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S U M M A R Y
We present a gravity-inversion method for estimating the geometry of an isolated 3-D source,
assuming prior knowledge about its top and density contrast. The subsurface region containing
the geological sources is discretized into an ensemble of 3-D vertical prisms juxtaposed in the
vertical direction of a right-handed coordinate system. The prisms’ thicknesses and density
contrasts are known, but their horizontal cross-sections are described by unknown polygons.
The horizontal coordinates of the polygon vertices approximately represent the edges of
horizontal depth slices of the 3-D geological source. The polygon vertices of each prism are
described by polar coordinates with an unknown origin within the prism. Our method estimates
the horizontal Cartesian coordinates of the unknown origin and the radii associated with the
vertices of each polygon for a fixed number of equally spaced central angles from 0o to 360o.
By estimating these parameters from gravity data, we retrieve a set of vertically stacked prisms
with polygonal horizontal sections that represents a set of juxtaposed horizontal depth slices of
the estimated source. This set, therefore, approximates the 3-D source’s geometry. To obtain
stable estimates we impose constraints on the source shape. The judicious use of first-order
Tikhonov regularization on either all or a few parameters allows estimating both vertical and
inclined sources whose shapes can be isometric or anisometric. The estimated solution, despite
being stable and fitting the data, will depend on the maximum depth assumed for the set of
juxtaposed 3-D prisms. To reduce the class of possible solutions compatible with the gravity
anomaly and the constraints, we use a criterion based on the relationship between the data-
misfit measure and the estimated total-anomalous mass computed along successive inversions,
using different tentative maximum depths for the set of assumed juxtaposed 3-D prisms. In
applying this criterion, we plotted the curve of the estimated total-anomalous mass mt versus
data-misfit measure s for the range of different tentative maximum depths. The tentative value
for the maximum depth producing the smallest value of data-misfit measure in the mt ×s curve
is the best estimate of the true (or minimum) depth to the bottom of the source, depending on
whether the true source produces a gravity anomaly that is able (or not) to resolve the depth to
the source bottom. This criterion was theoretically deduced from Gauss’ theorem. Tests with
synthetic data shows that the correct depth-to-bottom estimate of the source is obtained if the
minimum of s on the mt × s curve is well defined; otherwise this criterion provides just a
lower bound estimate of the source’s depth to the bottom. These synthetic results show that
the method efficiently recovers source geometries dipping at different angles. Test on real data
from the Matsitama intrusive complex (Botswana) retrieved a dipping intrusion with variable
dips and strikes and with bottom depth of 8.0 ± 0.5 km.

Key words: Numerical solutions; Inverse theory; Gravity anomalies and Earth structure.

1 I N T RO D U C T I O N

The reconstruction of 3-D (or 2-D) geological sources from a dis-
crete set of gravity data measured at the Earth’s surface usually fol-
lows two strategies. The first one is the interactive gravity forward

modelling and the second strategy comprises the gravity-inversion
methods.

The interactive gravity forward modelling consists in inferring a
representation of the 3-D (or 2-D) geometry of geological sources
in the subsurface that fits the observed gravity data. Hence, the
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interactive gravity forward modelling requires the specification of
tentative source geometry and it allows the interactivity and flex-
ibility of introducing geological information about the study area
at the interpreter’s discretion. Therefore, the interpreter’s concep-
tion about the geology of the study area is incorporated in a direct
way. However, this task involves an exhaustive, tedious and time-
consuming trial-and-error procedure wherein the interpreter must
supervise both the data fit and the construction of geologically
meaningful sources. Most recently substantial effort has been de-
voted towards making the 3-D (or 2-D) interactive gravity forward
modelling more attractive and operational. For example, Silva &
Barbosa (2006) and Silva Dias et al. (2009), respectively, assum-
ing 2-D and 3-D sources, combined the best features of interactive
forward modelling (the interactivity and flexibility of introducing
geological information) and of automatic inversion (the facility of
automatically fitting the observations). These authors’ approaches
are similar to a standard interactive gravity forward modelling but
differ from it in automatically fitting the observations and in requir-
ing from the interpreter only the knowledge of the skeletal outlines
of the sources expressed by simple geometric elements such as
points and lines. Through these approaches the interpreter specifies
a set of skeletal outlines (points and lines) of the presumed sources
and the method finds a solution that concentrates the anomalous
mass about these skeletons. Therefore, the interpreter is not re-
quired to specify the complete source geometry. Calcagno et al.
(2008) combined the measurements of the structural data on out-
crops or in boreholes (e.g. dip measurements, stratifications or folia-
tions related to the contacts) and a set of rules derived from the rock
relationships between formations (e.g. the chronology of geological
events or different rock relations between formations) with potential
field data (gravity and magnetic data). In Calcagno et al.’s (2008)
approach the judicious combination of geological maps, borehole
data, structural data, physical properties of the rocks, gravity and/or
magnetic data allows building 3-D geological models.

