relations between the Riesz transform and the poten-
tial-field components

Considering a potential field Uðx; y; zÞ ≡U in Cartesian coordi-
nates, which satisfies the Laplace’s equation∇2U ¼ 0 at places free

of all sources, the 3D conservative force field F is related to its po-
tential field U according to F ¼ ∇U. The three Cartesian compo-
nents of the force field in three orthogonal directions are

F ≡

2
64 fx
fy
fz

3
75 ¼

2
64

∂U
∂x
∂U
∂y
∂U
∂z

3
75: (18)

In the wavenumber domain, the horizontal and vertical compo-
nents of the force field F are given by

Fffxg ≡ F
�
∂U
∂x

�
¼ iuFfUg

Fffyg ≡ F
�
∂U
∂y

�
¼ ivFfUg (19)

and

Fffzg ≡ F
�
∂U
∂z

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
FfUg: (20)

Hence, given the vertical component fz ¼ ∂U/∂z of the force
field, the x- and y-components of the first-order Riesz transform
of fz in the wavenumber domain (equations 13a and 13b) can
be expressed by

Rx ¼ i
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p F

�
∂U
∂z

�
¼ iuF ðUÞ; (21a)

and

Ry ¼ i
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p F

�
∂U
∂z

�
¼ ivF ðUÞ: (21b)

The reader will recognize that, in the wavenumber domain, the x-
and y-components of the first-order Riesz transform (equations 21a
and 21b) of the vertical component fz are the Fourier transforms of
the horizontal components fx and fy of a conservative force field F;
i.e.,

Rx ¼ FðfxÞ; (22a)

and

Ry ¼ FðfyÞ: (22b)

Hence, in the space domain, the x- and y-components of the first-
order Riesz transform (equations 22a and 22b) of the vertical com-
ponent fz are the horizontal components of a conservative force
field; i.e.,

rxðfzÞ ¼ fx; (23a)

and

ryðfzÞ ¼ fy: (23b)

Figure 2. Synthetic test. (a) Noise-corrupted total-field anomaly
produced by (b) the isolated dipping intrusion. The dashed black
lines in panel (a) indicate the horizontal projections of the edges
of the dipping source.
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Local amplitude and local phase of the monogenic
signal versus the analytic signal and tilt angle

Using equations 23a and 23b, one can easily prove the relation-
ships between the monogenic signal and the 3D analytic signal
and TILT.
Specifically, the local amplitude of the monogenic signal (equa-

tion 8) of the vertical component fz of a conservative force field can
be written as

Aðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2x þ f2y þ f2z

q
: (24)

Notice that equation 24 is the 3D analytic signal amplitude of the
scalar potential Uðx; y; zÞ ≡ U of a conservative force field F; i.e.,

ASAðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂U
∂x

�
2

þ
�
∂U
∂y

�
2

þ
�
∂U
∂z

�
2

s
: (25)

However, this is not what is known as the 3D analytic signal am-
plitude (Roest et al., 1992), mentioned by Nabighian et al. (2005).
Equations 23a and 23b show that the local phase of the mono-

genic signal (equation 10) of the vertical component fz of a
conservative force field can be written as

φðx; yÞ ¼ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2x þ f2y
q

fz

�
: (26)

Notice that equation 26 resembles the TILT (Miller and Singh,
1994). Like TILT, the local phase has a value between −90° and
þ90°. In contrast, the zero contour of the TILT delineates the geo-
logic contacts, whereas maximum contour of the local phase delin-
eates the geologic contacts.

Why are local amplitude and local phase of the mono-
genic signal better than the analytic signal amplitude
and TILT?

Note that, in the wavenumber domain, the components Rx and Ry

of the monogenic signal of the data (equations 13a and 13b) and the
components Rxp and Ryp of the Poisson scale-space monogenic sig-
nal of the filtered data (equations 17a and 17b) use the first-order
horizontal derivative filters (iu and iv) and the first-order vertical

Figure 3. Perspective view of the simulated dipping intrusion and
the enhancements of the total-field anomaly of Figure 2a using the
ASA and the local amplitude in the scale-space monogenic signal.

Figure 4. Perspective view of the simulated dipping intrusion and
the enhancements of the total-field anomaly of Figure 2a using the
TILT and the local phase in the scale-space monogenic signal.

