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ABSTRACT

We have developed a new cost-effective method for proces-
sing large-potential-field data sets via the equivalent-layer tech-
nique. In this approach, the equivalent layer is divided into a
regular grid of equivalent-source windows. Inside each window,
the physical-property distribution is described by a bivariate
polynomial. Hence, the physical-property distribution within
the equivalent layer is assumed to be a piecewise polynomial
function defined on a set of equivalent-source windows. We per-
form any linear transformation of a large set of data as follows.
First, we estimate the polynomial coefficients of all equivalent-
source windows by using a linear regularized inversion. Second,
we transform the estimated polynomial coefficients of all win-
dows into the physical-property distribution within the whole
equivalent layer. Finally, we premultiply this distribution by
the matrix of Green’s functions associated with the desired
transformation to obtain the transformed data. The regularized
inversion deals with a linear system of equations with dimen-

sions based on the total number of polynomial coefficients
within all equivalent-source windows. This contrasts with the
classical approach of directly estimating the physical-property
distribution within the equivalent layer, which leads to a system
based on the number of data. Because the number of data is
much larger than the number of polynomial coefficients, the
proposed polynomial representation of the physical-property
distribution within an equivalent layer drastically reduces the
number of parameters to be estimated. By comparing the total
number of floating-point operations required to estimate an
equivalent layer via our method with the classical approach,
both formulated with Cholesky’s decomposition, we can verify
that the computation time required for building the linear system
and for solving the linear inverse problem can be reduced by
as many as three and four orders of magnitude, respectively.
Applications to synthetic and real data show that our method
performs the standard linear transformations of potential-field
data accurately.

INTRODUCTION

In accordance with potential theory, a discrete set of observations
of a potential field produced by a 3D physical-property distribution
can be exactly reproduced by a 2D physical-property distribution.
This 2D physical-property surface distribution is continuous and
infinite. In practice, it is approximated by a finite set of equivalent
sources arranged in a layer with finite horizontal dimensions and
located below the observation surface. Usually the equivalent
sources are represented by magnetic dipoles, doublets, point
masses, or more complex sources such as prisms. In the literature,
this layer that is made up of equivalent sources is referred to as the
equivalent layer (Dampney, 1969).
By following the classical approach of the equivalent-layer prin-

ciple, the physical property of each equivalent source is estimated

by solving a linear inversion subject to fitting a discrete set of po-
tential-field observations. Next, the estimated 2D physical-property
distribution can be used to perform any standard linear transforma-
tion of the potential-field data such as interpolation (e.g., Cordell,
1992; Mendonça and Silva, 1994), upward (or downward) conti-
nuation (e.g., Emilia, 1973; Hansen and Miyazaki, 1984; Li and
Oldenburg, 2010) and reduction to the pole of magnetic data
(e.g., Silva 1986; Leão and Silva, 1989; Guspí and Novara,
2009). Specifically, the desired linear transformation of the poten-
tial-field data can be obtained by multiplying the matrix of Green’s
functions associated with the desired transformation by the esti-
mated physical-property distribution (magnetization-intensity or
density distributions).
The advent of airborne surveys made possible the acquisition of a

huge volume of potential-field observations. In a typical airborne
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survey, these observations are collected every few meters, generat-
ing data sets that may contain hundreds of thousands observations
(Uieda and Barbosa, 2012). Although airborne surveys provide
high-resolution potential-field data, the processing of these large
potential-field data sets may lead to costly computational schemes,
such as the application of the equivalent-layer technique. Hence, the
computational demand for performing discrete linear transforma-
tions of large potential-field data sets also increases. However,
for processing a huge quantity of data via the equivalent-layer tech-
nique, a huge number of equivalent sources is required. Usually, the
equivalent-layer technique requires several equivalent sources M
greater than the number of observations N. The larger the number
of equivalent sources, the smaller will be the dependence of the
result on the type of source used (dipoles, prisms, etc.) and on
the distribution of these sources within the equivalent layer. Thus,
the use of a large number of equivalent sources increases the chance
of the estimated physical-property distribution yields an acceptable
data fit. On the other hand, a large number of equivalent sources
makes the construction of the linear system and the solution of
the resulting inverse problem prohibitively inefficient. Hence, the
challenge for potential-field data processing via the equivalent-layer
technique is that of a large-scale inversion. As properly pointed out
by Barnes and Lumley (2011), the key to a successful equivalent-
source processing scheme rests with carefully designed software
that can handle large optimization problems efficiently. To over-
come this difficulty, a few methods have been developed to make
feasible the use of the equivalent-layer technique for processing
large data sets.
Leão and Silva (1989) developed a fast method for performing

any linear transformation of a large set of potential-field data using
the equivalent-layer principle. These authors posed the linear in-
verse problem of estimating the physical properties ofM equivalent
sources from potential-field data in the data space. This leads to a
linear system of equations with dimensions based on the number of
data N, instead of the number of sources M. To greatly reduce the
total processing time and memory requirements, Leão and Silva’s
(1989) method used a small, moving data window that is shifted
over the whole gridded data set. By using the observations inside
a small data window, Leão and Silva (1989) estimated the physical-
property distribution of a set of equivalent sources forming a small
equivalent layer. These authors set up an equivalent layer extending
beyond the moving-data window and at a depth between two and
six times the grid spacing of the observations. Next, they compute
the transformed field at the center of the moving-data window only.
This procedure is repeated for each position of a moving-data win-
dow that spans the data until the whole area is processed. Leão and
Silva’s (1989) method leads to a fast grid operator which is applied
to the data by a procedure similar to a discrete convolution.
Mendonça and Silva (1994) developed the equivalent-data con-

cept which makes the equivalent-layer technique a feasible interpo-
lation method. The equivalent-data concept consists in determining
a subset of all potential-field observations (named equivalent data)
such that the estimated physical-property distribution within an
equivalent layer that fits the determined subset also fits the remain-
ing potential-field observations automatically. The authors also
pointed out that the computational efficiency of the method depends
on the number of equivalent data. If the potential-field anomaly is
nonsmooth, the number of equivalent data can be large and the
method will be less efficient than the classical approach.