The reconstruction of 3-D (or 2-D) geological sources through
the gravity-inversion methods has been proposed by many authors.
Most inversion methods estimate a 3-D density-contrast distribu-
tion by assuming a piecewise constant function defined on a user-
specified grid of cells. However, the problem of estimating a 3-D
(or 2-D) density-contrast distribution from gravity data only is an
ill-posed problem because its solution is neither unique nor stable.
To transform this ill-posed problem into a well-posed one, these
gravity-inversion methods usually use the Tikhonov regularization
method (Tikhonov & Arsenin 1977). It consists in formulating a
constrained inverse problem by minimizing an unconstrained func-
tion composed by (1) the data-misfit function, consisting of a norm
of the difference between the observed and predicted data, and (2)
the regularizing function defined in the parameter (model) space
whose minimization imposes physical or geological attributes on a
solution. Two regularizing functions commonly used in geophysics
are the zeroth- and first-order Tikhonov regularizations. Both reg-
ularizing functions impose a smooth character on the estimated
density-contrast distribution and they concentrate the excess (or
deficiency) of mass at the borders of the interpretation region, irre-
spective of the true source depth. Some examples of this tendency
are given in Portniaguine & Zhdanov (1999), their figs 1(c), 2(c)
and 3(c), Barbosa et al. (2002), their fig. 5 and Silva et al. (2001a),
their figs 7 and 8. Over the last years, efforts have been directed to
counteract the tendency of producing a blurred density-contrast dis-
tribution concentrated at the borders of the interpretation region. In
this context, some non-smoothing regularization functions arose in
estimating the density-contrast distribution in the subsurface. Most

of these non-smoothing regularizers retrieve sharper images of ge-
ological sources as compared with the smoothing regularizers, but
they require larger amount of prior information. Some examples
are given by the following authors: Last & Kubik’s (1983) method
produced compact and homogeneous solutions; Barbosa & Silva
(1994) generalized the moment-of-inertia functional proposed by
Guillen & Menichetti (1984) and Barbosa et al. (1999a) applied it
to reconstruct a heterogeneous sedimentary pack; Bertete-Aguirre
et al. (2002) used TV regularization, whose stabilizing functional is
the �1-norm of the first-order derivative of the parameters along the
horizontal and vertical directions; Portniaguine & Zhdanov (1999)
minimized a measure of the total volume within the estimated source
in which the physical property gradient is non-null in 3-D gravity
inversion; Silva & Barbosa (2006) and Barbosa & Silva (2006) ex-
tended Barbosa & Silva’s (1994) method for multiple sources with
multiple axes and points; Silva Dias et al. (2009) proposed an adap-
tive learning scheme extending Silva & Barbosa’s (2006) method
to 3-D gravity inversion.