Figure 5. Synthetic test. Noise-corrupted total-field anomaly pro-
duced by the simulated 3D extensional basin (Figure 6). The dashed
black lines indicate the horizontal projections of the eight geologic
contacts pinpointed in Figure 6 as labels 1–8.
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integral filter ð1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ. Although the horizontal derivative fil-

ters enhance the high-wavenumber components of a signal, the ver-
tical integral filter counteracts this enhancement by attenuating the
high-wavenumber spectral content. The balance between the ampli-
fication and attenuation of the high-wavenumber components
makes the local amplitude (equation 8) and the local phase (equa-
tion 10) of the monogenic signal weakly sensitive to noise. In con-
trast, the 3D analytic signal amplitude (Roest et al., 1992) and the
TILT (Miller and Singh, 1994) require the horizontal and vertical
derivatives of the signal that amplify the high-wavenumber compo-
nents of the anomalies. Hence, the 3D analytic signal amplitude and
the TILT are more sensitive to the presence of noise in the signal.

APPLICATION TO SYNTHETIC DATA

We present two tests using synthetic noise-corrupted total-field
anomalies. In the first one, we simulate an isolated dipping intrusion
with a shallow top and deep bottom. In the second test, we simulate
a passive margin basin in which crustal stretching leads to the de-
velopment of a complex system of normal faults resulting in a series
of basement horsts and grabens.

Isolated dipping intrusion

Figure 2a shows, in grayscale, the simulated noise-corrupted to-
tal-field anomaly produced by a magnetized deep-bottomed dipping

Figure 7. Synthetic test. Perspective view of the simulated 3D extensional basin and the enhancements of the total-field anomaly of Figure 5
using (a) the TILT, (b) the local phase in the scale-space monogenic signal, and (c) the local phase in the scale-space monogenic signal in
cascade with the DPF. The total-field anomaly enhanced by the DPF is not shown. The labels 1–8 locate the eight geologic contacts between
the basement and the sediments.

Figure 6. Synthetic test. Perspective view of the
simulated 3D extensional basin such as the one
formed during the Atlantic rifting process. The
labels 1–8 locate the eight geologic contacts be-
tween the basement and the sediment. The upper
surface represents the bathymetry.
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body (Figure 2b) enclosed in a nonmagnetic medium. The body has
induced magnetization only with an inclination of 90°, a declination
of 0°, and an intensity of 2 A∕m. The depths to the top and bottom
of the simulated body are 0.2 m and 2.7 km, respectively. The hori-
zontal projections of the edges of the body are shown in Figure 2a as
the dashed lines superimposed on the anomaly. Using Uieda et al.
(2013), we calculate the total-field anomaly at a 150-m height on a
regular grid of 200 × 200 observation points in the north–south and
east–west directions with grid spacing of 50 m along both direc-
tions. The anomaly was corrupted with pseudorandom zero-mean
Gaussian noise with a standard deviation of 10 nT. This example
illustrates the eastward anomaly attenuation caused by the eastward
increase of the distance between the source and magnetometer. We
can note that the horizontal projection of the shallowest edge of the
body can be easily delimited by the magnetic response (Figure 2a);
however, the response becomes weak over the deepest edge of the
body, and its horizontal projection cannot be inferred easily from
inspecting the anomaly.
We enhance the original signal (Figure 2a) to delimit the horizon-

tal projections of the edges of the simulated dipping body (Fig-
ure 2b). The enhancements produced on the original data by
applying the ASA and TILT are, respectively, shown in Figures 3
and 4 (lower filtered outputs). We note that neither ASA nor TILT
enhances all the edges of the body. These filtered outputs are vir-
tually similar to the total-field anomaly (Figure 2a) with the disad-
vantage of a strong amplification of the noise.
However, the local amplitude in the scale-space monogenic sig-

nal (upper filtered output in Figure 3) with hc ¼ 0.2 km and hf ¼
0.15 km does not amplify the noise. However, it shows a strong
correlation with ASA, and thus, it does not enhance the deepest
edge of the body. In contrast, the local phase in the scale-space mon-
ogenic signal (upper filtered output in Figure 4) enhances all the
edges of the simulated dipping body without amplifying the noise.
We can note that the maximum value of the local phase in the space-
scale monogenic signal shows a close agreement with the horizontal
projections of the edges of the dipping bodies.