Li and Oldenburg (2010) develop a rapid method for processing
large potential-field data sets by using the equivalent-layer princi-
ple. Li and Oldenburg’s (2010) method uses the sparse wavelet
representation of the matrix of Green’s functions whose jth column
contains the potential-field contribution of the jth equivalent source,
with unit physical property, at the positions where the observations
were made. To obtain a sparse representation of the matrix of
Green’s functions, Li and Oldenburg (2010) apply the 2D wavelet
transform to each row and column of this matrix and set to
zero the wavelet coefficients that are below a given threshold.
Finally, these authors estimate the physical-property distribution
within an equivalent layer by using the conjugate gradient least-
squares strategy. By comparing with the classical equivalent-layer
approach, the authors pointed out that, given the compression, their
method reduces the computational time required for solving the
linear system by as many as two orders of magnitude.
Barnes and Lumley (2011) reduce the noise level by a factor of

2.4 of the gzz component of the gravity gradient tensor by using the
equivalent layer technique. These authors grouped equivalent
sources far from an observation point in blocks with average phy-
sical properties. This procedure aims at obtaining a linear system
with a sparse matrix that reduces the memory storage and computa-
tional time. By using a weighted-least-squares conjugate-gradient
strategy, Barnes and Lumley (2011) solved the resulting linear
inverse problem.
We present a new fast method for processing large potential-field

data sets by applying the equivalent-layer technique. Our method
divides the equivalent layer into a regular grid of equivalent-source
windows inside which the physical-property distribution is
described by bivariate polynomial functions. This polynomial
representation of the physical-property distribution within the
equivalent layer considerably decreases the number of parameters
to be estimated in the linear inverse problem. Our inverse problem
is posed in the space of the total number of polynomial coefficients
within all equivalent-source windows. This contrasts with the clas-
sical equivalent layer technique, derived through operations within
the data or model spaces. By comparing the classical equivalent
layer technique with our method and formulating the correspond-
ing linear inverse problems using Cholesky’s decomposition, we
illustrate that our method substantially reduces the required mem-
ory storage and number of floating-point operations. Tests con-
ducted with large synthetic gravity- and magnetic-data sets and
with a real magnetic-data set over the Goiás Magmatic Arc (in
central Brazil) show the good performance of our method in pro-
ducing equivalent layers able to carry out the standard linear trans-
formations of potential-field data without a prohibitively costly
computational load.

METHODOLOGY

Classical approach

Let d be an N-dimensional vector of potential-field observations
(gray dots in Figure 1a) and p be an M-dimensional vector of the
equivalent sources’ physical-property values. We assume that theM
equivalent sources (black dots in Figure 1b) are distributed in a reg-
ular grid with a constant depth z0 forming an equivalent layer.
Usually, the equivalent sources can be either points of masses or
dipoles, depending on whether the potential-field observations
are gravity or magnetic data, respectively. Hence, p contains a set
ofM densities, in the case of gravity data, or magnetic intensities, in
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the case of magnetic data. The potential field predicted by the
equivalent layer at N observation points can be written in matrix
notation as

gðpÞ ¼ Gp; (1)

where gðpÞ is an N-dimensional vector whose ith element giðpÞ is
the potential-field data predicted at the ith observation point
(x ¼ xi, y ¼ yi, and z ¼ zi, referred to a right-hand Cartesian co-
ordinate system with the z-axis pointing downward (Figure 1a), and
G is the N ×M matrix of Green’s functions, whose ijth element is
the potential field at the ith observation point produced by the jth
equivalent source located at x ¼ x 0

j, y ¼ y 0
j, and z ¼ z0

(Figure 1b), and with unitary physical property.
In applying the classical equivalent-layer technique, the param-

eters to be estimated are the physical properties (densities or mag-
netic intensities) of theM equivalent sources (e.g., point of masses or
dipoles). The inverse problem of estimating this discrete physical-
property distribution (the parameter vector p in equation 1) from
observed data is an ill-posed problem because its solution is non-
unique and unstable. In the classical equivalent-layer technique, a
stable estimate of p can be obtained by using a parameter-space
approach with the zeroth-order Tikhonov regularization (Tikhonov
and Arsenin, 1977), i.e.,

p� ¼ ðGTGþ μIÞ−1GTd; (2)

where the superscript T stands for a transpose, μ is a regularizing
parameter and I is an identity matrix of order M. After estimating
the vector p�, a desired linear transformation, such as interpolation,
reduction to the pole and upward (or downward) continuation, is
performed by

t ¼ Tp�; (3)

where t is an N-dimensional vector containing the transformed field
and T is an N ×M matrix of Green’s functions whose ijth element
is the transformed field at the ith observation point (Figure 1a) pro-
duced by the jth equivalent source (Figure 1b) with unitary physical
property. For example, if the desired transformation is an upward
continuation of the gravity data, the ijth element of the matrix T is
the gravity effect at the continuation height produced by the jth
point of mass located at ðx 0

j; y 0
j; z0Þ and with unitary density.

A linear transformation through the equivalent-layer technique
is performed in two steps: 1) estimating the physical-property dis-
tribution (equation 2), and 2) performing a matrix-vector multipli-
cation to obtain the transformed field (equation 3). In terms of
computational load, the first step is the biggest obstacle in using
the equivalent-layer technique. This step requires the solution of
a large linear system (equation 2) based on matrix ðGTGþ μIÞ with
dimension M ×M. Hence, the computational problem in forming
and inverting an M ×M matrix is not feasible when the number
of parameters is large. To avoid the dependence on the source pat-
tern and on the spatial distribution of the sources within the equiva-
lent layer, the equivalent-layer technique usually requires several
equivalent sources M greater than the number of observations N,
and thus, a large-scale inversion is expected.
Alternatively, a stable estimate of the parameter vector can be

obtained by using a data-space approach with the zeroth-order
Tikhonov regularization (Tikhonov and Arsenin, 1977), i.e.,

p� ¼ GTðGGT þ μIÞ−1d; (4)

where I is an identity matrix of order N. The data-space approach is
computationally much more efficient than the parameter-space be-
cause it forms the N × N matrix (GGT þ μI), instead of theM ×M
matrix in equation 2. To reduce even further the computational
effort, p� (equation 4) can be obtained in two steps. In the first
one, we solve the linear system

ðGGT þ μIÞw ¼ d; (5)

where the vector w is a dummy variable. In the second step we
evaluate

GTw ¼ p�: (6)

Although formulating the equivalent-layer problem in the data
space (equation 4) reduces significantly the size of the linear system
to be solved compared with the parameter-space approach (equa-
tion 2), the computational effort is still excessive. In practice, this
makes it unfeasible when dealing with large values of N (i.e., the
number of data). To overcome this difficulty, we propose a new
concept of equivalent layer that leads to a computationally efficient
method to estimate p�.

Polynomial equivalent layer (PEL)

Let an equivalent layer be composed of M equivalent sources
(black dots in Figure 1b) whose physical properties (densities or
magnetic intensities) are the elements of an M-dimensional param-
eter vector p. Here, the equivalent sources consist of magnetic
dipoles or point of masses because they demand simple computer
calculations. Let’s divide this equivalent layer into Q equivalent-
source windows (dashed rectangles in Figure 1b) with the same hor-
izontal extensions and the same number Ms of equivalent sources,
where Ms ≪ M and M ¼ Ms · Q. Hence, we partition the param-
eter vector as p ¼ ½p1T : : : pQT �T , where pk, k ¼ 1; : : : ; Q, is

Figure 1. Schematic representation of the equivalent layer.
(a) Observed potential-field anomaly (black contour lines) mea-
sured at a set of N observation points (gray dots) located at coor-
dinates ðxi; yi; ziÞ, i ¼ 1; : : : ; N. (b) The equivalent layer is a thin
slab in the subsurface which contains M fictitious equivalent
sources (black dots) distributed in a grid at constant depth z0. These
sources are located at coordinates ðx 0

j; y
0
j; z0Þ, j ¼ 1; : : : ;M, and

they can be point masses (in the case of gravity data) or dipoles
(in the case of magnetic data). This equivalent layer is divided into
Q equivalent-source windows (dashed rectangles).