Although the inversion methods that parametrize the Earth’s sub-
surface into a grid of cells (2-D or 3-D) to estimate a density-contrast
distribution allow an enormous flexibility because they can estimate
arbitrary variations, the usual Tikhonov regularizations of orders
zero and one lead to blurred source images whose maximum and
minimum estimated values occur at the boundary of the discretized
region. To retrieve a sharper image of geological sources, this in-
version approach requires a substantial amount of prior information
about the source. A second gravity-inversion approach has been
adopted by a few authors to obtain estimates of 3-D (or 2-D) geo-
logical source through an interpretation model that eliminates most
of the above-mentioned difficulties. In this case the interpretation
model consists either of a horizontally infinite prism with polygonal
cross-section or of a polyhedral body that delineates the contour of,
respectively, 2-D or 3-D isolated sources. Hence, the physical prop-
erty (density contrast) of the body is assumed to be known and the
parameters to be estimated are the geometric elements that define
the boundary of a polygonal cross-section or a polyhedral body.
Moraes & Hansen (2001), for example, approximated the 3-D geo-
logical body by a homogeneous polyhedral body and estimated its
vertices using the gravity data and the first-order Tikhonov regu-
larization. Silva & Barbosa (2004) inverted the gravity data for the
geometry of an isolated causative body by representing it as a 2-D
horizontal prism with a polygonal cross-section defined by vertices
which are described in polar coordinates referred to an origin inside
the source. The parameters to be estimated in this case are the radii
associated with the polygon vertices for a fixed number of equally
spaced central angles from 0o to 360o. They used a wide variety of
constraints to stabilize the solutions and to introduce information
about the source shape. Some examples of possible a priori infor-
mation are the isometry, the convexity and the concentration of the
mass along preferred directions. Wildman & Gazonas (2009) de-
veloped gravity- and magnetic-inversion methods for retrieving the
geometries of 2-D or 3-D multiple sources by assuming the knowl-
edge of their physical properties and representing these geometries
by a tree-data structure. These authors approximated the geological
sources by an interpretation model consisting either of 2-D prisms
with polygonal sections or of polyhedral bodies and estimated the
sources geometry in two steps. In the first step, the initial geometry
consists of a simple rectangle that is iteratively modified by scal-
ing and translation transformations to determine the approximate
size and location of the source. Next, an optimizing stage gives a
more accurate image of the source by dividing the leaf nodes of
the tree into the union of two separate convex polygons along one
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or more angles. Luo (2010) proposed a gravity-inversion method
to estimate the geometry of isolated 2-D source adopting Bayesian
model inference approach which is implemented via the reversible
jump Markov chain Monte Carlo algorithm. This method estimates,
in the x−z space beneath the Earth’s surface, the number of ver-
tices (and their x- and z-coordinates) that describe a 2-D polygonal
cross-section and approximately delineate the edges of an isolated
2-D geological source.

In this paper, we present a 3-D gravity-inversion method to es-
timate the geometry of an isolated source by assuming the knowl-
edge about the density contrast and about the depth to the top. Our
method is a generalization of the method developed by Silva &
Barbosa (2004) to interpret gravity data produced by a 2-D geolog-
ical setting. Here, we approximate the 3-D source by an ensemble
of 3-D vertical juxtaposed prisms in the vertical direction whose
thicknesses and density contrasts are known and their horizontal
cross-sections are described by an arbitrary polygon. The horizon-
tal coordinates of the polygon vertices approximately describe the
edges of horizontal depth slices of the 3-D geological source and are
the unknown parameters of our method. A set of horizontal poly-
gons consisting of vertically stacked prisms sets up the geometry of
the 3-D source. The polygon vertices of each prism are described
by polar coordinates with an origin within the top of prism. Our
method estimates the radii associated with each polygon vertex for
a fixed number of equally spaced central angles from 0o to 360o,
and the horizontal Cartesian coordinates of an arbitrary origin. To
obtain stable estimates we impose constraints on the source shape.
The judicious use of first-order Tikhonov regularization on all or
just a few parameters allows estimating both vertical and inclined
geological bodies whose shapes can be isometric or anisometric.
Although the proposed method estimates a stable solution that fits
the observed anomaly within the measurement errors, it will de-
pend on the maximum depth of the set of juxtaposed 3-D prisms
that set up the interpretation model. To reduce the class of possi-
ble solutions compatible with the gravity anomaly, we propose a
new criterion based on the curve of the data-misfit measure versus
the estimated total-anomalous mass obtained by assigning differ-
ent tentative values for the maximum depth of the interpretation
model. The minimum data-misfit measure in this curve gives the
true (or minimum) depth to the bottom of the geological body.
Tests conducted with synthetic data show that the method can be of
utility in estimating the geometry of both isometric and elongated
3-D isolated sources. The method has also been applied to a real
gravity-data set over greenstone rocks in Matsitama, northeastern
Botswana. The estimated source fits acceptably the gravity anomaly
and retrieves a dipping intrusion having variable dips and strikes and
maximum bottom depth of 8 ± 0.5 km. By comparing the interpre-
tations of simulated sources and Matsitama intrusion, we show that
the anomaly fit obtained in the Matsitama application is worse than
those obtained in the synthetic tests. This poorer fitting obtained
in Matsitama application may be related to possible violations of
premises assumed by our method. Violations of premises may be
associated either with the presence of multiples sources yielding
interfering gravity anomalies or with variable density contrast.