Passive marginal basin

In this test, we compute a noise-corrupted total-field anomaly
(Figure 5 in grayscale) produced by a simulated 3D extensional ba-
sin (Figure 6) such as the one found in an offshore Brazilian passive
margin. The tectonic framework of the basement relief of this basin
is characterized by a series of horsts and grabens. This framework
defines eight geologic contacts between the basement and the sedi-
ment, which are labeled 1–8 in Figure 6. This simulated structural
framework is strongly controlled by normal faults such as the ones
implanted during the South Atlantic rifting process.
The magnetic basement is uniformly magnetized by induction

only with a magnetization intensity of 2 A∕m, an inclination of
−2°, and a declination of −20°. The geometry of the rift was extra-
polated to the east and west directions to simulate 2D geologic
structures. Using Uieda et al. (2013), we calculate the total-field
anomaly at 150-m height on a regular grid of 400 × 200 observation
points in the north–south and east–west directions with a grid spac-
ing of 200 m along both directions. The anomaly was corrupted
with pseudorandom zero-mean Gaussian noise with a standard
deviation of 10 nT.
We apply the TILT to the total-field anomaly of Figure 5. Fig-

ure 7a shows that the TILT enhances four of the eight geologic con-

tacts clearly. However, the local phase in the scale-space monogenic
signal with hc ¼ 0.4 km and hf ¼ 0.2 km (Figure 7b) applied to
the same anomaly clearly delimits five of the eight geologic con-
tacts. Only the three deepest geologic contacts were not enhanced.
We explore the assumption of complementarity by applying the

local phase in the scale-space monogenic signal to the total-field
anomaly enhanced by the deep-pass filter (DPF; Santos et al.,
2012). First, we apply the DPF to the total-field anomaly (Figure 5),
and next, we apply the scale-space monogenic phase to the DPF
output (not shown). Figure 7c shows the application of the DPF
in combination with the local phase in the monogenic scale space
with hc ¼ 0.4 km and hf ¼ 0.2 km. We note that this filtered out-
put discloses geologic contacts that were not revealed in individual
applications of the filters. Figure 7c enhances seven of eight geo-
logic contacts. Only the deepest geologic contact was not delimited.
In this test, the data were not reduced to the pole because we are

interpreting 2D geologic contacts. However, we stress that the local
amplitude and local phase in the monogenic scale-space are filters
that depend on everything that the magnetic field itself may depend.

ANALYSIS OF THE LOCAL PHASE IN THE SCALE-
SPACE MONOGENIC SIGNAL

To understand the role of the band-pass filter in the local phase in
the Poisson scale-space monogenic signal, we simulate a synthetic
test produced by two magnetized prisms (Figure 8) by induction

Figure 8. Synthetic test. Perspective view of the simulated shallow
and deep prisms magnetized by induction only in the vertical direc-
tion. The enhancements produced by (a) TILT, (b) local phase in the
scale-space monogenic signal using the Poisson representation of
the data (equation 14b) with h ¼ 0.2 km, and (c) local phase in
the scale-space monogenic signal with a band-pass filtered data
(equation 15) setting hc ¼ 0.3 km and hf ¼ 0.2 km.
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only with a constant magnetization with an inclination of 90° and
intensities of 1 A∕m (shallow prism) and 0.1 A∕m (deep prism).
We calculate the noise-corrupted total-field anomaly at 150-m
height on a regular grid of 200 × 200 observation points in
the north–south and east–west directions. The anomaly (not shown)
was corrupted with a pseudorandom zero-mean Gaussian noise with
a standard deviation of 0.25 nT. We apply three different types of
filters to the noise-corrupted total-field anomaly: (1) the TILT (Fig-
ure 8a), (2) the local phase in the scale-space monogenic signal

using the Poisson representation of the data (equation 14b) with h ¼
0.2 km (Figure 8b), and (3) the local phase in the scale-space mono-
genic signal with a band-pass filtered data (equation 15) setting
hc ¼ 0.3 km and hf ¼ 0.2 km (Figure 8c). The local phase in
the monogenic signal with the Poisson scale-space representation
of the data (equation 14b) reduces the resolution of the data and
generates features that appear to be from larger bodies (Figure 8b).
Conversely, the local phase in the monogenic signal with the band-
pass-filtered data (equation 15) generates smaller features for the

Figure 9. Real test. (a) Aeromagnetic total-field anomaly over Pará-Maranhão Basin, Brazil. The dashed white lines indicate the horizontal
projections of the east–west edges of the Saint Paul Fracture Zone. The inset shows the continental margin of the northeastern Brazil with the
Saint Paul, Romanche and Chain Fracture Zones (in gray lines) and the sedimentary basins (polygons in black lines). The study area is outlined
with a square within the Pará-Maranhão Basin. The enhancements of the total-field anomaly using (b) the TILT and (c) the local phase in the
scale-space monogenic signal. The dashed black lines in panels (b and c) are correlated with the Saint Paul Fracture Zone shown in panel (a),
which cuts across the continental margin into the Pará-Maranhão Basin.
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shallow and deep bodies (Figure 8c). The scale-space parameters
(hc and hf), expressed in units of the grid spacing, are chosen based
on the spectral content of the data.