Polynomial equivalent layer G3
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an Ms-dimensional vector containing the physical properties of the
equivalent sources within the kth equivalent-source window. Here,
the physical-property distribution within the kth window is de-
scribed by a bivariate polynomial qk, k ¼ 1; ...; Q; of degree α.
The number P of constant coefficients of qk is given by

P ¼
Xαþ1

l¼1

l: (7)

It follows that the physical-property values of the equivalent
sources within the kth equivalent-source window pk can be
expressed in terms of the coefficients ckl , l ¼ 1; : : : ; P, of the
αth-order polynomial function qk, i.e.,

pk ¼
XP
l¼1

bkl c
k
l : (8)

This linear relationship can be written in matrix notation as

pk ¼ Bkck; k ¼ 1; :::; Q; (9)

where ck is a p-dimensional vector whose lth element ckl is the lth
coefficient of the polynomial qk, and Bk is anMs × Pmatrix whose
lth column is the Ms-dimensional vector bkl . A generic element of
matrix Bk is the first-order derivative of the αth-order polynomial
function qk with respect to one of the P coefficients (ck1; :::; c

k
P). To

illustrate this matrix, let’s consider a kth equivalent-source window
composed of Ms ¼ 12 equivalent sources whose physical-property
distribution can be described by a second-order polynomial (α ¼ 2

and P ¼ 6, equation 7). In this case, the jth element of the 12 × 1

parameter vector pk (equations 8 and 9) is

pk
j ¼ ck1 þ ck2x

0
j þ ck3y

0
j þ ck4x

02
j þ ck5x

0
jy 0

j þ ck6y
02
j ;

j ¼ 1; : : : ; 12 (10)

and the 12 × 6 matrix Bk is

Bk ¼

2
66664

1 x 0
1 y 0

1 x 02
1 x 0

1y 0
1 y 02

1

1 x 0
2 y 0

2 x 02
2 x 0

2y 0
2 y 02

2

..

. ..
. ..

. ..
. ..

. ..
.

1 x 0
Ms

y 0
Ms

x 02
Ms

x 0
Ms
y 0

Ms
y 02

Ms

3
77775: (11)

It is then clear that pk
j , j ¼ 1; : : : ; 12, is numerically equal to the

second-order polynomial qk evaluated at the horizontal coordinates
ðx 0

j; y 0
jÞ of the jth equivalent source within the kth equivalent-

source window.
Here, the physical-property distribution within the equivalent

layer is assumed to be a set of Q piecewise αth-order polynomial
functions (i.e., qk, k ¼ 1; :::; Q) defined on a user-specified set of Q
equivalent-source windows. Hence, the physical-property distribu-
tion of the entire equivalent layer, which includes all equivalent
sources from all windows, can be described as

p ¼ Bc; (12)

where B is anM ×H matrix (H ¼ P · Q) that can be partitioned as

B ¼

2
6664
B1 0 · · · 0
0 B2 · · · 0
..
. ..

. . .
. ..

.

0 0 · · · BQ

3
7775; (13)

where 0 is an Ms × P matrix of zeros. The H-dimensional vector c
(equation 12) is partitioned as c ¼ ½c1T : : : cQT �T . Hence, the vector
c contains all coefficients describing all polynomial functions, qk,
k ¼ 1; :::; Q; which are associated with the Q equivalent-source
windows composing the entire equivalent layer.
By using equation 12, the linear system in equation 1, of N equa-

tions in M unknowns, can be rewritten as

gðpÞ ¼ GBc: (14)

Equation 14 represents a system of N linear equations in H
unknowns.
In our approach, named polynomial equivalent layer (PEL), we

first solve the inverse problem of estimating the polynomial-
coefficient vector c from the potential-field observations. Next, we
calculate the physical-property distribution using equation 12.
Finally, we compute the desired transformation of the data using
equation 3. To obtain a stable estimate c, we impose the zeroth- and
first-order Tikhonov regularization (Tikhonov and Arsenin, 1977).
Here, the linear inverse problem of estimating c is formulated as an
optimization problem of minimizing

fg
H

kck2; (15a)

and

fg
fr

kRBck2; (15b)

subject to

kgðpÞ − dk2 ¼ δ; (15c)

where k:k is the Euclidean norm, δ is the expected mean square of
the noise realizations in the data, and R is an L ×M matrix repre-
senting a set of L first-order differences (Aster et al., 2004). The
zeroth-order Tikhonov regularization (equation 15a) imposes that
all coefficients estimates (vector c) must be as close as possible
to zero. The first-order Tikhonov regularization (equation 15b) im-
poses a smoothing constraint on estimated physical properties of the
equivalent sources located at the boundary of adjacent windows.
Finally, fg and fr are normalizing factors defined below.
By solving this constrained optimization problem (equation 15),

we obtain the normal equation for the estimate c�, which is

�
BTGTGBþ μ

�
μ0

fg
H

Iþ μ1
fg
fr

BTRTRB
��

c� ¼ BTGTd;

(16)
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where I is an identity matrix of order H and μ is the regularizing
parameter that balances the relative importance between the data-
misfit function (equation 15c) and the two constraints (equation 15a
and 15b). The constants μ0 and μ1 (in equation 16) are real-positive
numbers controlling the importance of the two constraints given by
equation 15a and 15b, respectively. The normalizing factors fg
and fr are the traces of the matrices BTGTGB and BTRTRB,
respectively.
Equation 16 represents a system of H linear equations in H un-

knowns, where H is the total number of polynomial coefficients
forming all equivalent-source windows. This number of coefficients
is much smaller than the number of equivalent sources M and the
number of data N. Thus, the PEL requires much less computational
effort than the classical equivalent-layer approach, even in the data-
space formulation, which requires the solution of a system of N
equations in N unknowns (equation 4). In our PEL algorithm,
the full N ×M matrix of Green’s functions G and the full
M ×H matrix B (equation 13) are not stored; rather, only the small
H ×H matrix BTGTGB (equation 16) is directly computed and
stored. In our approach, the elements of the matrices G and B
are computed on demand. We compute only the row of G and
the column of B needed to calculate an element of the matrix
GB. The same procedure is adopted to compute the H ×H matrix
BTRTRB (equation 16). Once the vector BTGTd and the matrices
BTGTGB and BTRTRB are computed, they are stored and then sev-
eral reruns of the PEL program may be performed by setting dif-
ferent values for the inversion control constants (μ, μ0 and μ1,
equation 16). The choice of these constants will be discussed later.