2 M E T H O D O L O G Y

2.1 Forward problem

Let go be an N -dimensional vector of gravity observations (Fig. 1a)
produced by a 3-D outcropping source (or a buried source, but with a

known depth to the top) having arbitrary but unknown closed surface
S (Fig. 1b). We assume that the 3-D source is confined to the interior
of a finite region �, defined on the x-y-z space beneath the Earth’s
surface (Fig. 1b). The z-axis is positive downwards and the x- and
y-axes are northward- and eastward-oriented, respectively. We also
assume that the density contrast between the geological source and
the host rocks is either constant or variable and known. To obtain
the 3-D source shape we approximate the volume of the source
(dark grey volume in Fig. 1b) by a set of L vertical, juxtaposed
3-D prisms in the vertical direction (light grey prisms, identified
by Pk, k = 1,..., L in Fig. 1b). The density contrast of each prism,
ρk, k = 1,..., L , is assumed constant and known. All prisms have
the same constant and known thickness dz and a horizontal cross-
section described by an arbitrary and unknown polygon, whose sides
approximately describe the edges of a horizontal cross-section of the
3-D geological source. The horizontal coordinates of the polygon
vertices of the ensemble of L vertically stacked prisms recover the
3-D geological source and are the first set of parameters to be
estimated from the gravity data. The depths to the top and to the
bottom of the kth vertical prism are, respectively,

z1k = zo + (k − 1) dz, k = 1, . . . , L , (1a)

and

z2k = z1k + dz, k = 1, · · · , L , (1b)

where zo is a pre-specified depth to the top of the true geolog-
ical source based on the interpreter’s knowledge about the geol-
ogy of the interpretation area. Fig. 1(c) shows the polygonal cross-
section of the kth vertical prism Pkdescribed by Mkvertices (white
dots) with the Cartesian coordinates (xk

j , yk
j , zk

1), j = 1, . . . , Mk,

k = 1, . . . , L . Similarly Silva & Barbosa (2004), instead of describ-
ing each vertical prism by the Cartesian coordinates of its vertices,
we describe them by polar coordinates referred to an arbitrary ori-
gin whose z-coordinate coincides with the depth to the top of the
corresponding prism. Then, the horizontal Cartesian coordinates of
the Mkvertices, (xk

j , yk
j ) (white dots in Fig. 1d), of the kth vertical

prism Pk , j = 1,..., Mk, k = 1, . . . , L , are described by the polar
coordinates (rk

j , θ
k
j ), j = 1, . . . , Mk, k = 1,. . .,L referred to an ar-

bitrary origin Ok (grey dot in Fig. 1d) with horizontal coordinates
(xok, yok), k = 1, . . . , L , ∈ Pk . By convention, the angle θ k

j is
measured from the positive y-axis in the counterclockwise sense.
Based on the interpreter’s knowledge about the complexity of true
source (dark grey volume in Fig. 1b), the number of vertices of
each prism is established. After setting the value of Mk for the kth
vertical prism, we define the set of fixed and equally spaced angles
from 0◦ to 360◦ by

θ k
j = ( j − 1)�θ k, j = 1, . . . , Mk, (2)

where

�θ k = 2π

Mk
, k = 1, . . . , L .

Here, to retrieve the 3-D geometry of a geological source we
estimate two sets of parameters representing different physical en-
tities. The first set of parameters comprises the radii of all prisms
(rk

j , j = 1, . . . , Mk, k = 1, . . . L) and the second one includes the
horizontal Cartesian coordinates (xok,yok) of the arbitrary origins
Ok, k = 1, . . . L .