APPLICATION TO REAL DATA

We have applied our method to a total-field anomaly from a study
area located in the northwest of the Pará-Maranhão Basin in the
Brazilian equatorial margin. The Brazilian equatorial margin en-
compasses a family of the northwest–southeast-trending en-echelon
basins including the Pará-Maranhão Basin. The Pará-Maranhão Ba-
sin is located entirely offshore on Brazil’s northern coast (inset of
Figure 9a), between approximately 2°S and 2°N, and 48°W and 42°
W. The Barreirinhas and Foz do Amazonas Basins define its south-
east and northwest limits, respectively. The tectonic evolution of
Pará-Maranhão Basin is linked to the Gondwana breakup and
the opening of the Equatorial Atlantic Ocean. The rifting process
was established mostly over the Archean São Luis Craton, which
is a fragment of the West African Craton. The Pará-Maranhão
Basin is a typical continental transform margin dominated either
by oblique extension or by pure shear movements in a dextral sense.
The northwest portion of the Pará-Maranhão Basin, where the study
area is located, is affected by the Saint Paul Fracture Zone which
is a strong system of east–west-trending faults and fractures (Za-
lán, 2011).
The magnetic data (Figure 9a) consist of a high-resolution aero-

magnetic survey over the Brazilian equatorial margin. The flight
lines were flown at a height of 150 m, with line spacing of 500 m
and 1 km over, respectively, the shallow water in the continental
shelf and the deep water in the continental slope. The data set used
herein corresponds to a regular grid of 225 × 225 observation points
in the north–south and east–west directions with a grid spacing of
500 m along both directions. The geomagnetic field has an incli-
nation of −1.9° and declination of −20.3°.
Figure 9b and 9c shows the results of filtering the total-field

anomaly (Figure 9a), respectively, with the TILTand the local phase
in the scale-space monogenic signal using a hc ¼ 0.5 km and
hf ¼ 0.4 km. We note that the original total-field anomaly (Fig-
ure 9a) and the enhanced outputs (Figure 9b and 9c) show striking
differences. However, as we show with synthetic data, the enhanced
geologic contacts (or lineaments) produced by the TILT (Figure 9b)
are blurred, whereas the local phase in the monogenic scale space
(Figure 9c) displays geologic features that are not clearly apparent
in the TILT image.
The local phase in the monogenic scale space (Figure 9c) high-

lights clearly two patterns of lineaments and geologic contacts. In
the northern and central portions of the study area, the east–west
lineaments dominate. We interpret the main east–west lineament
(dashed lines in Figure 9c) as magnetic expressions of the Saint Paul
Fracture Zone cutting the continental margin into the Pará-Mara-
nhão Basin (inset of Figure 9a). Conversely, in the southern portion
of the study area, the local phase in the monogenic scale space re-
veals the predominance of the northeast–southwest lineaments.
These lineaments are located over the shallow basement of Pará-
Maranhão Basin and they could be related to a late amalgamation
of different terrains that composed the São Luis Craton. Notice that
the east–west and northeast–southwest lineaments are revealed
more subtly in the TILT map (Figure 9b).

CONCLUSIONS

We have proposed the local phase in the monogenic scale space
as a new edge-detection filter to enhance aeromagnetic data. Our
filter computes, in the wavenumber domain, the x- and y-compo-
nents of the first-order Riesz transform of the band-pass filtered
data. Then, these components and the filtered data are transformed
back into the space domain by the inverse Fourier transform. Fi-
nally, the local phase in the monogenic scale space is computed
as the arctangent of the ratio of the magnitude of the x- and y-com-
ponents of the first-order Riesz transform of the filtered data to these
data. The band-pass filter is created using the Poisson scale-space
representation of the data. The TILT and the local phase are able to
enhance strong and weak anomalies. Beside, the local phase in the
monogenic scale space has the advantage of being weakly sensitive
to random noise. The results from a synthetic example and aero-
magnetic data from Pará-Maranhão Basin in offshore Brazilian pas-
sive margin showed that the local phase in the monogenic scale
space is effective in enhancing lineaments that are neither directly
inferred from inspection of the magnetic anomaly nor easily re-
vealed by other filters such as the TILT. Different practical appli-
cations of the local phase in the monogenic scale space are feasible
to interpret other geologic environments with similar challenges of
enhancing the magnetic responses of deep and shallow sources. The
application of this approach to enhance gravity, multiple-compo-
nent gravity gradiometry, and magnetic gradient data has no meth-
odological obstacles.
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