Computational efficiency of the PEL

The application of the equivalent-layer technique for processing
potential-field data sets requires overcoming two main obstacles.
The first one is the construction of the linear system. The second
obstacle is the computational effort required to solve the resulting
linear system. The PEL approach overcomes the first obstacle,
mainly because of the sparseness of the matrix B (equation 13).
The second obstacle is overcome by the PEL because it leads to
a linear system of equations with dimensions based on the number
of coefficients H within all equivalent-source windows, where H is
much smaller than the number of parameters M and the data N. To
illustrate the efficiency of the PEL when compared with the classi-
cal equivalent layer approach, we analyze below the total number of
floating-point operations (flops) by solving the corresponding linear
systems through Cholesky’s decomposition.
Following Boyd and Vandenberghe (2004), we define a flop as an

addition, subtraction, multiplication, or division of two floating-
point numbers. In the classical equivalent-layer approach, the num-
ber of flops ms required to solve the linear system (equation 5) by
Cholesky’s decomposition is

ms ¼
1

3
N3 þ 2N2: (17a)

The construction of the linear system and the evaluation of the
auxiliary operations (equation 6) requires mc flops, where

mc ¼ MN2 þ 2NM; (17b)

in which MN2 and 2NM are the flops to evaluate GTG and equa-
tion 6, respectively. Thus, obtaining p� by using the classical
equivalent-layer approach posed in the data-space formulation
(equations 5 and 6) requires ms þmc flops.
Conversely, solving the resulting linear system in the PEL ap-

proach (equation 16) from Cholesky’s decomposition requires hs
flops, where

hs ¼
1

3
H3 þ 2H2: (18a)

By taking advantage of the sparseness in B (equation 13), the
number of flops hc required to construct the linear system and eval-
uate the auxiliary operations is given by

hc ¼ 2NMsH þH2N þ 2NH þ 2MP; (18b)

where 2NMsH, H2N, 2NH, and 2MP are the number of flops re-
quired to evaluate the terms GB, BTGTGB, BTGTd, and the phy-
sical-property distribution (the parameter vector p in equation 12),
respectively. Notice that the use of zeroth-order Tikhonov regular-
ization in the classical equivalent-layer approach (equation 4) and in
the PEL approach (equation 16) demands, respectively, N and H
addition operations; this is equivalent to adding N flops to mc

(equation 17b) and H flops to hc (equation 18b). Because H is
much smaller than N (H ≪ N), the use of zeroth-order Tikhonov
regularization in the PEL requires much less computational effort
than in the classical equivalent-layer approach. On the other hand,
the classical equivalent-layer approach (equations 2 and 4) does not
use the first-order Tikhonov regularization. Thus, one might think
that its use in the PEL (equation 16) would increase the number of
flops hc (equation 18b) because the demand of evaluating the term
BTRTRB. This is not true because the sparseness of matrices B and
R leads to a negligible increase of the hc flops (equation 18b).
Notice that the PEL requires the additional step of calculating
the physical-property distribution (equation 12) after solving the
linear system of equations to estimate the polynomial coefficients
(equation 16). This must be done before computing the desired
transformation of the data (equation 3). This additional step does
not increase the computational cost significantly because comput-
ing the physical-property distribution (equation 12) only requires a
sparse matrix-vector multiplication. To sum up, even using an
additional regularizing function (equation 15b) and introducing
an extra step in the processing workflow (equation 12), our equiva-
lent-layer approach (PEL) requires a lower computational effort
when compared with the classical equivalent-layer approach even
using the N-dimensional-data-space formulation (equation 4).
We stress that the use of Cholesky’s decomposition to solve the

resulting linear system of equations for the PEL and the classical
equivalent-layer approach is only taken as an example. Further
optimization of the PEL approach is still possible by solving the
linear system through a preconditioned conjugate gradient method.
Regardless, the algorithm used to solve the linear system in the
equivalent-layer problem, the H-dimensional system of equations
to be solved by the PEL is always smaller than the N-dimensional
system of equations required by the classical data-space approach.
Ergo, solving H ×H systems is much more efficient, in terms of
time and memory requirements, than solving N × N systems.
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PRACTICAL PROCEDURES

The practical procedures to use the PEL require the choice of two
sets of variables. The first one is related to the geometry of the PEL
and consists in choosing: (1) the depth to the equivalent layer (z0),
(2) the degree α of the polynomials describing the physical-property
distribution within each equivalent-source window, (3) the size of
the equivalent-source windows, (4) the number of equivalent-source
windows Q, and (5) the number Ms of equivalent sources forming
each equivalent-source window. The second set of variables to
be assigned is the inversion control constants (μ, μ0 and μ1,
equation 16).

Choice of the geometry of the PEL

Compared with the fast Fourier transform filtering technique,
methods that employ the equivalent-layer technique for processing
potential-field data usually do not require gridded data. Likewise,
our formulation (PEL) does not require gridded data. Conversely, a
common restriction of methods that employ the equivalent-layer
technique is that the vertical distance between the equivalent layer
and the surface containing the potential-field observations must be
between two and six times the grid spacing of the observations
(Dampney, 1969; Leão and Silva, 1989). The applications of the
PEL have not shown a strong dependence with respect to the ver-
tical coordinate z0 of the equivalent layer. In practice, the equivalent
layer in our formulation can be placed at a constant-vertical position
z0 varying from about 150 to 300 m below the average height of the
potential-field observations. Conversely, the dependence of the PEL
on the size of the equivalent-source window and on the degree α of
the polynomials is more critical. Moreover, the chosen size of the
equivalent-source window will be strongly dependent on the choice
of the degree α of the polynomials. Both choices must be grounded
on the complexity of the potential-field anomalies. If the potential-
field anomaly is characterized by long wavelength, we may use a
large equivalent-source window and a high degree of the polyno-
mial (e.g., α ¼ 3). Conversely, if the potential-field anomaly con-
tains short-wavelength and high-amplitude components, we may
use a small equivalent-source window and a low degree of the poly-
nomial (e.g., α ¼ 1). This relation is illustrated later in the applica-
tions to synthetic and real data sets. A conservative practice when
applying the PEL is to choose a small equivalent-source window
and a low degree α of the polynomial. This conservative option
is recommended when the potential-field anomaly contains long-
and short-wavelength spectral contents. Additionally, we stress that
this conservative choice works well even in the case of smooth
anomalies with long-wavelength components only. Regardless
of the chosen size of the equivalent-source window and degree α
of the polynomials, the estimated physical-property distribution
of the PEL must produce predicted data that fit the potential-field
observations.
The division of the equivalent layer into Q equivalent-source

windows consists of the following steps:

1) The interpreter must establish the smallest horizontal length Ls

of a data square which contains a potential-field response with a
short-wavelength. This square represents the area of an equiva-
lent-source window.

2) The number of equivalent-source windows Qx and Qy in the
x- and y-directions, respectively, are defined as

Qx ¼ dðLx∕LsÞe; (19)

and

Qy ¼ dðLy∕LsÞe; (20)

where Lx and Ly are the maximum horizontal lengths of the
whole surveyed area in the x- and y-directions, respectively,
and de is the ceiling function (Graham et at., 1988), which is
defined as the least integer greater than or equal to its argument.