The vertical component of the theoretical gravity attraction, gi,
at the ith observation point (x = xi , y = yi , and z = zi ) caused by
a set of L 3-D prisms (light grey prisms in Fig. 1b) is given by the
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Figure 1. Schematic representation of (a) gravity anomaly (contour lines) produced by (b) a 3-D anomalous source (dark grey volume limited by the closed
surface S). The interpretation model in (b) consists of a set of L vertical, juxtaposed 3-D prisms Pk , k = 1,..., L ,(light grey prisms) in the vertical direction of
a right-handed coordinate system. (c) Polygonal cross-section of the kth vertical prism Pk described by Mk vertices (white dots) with the Cartesian coordinates
(xk

j , yk
j , zk

1), j = 1, . . . , Mk , k = 1, . . . , L . (d) Representation of the Mkvertices of the kth vertical prism Pk , (xk
j , yk

j ), j = 1,..., Mk , k = 1, . . . , L , by polar

coordinates (rk
j , θ

k
j ), j = 1, . . . , Mk , k = 1, . . . , L , (white dots), referred to an arbitrary origin Ok (grey dot) with horizontal Cartesian coordinates (xok , yok ),

k = 1, . . . , L , (black dot).

non-linear relationship

gi ≡ gi (xi , yi , zi ) =
L∑

k=1

f k
i (rk, xok, yok, �k

, ρk), i = 1,..., N , (3)

where N is the number of gravity measurements, rk ≡ (rk
1 , ..., rk

Mk )T

is the Mk-dimensional vector containing the radial coordinates
of the Mkvertices of the kth vertical prism and �k is the Mk-
dimensional vector whose jth element is given in eq. (2). The non-
linear function f k

i (rk, xok, yok, �k
, ρk) has been computed based

on Plouff (1976) to calculate the gravity effect at the ith observation
point (xi , yi , zi ) produced by the kth vertical prism with thickness
dz, density contrast ρk , and whose polygonal cross-section is de-
scribed by the variables rk, �k

, xok, and yok .

2.2 Estimating the 3-D geometry of a geological source

We formulate an iterative non-linear inversion to estimate a 3-D
geometry of a geological source that not only fits the gravity data

but also satisfies a set of specified constraints. From a set of N gravity
observations go ≡ (go

1
, . . . , go

N )T , we estimate the parameter vector
m by minimizing the objective function

�(m) = ψ(m) + μ

LC∑
�=1

φ�(m), (4)

subject to

mmin < m < mmax, (5)

where functions ψ(m) and φ�(m) will be defined later. The M-
dimensional parameter vector m contains the radii of all prisms
(rk

j , j = 1, . . . , Mk, k = 1, . . . , L) and the horizontal Cartesian
coordinates (xok, yok) of arbitrary origins Ok, k = 1,. . ., L, of all
prisms. Hence, the number of unknown parameters to be estimated
is M = ∑

Mk + 2L . We partition the parameter vector as

m =
(

m1T
m2T

...mkT
...mLT

)T
, (6)
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where T is the transposition operator and mk is the (Mk + 2) × 1
vector whose elements are (1) the radii of the Mk vertices of the kth
vertical prism and (2) the horizontal Cartesian coordinates of the
kth arbitrary origin, that is,

mkT ≡ (
rk

1 , ..., rk
Mk , xok, yok

) ≡ (
rk, xok, yok

)
, k = 1, . . . , L.

(7)

The minimizer m̂ of the function �(m) (eq. 4) will be obtained
iteratively by the Gauss–Newton method using Marquardt’s (1963)
strategy (Silva et al. 2001b). From now on, we use the caret (∧)
symbol to denote estimate. To incorporate the inequality constraints
given in inequality (5), we used a homeomorphic transformation
(e.g. Barbosa et al. 1999b), which has a simple implementation.

The role of the inequality constraints given in inequality (5)
is to set physical limits for the estimates of the radii of all ver-
tices of all prisms (rk

1 , ..., rk
Mk , k = 1,...,L) and for the estimates

of the horizontal Cartesian coordinates of all arbitrary origins
(xok, yok, k = 1,..., L). For simplicity, we assign the value zero and
rmax, respectively, to the lower and upper bounds of all radii, where
rmax is set by the interpreter based on either the horizontal extent of
the gravity anomaly or the geological knowledge about the studied
area. We also assign the values (xomin, yomin) and (xomax, yomax),
respectively, to the lower and upper bounds of all horizontal Carte-
sian coordinates of all arbitrary origin.