3) The number of equivalent-source windows Q is defined as

Q ¼ Qx · Qy: (21)

4) Within each equivalent-source window, the number of equiva-
lent sources in the x- and y-directions is the same and equal to

m ¼
� ffiffiffiffiffiffiffiffiffiffi

N∕Q
p �

; (22)

where N is the number of potential-field observations.
5) Finally, the number of equivalent sources forming each equiva-

lent-source window is defined as

Ms ¼ m2: (23)

Choice of the inversion control constants

The choice of the values of inversion control constants (μ, μ0, and
μ1, equation 16) is required to obtain a stable physical-property dis-
tribution via PEL. In practice, the value assigned to the regularizing
parameter μ is one. The values assigned to μ0 and μ1 are selected in
such a way that the estimated physical-property distribution is stable
and fits acceptably the observed data. If the values of μ0 and μ1 are
poorly assigned, the estimated physical-property distribution within
the equivalent layer does not fit the data.
We adopted the following practical procedure to choose μ0 and

μ1. Starting with small tentative values of μ0 and μ1, we estimate the
physical-property distribution within the equivalent layer through
the PEL approach (equations 16 and 12). If this estimate yields
an unacceptable data fit, the value of μ0 is maintained, the value
of μ1 is increased (by multiples of 10), and the PEL algorithm is
rerun (equation 16) to estimate a new physical-property distribution
(equation 12). In the following numerical applications, μ1 is defined
in the range of 10−7 ≤ μ1 ≤ 10−1 and μ0 is kept fixed at a very small
value such as 10−15.
These constants can be easily tuned through trial and error be-

cause, as pointed out before, our equivalent-layer method (PEL)
is computationally efficient by solving a small H-dimensional sys-
tem of equations. Furthermore, after computing the vector BTGTd
and the matrices BTGTGB, and BTRTRB (equation 16), they are
stored and then several reruns of the PEL algorithm may be per-
formed by setting different values for the inversion control constants
(μ0 and μ1, equation 16).

APPLICATION TO SYNTHETIC DATA

We illustrate the use of the PEL approach in processing synthetic
gravity and magnetic data produced by simulated bodies. In apply-
ing the PEL approach to synthetic gravity data, we perform an up-
ward continuation of the data set. In the application to synthetic
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magnetic data, the PEL approach is used to obtain the reduced-to-
the-pole field.

Synthetic-gravity data set

We simulate a set of N ¼ 10;000 noise-corrupted gravity obser-
vations (black lines and grayscale map in Figure 2a), computed on a

plane at z ¼ −150 m. The observations are produced by multiple
sources (not shown) and are simulated on unevenly spaced stations.
We corrupted the theoretical anomaly with zero-mean Gaussian
pseudorandom noise with a standard deviation of 0.1 mGal. We
set up a PEL with M ¼ 10;000 equivalent sources (point masses)
distributed on a regular grid at constant depth z0 ¼ 200 m. We di-
vide this equivalent layer into Q ¼ 100 equivalent-source windows

Figure 2. Tests with synthetic gravity data. (a) Simulated noise-corrupted (black lines and gray-scale map) and predicted (dashed white lines)
gravity anomalies at z ¼ −150 m; the latter is obtained by the estimated PEL using large-equivalent-source windows and third-order poly-
nomials (α ¼ 3). (b) Simulated noise-free (black lines and grayscale map) and upward-continued (dashed white lines) anomalies at
z ¼ −500 m. The latter is obtained using the PEL estimated from the anomaly shown in (a) with large-equivalent-source windows and
third-order polynomials (α ¼ 3). (c) Simulated noise-corrupted (black lines and grayscale map) and predicted (dashed white lines) gravity
anomalies at z ¼ −150 m. The latter is obtained through the PEL estimated using small-equivalent-source windows and first-order polyno-
mials (α ¼ 1). (d) Simulated noise-free (black lines and grayscale map) and upward-continued (dashed white lines) anomalies at z ¼ −500 m.
The latter is obtained by using the PEL estimated from the anomaly shown in (c) with small-equivalent-source windows and first-order poly-
nomials (α ¼ 1). The equivalent-source windows used in (a and b) and (c and d) are projected, respectively, onto (a and c) (outlined white
rectangles). Histograms of the data misfits are shown as insets in (a-d) with their corresponding means μ and standard deviations σ.
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arranged in a grid of 10 × 10 windows, each containing Ms ¼ 100

equivalent sources. The area of an equivalent-source window is
shown projected onto the data as the white open rectangle in
Figure 2a. We used third-order polynomials (α ¼ 3) with P ¼ 10

coefficients each (equation 7), totaling H ¼ 1000 unknown coeffi-
cients which describe all Q polynomials that compose the equiva-
lent layer. By setting μ0 ¼ 10−15 and μ1 ¼ 10−7, the estimated H
coefficients (c� in equation 16 are used to compute an estimated
density distribution (p, in equation 12) in the equivalent layer. This
layer produces a predicted gravity data set at z ¼ −150 m (in
dashed white lines) which fits the simulated gravity data (in black
lines and grayscale map) as shown in Figure 2a. Figure 2b shows
that the gravity data continued to a constant-vertical coordinate z ¼
−500 m using the estimated PEL (dashed white lines) agree very
well with the true data computed at the same continuation height
(black lines and grayscale map). Histograms of the data misfits (in-
sets of Figure 2a and 2b) corroborate the acceptance of the data
fitting. In both histograms, most of the data misfits are smaller than
the one standard deviation of the observational uncertainty being
consistent with a normal distribution.
In this test, the efficiency of the PEL approach comes from solv-

ing a 1000 × 1000 system versus a 10;000 × 10;000 system re-
quired by the classical equivalent-data approach in the data space.
By using Cholesky’s decomposition as the algorithm for solving the
linear systems, the number of flops required by the classical ap-
proach to solve the linear system (equation 17a) is approximately
994 times greater than that required by the PEL (equation 18a).
Additionally, the construction of the linear systems (equations 17b
and 18b) requires approximately 83 times more flops for the clas-
sical approach than that for the PEL.
In the previous section, we presented the practical procedures of

choosing (1) the degree α of the polynomials describing the phy-
sical-property distribution within each equivalent-source window
and (2) the size of the equivalent-source window. According to
the criterion described in the previous section, if the potential-field
anomaly is dominated by long-wavelength spectral content (a
smooth anomaly) there are two options: first, using a large equiva-
lent-source window and a high degree α of the polynomial, as in the
application to synthetic-gravity data set presented above (Figure 2a
and 2b); second, using a small equivalent-source window and a low
degree of the polynomial, following a conservative practice. To
illustrate this conservative practice, we reproduced the previous
application to synthetic-gravity data, only this time dividing the
equivalent layer into Q ¼ 400 equivalent-source windows arranged
in a grid of 20 × 20 windows, each containing Ms ¼ 25 equivalent
sources. The white open rectangle in Figure 2c represents the pro-
jection of the area of the equivalent-source window onto the data.
Additionally, we used first-order polynomials (α ¼ 1) with P ¼ 3

coefficients, totaling H ¼ 1200 unknown coefficients which de-
scribe all Q polynomials within the equivalent layer. This estimated
equivalent layer produces a predicted gravity data set (dashed white
lines) which fits the simulated gravity data (black lines and grays-
cale map). The gravity data continued to a constant-vertical coor-
dinate z ¼ −500 m using the estimated PEL (dashed white lines in
Figure 2d) fit the true data computed at the same continuation height
(black lines and grayscale map in Figure 2d) equally well when
compared with the previous result (Figure 2b). This shows the ex-
cellent performance of our method in upward-continuing the gravity
data to an elevation of −500 m by using a conservative choice of the

size of the equivalent-source window and the degree α of the poly-
nomials. Histograms of the data misfits (insets of Figure 2c and 2d)
resemble bell-shaped distributions confirming that the simulated
measurement errors are normally distributed. In this test, we set
μ0 ¼ 10−15 and μ1 ¼ 10−7.
Regarding the computational performance, the PEL leads to com-

putational efficiency by dealing with a 1200 × 1200 system versus a
10;000 × 10;000 one. By solving the resulting linear systems
through Cholesky’s decomposition, the number of flops required
by the classical approach to solve and build the linear system is
576 times and 67 times greater than that required by the PEL,
respectively. Thus, we verify that the PEL still provides a significant
increase in performance, even if using a conservative choice of the
size of the equivalent-source window and of the degree α of the
polynomials.