The function ψ(m) in eq. (4) is the data-misfit function, given by

ψ(m) = 1

N − M

N∑
i=1

[
go

i − gi

]2
. (8)

Let φ�(m), � = 1, . . . , LC , be a set of model objective functions
(eq. 4) which allow incorporating different types of prior informa-
tion into the inverse problem solution. Each model objective func-
tion φ�(m) represents the �th constraint based on a factual geological
attribute about the source geometry. Finally, μ is the regularizing
parameter that balances the relative importance between the data-
misfit measure [given by ψ(m), eq. 8] and the set of constraints
given by the model-objective functions, ϕ�(m), � = 1, . . . .LC , In
our method, we introduced six types of constraints.

(1) Smoothness constraint on the adjacent radii defining the hori-
zontal section of each vertical prism. This constraint imposes that all
radii within each vertical prism must be close to each other. Speci-
fically, it consists of requiring that the estimate of each radius r̂ k

j

(the jth radius within the kth vertical prism) be as close as possible
to the estimate of radius r̂ k

j+1 (the neighbouring radius within the
kth vertical prism). In other words, within each vertical prism, an
abrupt change between a given radius and its neighbour is ruled out.
Mathematically, this constraint is expressed by the squared �2 -norm
of the first-order discrete derivative (along the azimuthal direction)
of the radii defining the horizontal section of each vertical prism:

φ1(m) = α1

L∑
k=1

⎡
⎣(

rk
Mk − rk

1

)2 +
Mk−1∑

j=1

(
rk

j+1 − rk
j

)2

⎤
⎦. (9a)

This constraint is a regularizing function applied to all radii within
each vertical prism of the interpretation model and it is named as
the first-order Tikhonov regularization (Tikhonov & Arsenin 1977).
This constraint favours solutions composed of vertical prisms de-
fined by approximately circular cross-section. Then, the estimated
source shape is biased to be piecewise horizontally isometric.

(2) Smoothness constraint on the adjacent radii of the vertically
adjacent prisms. Let us assume for simplicity that all prisms have
the same number of vertices, that is, Mk = Mo, k = 1,..., L , this

constraint imposes that the pairs of adjacent radii of two vertically
adjacent prisms must be close to each other. It is incorporated by
minimizing

φ2(m) = α2

L−1∑
k=1

Mo∑
j=1

(
rk

j − rk+1
j

)2
, (9b)

where rk
j and rk+1

j define a pair of adjacent radii of the kth and k +1st
vertical prisms. Mathematically, eq. (9b) expresses the squared �2−
norm of the discrete first-order derivative of the radii along the ver-
tical direction. It represents the first-order Tikhonov regularization
on the radii of vertically adjacent prisms of the interpretation model.
Then, this constraint favours solutions with a vertically cylindrical
shape.

(3) The source’s outcrop constraint. In the case of outcropping
sources, let’s assume that the intersection of the geological source
with a horizontal erosion surface is known. This constraint incorpo-
rates prior knowledge about the outcropping source’s boundaries
separating the geological body from the host rock. Mathemati-
cally, it imposes that the estimated radii and the arbitrary origin of
the shallowest vertical prism (r̂ 1

1 ,...,r̂ 1
M1 , x̂o1, ŷo1), which describe

the boundary of the polygonal cross-section of the first vertical
prism P1, must be as close as possible to the pre-specified val-
ues (r 0

1 , . . . , r 0
M1 , xo0, yo0), which describe the known outcropping

boundary separating the anomalous source from the host rock). This
constraint is incorporated by minimizing

φ3(m) = α3

⎧⎨
⎩
⎡
⎣ M1∑

j=1

(
r 1

j − ro
j

)2

⎤
⎦ + (

xo1 − xoo
)2 + (

yo1 − yoo
)2

⎫⎬
⎭ .