Efficiency versus data-misfit measure

As pointed out in the methodology section, PEL greatly reduces
the linear system of equations to be solved by representing the
physical-property distribution within the equivalent layer as a
set of piecewise-polynomial functions. By taking a fixed size of
equivalent-source window, the smaller the degree α of the polyno-
mial the smaller the number of the coefficients to be estimated (c� in
equation 16), hence the smaller the H-dimensional system of equa-
tions to be solved by PEL and the faster the inversion will be. Then,
it would be always desirable to use low-degree polynomials. This is
true (or not), depending on whether the estimated physical-property
distribution yields an acceptable (or unacceptable) data fit.
As discussed in the practical procedures section, PEL depends on

the choice of the size of the equivalent-source window and on the
choice of the degree α of the polynomials. For a chosen size of the
equivalent-source window, we can access the optimum degree α of
the polynomials. The optimum value for α is the smallest one still
producing an acceptable data fit. This criterion ensures a maximum
computational efficiency and a satisfactory data fitting. Thus, there
is a trade-off between the computational efficiency and the data-
misfit measure obtained by assigning different values of α, for a
given fixed size of the equivalent-source window in applying
PEL approach.
Here, we analyze the trade-off between the data-misfit measure

and the computational efficiency of our equivalent-layer approach
(PEL) by assigning different degrees α of the polynomials, for a
given fixed size of the equivalent-source window. Figure 3 shows
two curves plotted against α: (1) the data-misfit measure (dashed
line) and (2) the computational efficiency (solid line) of our equiva-
lent-layer approach (PEL). These curves were computed by assum-
ing the same size of the equivalent-source window shown in
Figure 2a (white open rectangle). The computational efficiency
of our equivalent-layer approach (PEL) is computed by the ratio
N∕H which represents a compression ratio of the linear system.
We pointed out in the methodology section that small values of
H lead to a great reduction of the size of the linear system to be
solved through PEL (equation 16). For increasingly higher values
of α, the values of H increase and the computational efficiency of
PEL becomes increasingly lower. Hence, the computational effi-
ciency of PEL (N∕H) decreases with increasing α.
The optimum value for α, for a given fixed size of the equivalent-

source window, is the smallest one still producing an acceptable
data fit. This choice ensures the best computational efficiency of
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PEL in addition to fitting the geophysical observations. In Figure 3,
the optimum value of α is three, which is the value used in Figure 2a
and 2b. The data-misfit measure is computed as the square of the
Euclidean norm of the residual between the observed and fitted data
divided by the number of observations. Depending on the size of
the equivalent-source window used, values from α different of the
optimum value produce a poor data fit increasing the data-misfit
measure. Values of α smaller than optimum value (e.g., α < 3 in
Figure 3) produce a poor data fit, increasing the data-misfit mea-
sure. This occurs because the size of the equivalent-source window
is large and the low-degree polynomial used is not able to estimate a
physical-property distribution (equations 16 and 12) that acceptably
fits the data. Hence, the estimate a physical-property distribution
within the equivalent layer is roughly represented by piecewise
αth-order polynomial functions defined on a set of equivalent-
source windows. Conversely, values of α larger than an optimum
value (e.g., α > 3 in Figure 3) produce a poor data fit, increasing
the data-misfit measure. This behavior occurs in PEL because the
inverse problem becomes ill-posed and, consequently, the tuning of
the inversion control constants (μ0 and μ1, equation 16) becomes
difficult. Figure 3 illustrates the best trade-off between data-misfit
measure (dashed line) and computational efficiency (solid line) of
PEL in which α ¼ 3 is the optimal balance of these two terms.

Synthetic-magnetic data set

In this test, we simulate a complex magnetic response containing
short-, mid-, and long-wavelength spectral contents. Because of this
wide range of spectral contents, we must use a polynomial with a
low degree (α ¼ 1) and a small equivalent-source window whose
size is able to contain the shortest wavelength of the simulated
anomaly. As pointed out, the size of the equivalent-source window
can be easily chosen. Here, we illustrate how we can check if this
size was suitably chosen. To this end, we apply the PEL by setting
large- and small-equivalent-source windows which illustrate, re-
spectively, unsuitable and suitable windows.
Figure 4 shows the noise-corrupted total-field anomaly (black

contour lines) produced by a set of synthetic bodies (not shown).
We corrupted the theoretical anomaly with zero-mean Gaussian
pseudorandom noise with a standard deviation of 5 nT. We simu-
lated an airborne magnetic survey covering an area with an extent of
10,000 km in the x- and y-directions (north–south and east–west,
respectively). The flight height is 150 m above the ground surface.
The simulated flight pattern contains 50 flight-lines along north–
south direction with line spacing of 200 m and two tie-lines along
the east–west direction with line spacing of 4000 m. Based on an
average 270 km∕h aircraft speed, the sampling frequency is 10 Hz
and the number of data points per flight-line is 1333. The number of
observations along the north–south and east–west are, respectively,
66,650 and 2666, totaling 69,316 observations. The simulated
geomagnetic field has 45° declination and −3° inclination. The
simulated bodies (not shown) are magnetized uniformly, with a
magnetization declination of −10° and inclination of 2°. Notice that
the spectral content of the magnetic response ranges from short to
long wavelengths. At the northwestern (A) and easternmost (B) por-
tions of the total-field anomaly map (Figure 4 in black contour
lines), the magnetic responses are characterized predominantly by
short- and long-wavelength spectral contents, respectively. Whereas,
the magnetic response at the southernmost portion (C) contains
mid-wavelength anomalies.

Large-equivalent-source window

We set up a PEL with M ¼ 74;529 equivalent sources (magnetic
dipoles) distributed on a regular grid at constant depth z0 ¼ 200 m.
These magnetic dipoles have the same magnetization direction of
the simulated body. This equivalent layer is divided into Q ¼ 169

equivalent-source windows arranged in a grid of 13 × 13 windows,
each one containingMs ¼ 441 equivalent sources arranged in a grid
of 21 × 21 dipoles. The black open rectamgle in Figure 4a shows
the area of an equivalent-source window projected onto the data set.
We used first-order polynomials (α ¼ 1) with P ¼ 3 coefficients
(equation 7), totaling H ¼ 507 unknown coefficients which
describe all Q polynomials composing the equivalent layer. In this
test, we set μ0 ¼ 10−15 and μ1 ¼ 10−1. After estimating theH coef-
ficients (equation 16), we compute the magnetization-intensity dis-
tribution in the equivalent-source layer (equation 12) as show in
Figure 5a. We also compute the predicted total-field anomaly
(not shown) yielded by the magnetization-intensity distribution
(Figure 5a) obtained through the PEL using a large equivalent-
source window. Figure 4a shows the differences (colorscale map)
between the simulated noise-corrupted (black contour lines) and
predicted (not shown) total-field anomalies at z ¼ −150 m. For
most of the area, these differences are around zero nT. Larger
differences (smaller than −60 nT or greater than 60 nT) coincide
exclusively with the region where the magnetic responses are
characterized mainly by short-wavelength spectral contents (region
A in Figure 4a). In this test, this poor data fit produced by the PEL
occurs because of the low-degree polynomial combined with the
large-equivalent-source window. This combination leads to a rough
estimate of physical-property distribution (Figure 5a) within the
equivalent layer. Because of this unacceptable anomaly fit, the
choice of the size of the equivalent-source window (black open rec-
tangle in Figure 4a) is considered unsuitable and the transformation
of the data will not be done. In this case, the size of the equivalent-
source window must be reduced until an acceptable data fit is
obtained.

Small-equivalent-source window

We set up a PEL with M ¼ 75;625 equivalent sources (magnetic
dipoles) distributed on a regular grid at constant depth z0 ¼ 200 m.
These magnetic dipoles have the same magnetization direction of

Figure 3. The trade-off between the data-misfit measure and the
computational efficiency of PEL by assigning different degrees α
of the polynomials. The data-misfit measure (dashed line) and
the computational efficiency (solid line) of PEL were computed
by assuming the same size as the equivalent-source window shown
in Figure 2a (white open rectangle).
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the simulated body. This equivalent layer is divided into Q ¼ 625

equivalent-source windows arranged in a grid of 25 × 25 windows,
each one containingMs ¼ 121 equivalent sources arranged in a grid
of 11 × 11 dipoles. The black open rectangle in Figure 4b shows the
area of an equivalent-source window projected onto the data set. We
set μ0 ¼ 10−15 and μ1 ¼ 10−1. We used first-order polynomials
(α ¼ 1) with P ¼ 3 coefficients (equation 7), totaling H ¼ 1875

unknown coefficients that describe all Q polynomials composing
the equivalent layer. After estimating the H coefficients, we com-
pute the magnetization-intensity distribution in the equivalent-
source layer (Figure 5b). By setting a small-equivalent-source
window in applying PEL, the differences (colorscale map in
Figure 4b) between the simulated noise-corrupted (black contour
lines in Figure 4b) and predicted (not shown) total-field anomalies
at z ¼ −150 m are much smaller than those obtained by setting a
large-equivalent-source window (colorscale map in Figure 4a). This
excellent data fit produced by the PEL (colorscale map in Figure 4b)
is due to the combination of the low-degree polynomial and the
small-equivalent-source window. This combination allows estimat-
ing a smoother magnetization-intensity distribution (Figure 5b)
within the equivalent layer as compared with the distribution esti-
mated by setting a large-equivalent-source window (Figure 5a). His-
tograms of the data misfits shown as insets of Figure 4a and 4b
quantifies the poor and acceptable data fits produced by the PEL
using large- and small-equivalent-source windows, respectively.
Because the data fitting is acceptable, the estimated magnetiza-

tion-intensity distribution must be accepted and then the desired
transformation of the data can be done. Hence, we used the equiva-
lent layer estimated using the PEL to compute the reduced-to-the-
pole anomaly (dashed white lines in Figure 6), which shows a close
agreement with the true reduced-to-the-pole anomaly (black lines

Figure 4. Tests with synthetic magnetic data. (a and b) Simulated noise-corrupted (black lines) total-field anomaly at z ¼ −150 m character-
ized by short- (region A), mid- (region C), and long- (region B) wavelength spectral contents. The predicted total-field anomalies at
z ¼ −150 m (not shown) are obtained by the estimated PEL (shown in Figure 5) using first-order polynomials (α ¼ 1) and large (a) and
small (b) equivalent-source windows. Color-scale maps in (a and b) show the differences between the simulated and predicted total-field
anomalies. The equivalent-source windows used in (a and b) are projected onto the data set (outlined black rectangles). Histograms of
the data misfits are shown as insets in (a and b) with their corresponding means μ and standard deviations σ.

Figure 5. Tests with synthetic magnetic data. Computed magneti-
zation-intensity distributions obtained by PEL with first-order
polynomials (α ¼ 1) and large (a) and small (b) equivalent-source
windows. The equivalent-source windows used in (a) and (b) are
depicted in Figure 4a and 4b, respectively.

G10 Oliveira et al.

D
ow

nl
oa

de
d 

12
/1

3/
12

 to
 2

00
.2

0.
18

7.
15

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://library.seg.org/action/showImage?doi=10.1190/geo2012-0196.1&iName=master.img-003.jpg&w=499&h=223
http://library.seg.org/action/showImage?doi=10.1190/geo2012-0196.1&iName=master.img-004.jpg&w=185&h=256


and gray-scaled map in Figure 6). The histogram of the data misfits
(inset of Figure 6) quantifies this agreement. The PEL approach
solves a reduced system of equations (1875 × 1875 system)
whereas the classical equivalent-data approach should solve a large
system (69;316 × 69;316 system). By using Cholesky’s decompo-
sition as the algorithm for solving the linear systems, the number of
flops required by the classical approach to solve the linear system
(equation 17a) is approximately 50,354 times greater than that
required by the PEL (equation 18a). The construction of the linear
system (equations 17b and 18b) requires approximately 1319 times
more flops for the classical approach than for the PEL.

APPLICATION TO REAL DATA

We apply our method (PEL) to process an aeromagnetic data set
over the Goiás Magmatic Arc, in central Brazil. This region is
mainly made up of metaplutonic rocks exposed between volca-
no-sedimentary sequences (Pimentel et al., 2000). The aeromag-
netic data set covers the southern portion of the Goiás Magmatic
Arc at the Arenópolis Arc (Figure 7a) and was acquired at an aver-
age height of z ¼ −746 m. The geomagnetic field has −19° decli-
nation and −21.5° inclination and we assume that the source has a
total magnetization vector with −19° declination and −40° inclina-
tion based on Dutra and Marangoni (2009). The data set used con-
tains N ¼ 78;146 observations. We set up a PEL with M ¼ 81;000
equivalent sources (dipoles) with −19° declination and −40° incli-
nation and distributed on a regular grid at constant height
z0 ¼ −400 m. We divide this equivalent layer intoQ ¼ 810 equiva-
lent-source windows arranged in a grid of 27 × 30 windows, each
one with Ms ¼ 100 dipoles. The area of an equivalent-source win-
dow is projected onto the data set being outlined by the white open
rectangle in Figure 7a. We used first-order polynomials (α ¼ 1)

Figure 6. Test with synthetic magnetic data. Noise-free total-field
anomaly at the pole (black lines and grayscale map) produced by
the same set of simulated bodies described in Figure 4 and reduced-
to-the-pole anomaly (dashed white lines) predicted by the estimated
PEL shown in Figure 5b by using equivalent-source windows
shown in Figure 4b. The inset shows the histogram of the residuals
between the true noise-free anomaly at the pole and the reduced-to-
the-pole anomaly predicted by the PEL with its mean μ and standard
deviation σ.

Figure 7. Real test from Arenópolis Arc (Brazil). (a) Observed (black lines and grayscale map) and predicted (dashed white lines) total-field
anomalies. The latter is obtained by the estimated PEL (not shown). The inset on the right shows the histogram of the data misfit with its mean
μ and standard deviation σ. The equivalent-source windows used are projected onto the data set (outlined white rectangle). The study area
(black square) is shown as an inset in the map of Brazil. (b) Transformed data produced by applying the upward continuation and the reduction
to the pole via the estimated PEL to the anomaly shown in (a).
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with P ¼ 3 coefficients (equation 7). Therefore, the number of
unknown coefficients describing the magnetization intensities of
the dipoles is H ¼ 2430. We set μ0 ¼ 10−15 and μ1 ¼ 10−7.
Figure 7a shows that the predicted total-field anomaly (dashed
white lines) obtained by the PEL fits the observed total-field anom-
aly (black lines and grayscale map). The histogram of the data misfit
(inset of Figure 7a) resembles a bell-shaped distribution confirming
that the measurement errors are normally distributed with a small
standard deviation. Next, we use the estimated PEL to compute the
reduction to the pole of the aeromagnetic data at a z-coordinate
−1300 m. Figure 7b shows the observed total-field anomaly
upward-continued and reduced to the pole. We verify that our
approach performed a meaningful reduction to the pole because
the resulting reduced-to-the-pole anomaly (black lines and grays-
cale map in Figure 7b) is predominantly positive.
In this test, the PEL is computationally efficient because it deals

with a 2430 × 2430 system instead of a 78;146 × 78;146 one. By
solving the resulting linear systems through Cholesky’s decompo-
sition, the number of flops required by the classical approach (equa-
tion 17a) is approximately 33,179 times greater than that required
by the PEL (equation 18a). The construction of the linear system
(equations 17b and 18b) requires approximately 992 times more
flops for the classical approach than for the PEL.

CONCLUSIONS

We have presented a new fast method for processing large sets of
potential-field data via the equivalent-layer technique. The novelty
of our method consists in dividing the equivalent layer into a regular
grid of equivalent-source windows, whose physical-property distri-
butions are described by bivariate polynomials. Thus, we assumed
that the physical-property distribution within the equivalent layer
can be described by a piecewise-polynomial function. After setting
the size of equivalent-source window and the degree of the poly-
nomial, our method estimates the polynomial coefficients for each
window by using a regularized potential-field inversion. Next, the
physical-property distribution within an equivalent layer is obtained
by means of a transformation which maps the estimated polynomial
coefficients into the physical-property distribution. Finally, the
transformation of the data is performed by premultiplying the
determined physical-property distribution by the matrix of Green’s
functions associated with the desired transformation.
The proposed polynomial representation of the physical-property

distribution within the equivalent layer leads to a drastic reduction
of the linear system of equations that needs to be solved for
estimating this physical-property distribution compared with the
classical equivalent-layer technique. This occurs because, in the
classical equivalent-layer technique, the inverse problem of estimat-
ing the physical-property distribution within the equivalent layer is
posed in the data space. In this case, the inverse problem leads to a
linear system of equations with dimensions based on the number of
data, N. In contrast, the inverse problem of our method leads to a
linear system of equations with dimensions based on the total
number of polynomial coefficients within all equivalent-source win-
dows, which is significantly smaller than N. Conversely, the PEL
requires an additional step of converting the estimated coefficients
into the physical-property distribution within an equivalent layer.
However, this does not imply a meaningful increase of the compu-
tational cost. This occurs because the transformation for mapping
the estimated polynomial coefficients into the physical-property

distribution is a linear function which involves only a sparse
matrix-vector multiplication.
Applications to synthetic and real data sets show that our method

produces effective equivalent-source layers for performing any lin-
ear transformation of potential-field data without a huge computa-
tional load and a long processing time as compared with the
classical approach. One might think that the choices of the size
of the equivalent-source window and of the degree of the polyno-
mials would be a difficult task. However, a simple criterion that may
be used is that the shorter the wavelength components of the poten-
tial-field anomaly, the smaller the size of the equivalent-source
window and the lower the degree of the polynomial should be.
A conservative choice is to use a small equivalent-source window
and a low degree polynomial. A simple and effective way to check
if the choices of the size of the equivalent-source window and the
degree of the polynomial were correctly done consists in verifying
if the estimated physical-property distribution via the PEL yields
an acceptable data fit. If the data fitting is poor, the estimated
physical-property distribution via PEL must be rejected and a
smaller size of the equivalent-source window and (or) another
degree of the polynomial must be tried. This procedure is repeated
until an acceptable data fit is obtained. Thus, a poor fit of the
observed data may be used as a criterion to evaluate the optimum
size of the equivalent-source window and the optimum degree of
the polynomial.
Further improvements in the methodology of the PEL could be

attained by combining the division of the equivalent layer into a
nonregular set of equivalent-source windows with the use of differ-
ent degrees of the polynomials. This improvement could be imple-
mented accordingly to the spectral content of the potential-field
anomaly. The number of equivalent-source windows should be
greater and the degree of the polynomial function should be lower
where the data are characterized by short-wavelength components.
Another improvement in the PEL methodology could be accom-
plished by using a moving-data-window scheme that is shifted over
the whole data set. When inverting the observations inside a small
data window by using a small equivalent-source located below the
data window, only the transformed field near the center of the data
window can be computed. Yet another improvement in the PEL
methodology could be formulated by setting up an equivalent layer
with a continuous distribution of the physical property which varies
horizontally according to a piecewise-polynomial function. Hence,
the potential-field forward problem could be numerically computed
through Gaussian quadrature, for example.
Further computational efficiency of the PEL algorithm might be

achieved by using different methods for solving the linear system.
Here, we have used Cholesky’s decomposition, however other al-
gorithms could be employed such as the preconditioned conjugate
gradient method.
Additionally, in the case of full-tensor gradiometry, our method

could be used for processing all components together in a joint
scheme, because all observations derive from common sources.
The application of our polynomial equivalent layer is extremely
fast, making feasible the processing of the large data sets often
encountered in airborne surveys through the equivalent-layer tech-
nique. However, our method fails to provide a significant perfor-
mance increase when processing a small number of sparsely
spaced potential-field observations, as is routinely encountered in
localized ground based surveys. The practical implementation of
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the proposed polynomial equivalent layer is straightforward and
does not require supercomputers or data-compression algorithms.
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