(9c)

(4) The source’s horizontal location constraint. Let’s assume that
the interpreter does not have information about the outcropping
boundary of the body in greater detail, but he knows the approximate
horizontal Cartesian coordinates of body (xoo, yoo) . In this case,
the constraint given in eq. (9c) must be simplified to minimize

φ4(m) = α4

[(
xo1 − xoo

)2 + (
yo1 − yoo

)2
]
. (9d)

(5) Smoothness constraint on the horizontal position of the ar-
bitrary origins of the vertically adjacent prisms: This constraint
imposes that the estimate of the horizontal position of the kth ar-
bitrary origin Ok , at the kth vertical prism Pk , must be as close
as possible to the estimate of spatially adjacent arbitrary origin
Ok+1, at the k + 1st vertical prism Pk+1. Mathematically, this con-
straint imposes that the estimated horizontal Cartesian coordinates
(x̂ok, ŷok) of the kth arbitrary origin Ok must be as close as possi-
ble to the estimated horizontal Cartesian coordinates (x̂ok+1, ŷok+1)
of the vertically adjacent arbitrary origin Ok+1. This constraint is
imposed by minimizing the function

φ5(m) = α5

L−1∑
k=1

(
xok+1 − xok

)2 + (
yok+1 − yok

)2
. (9e)

This regularizing function is the first-order Tikhonov regular-
ization on the horizontal position of the arbitrary origins of the
vertically adjacent prisms and it imposes smooth horizontal dis-
placement between all vertically adjacent prisms.

(6) Minimum Euclidean norm constraint on the adjacent radii
within each vertical prism. This constraint imposes that all radii
within each vertical prism must be as close as possible to null values.
This constraint, known as minimum Euclidean norm, is expressed
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by the squared �2– norm of the radii describing each vertical prism

φ6(m) = α6

L∑
k=1

Mk∑
j=1

(
rk

j

)2
. (9f)

In our method, this constraint has been used to guarantee a stable
solution.

Here, we adopted the following strategy for selecting the control
parameters (μ and α1 −α6) . We set the regularizing parameter μ

(eq. 4) equal to unity in all inversions. In the functions given in eqs
(9a)–(9f) the non-negative coefficients α1 − α6 enable the appropri-
ate balance between the six constraining functions [φ1(m) − φ6(m)]
in a particular problem. These constraining functions are used to
reduce solution non-uniqueness and instability. To date, the coef-
ficients α1 − α6 cannot be estimated automatically. Roughly, each
coefficient defines how much of the information defined by the cor-
responding constraining function should be incorporated into the
solution. This information must be essentially provided by geologi-
cal knowledge. Thus, the choice of these coefficients is based on the
trial-and-error procedure and on the interpreter’s knowledge about
the geology of the study area, except for α6 . Because function
φ6(m) is used as a mathematical stabilizing constraint only, we set
a very small value (on the order of 10−5) to α6 .

2.3 Estimating stable solutions

In simple, non-mathematical terms, stable solution is a solution that
is only slightly perturbed when the observations are contaminated
by small-amplitude random perturbations. To obtain a stable solu-
tion we adopted the following practical procedure. First, we gen-
erate Q sets of noise-corrupted gravity data by adding Q different
Gaussian pseudo-random noise sequences with zero mean. Next,
we set up the variables of the interpretation model (see Section 2.1),
the constraining functions (eqs 9a–9f) and the associated inversion
control parameters (variables α1 − α6 and μ, described in Section
2.2). Then, we invert the Q sets of noise-corrupted gravity data
using the specified variables α1 − α6 to obtain a set of Q estimates
m̂1, . . . , m̂Q , that minimize the function �(m) (eq. 4) subject to the
inequality constraints given in inequality (5). Finally, we compute
the sample mean and the sample standard deviation, of the set of Q
values, obtained though inversion, for the set of the jth elements of
m̂k, k = 1,..., Q, using, respectively, the equations

m̃ j = 1

Q

∑
m̂k j , j = 1,..., M, (10)

and

σ̃ j =
[

1

Q − 1

∑ (
m̂k j − m̃ j

)2
]1/2

, j = 1,..., M, (11)

where m̂k j is the j th element of the kth estimated parameter
vector m̂k .

The sample mean parameter vector m̃, whose j th element is given
by eq. (10), may be accepted as an estimated solution of the inverse
problem, depending on whether m̃ is a stable estimate. The estimated
sample mean parameter vector m̃ is assumed to be stable when all
sample standard deviations (σ̃ j , j = 1,..., M) are smaller than 4 per
cent of its corresponding sample mean. Otherwise, the estimated
parameter vector m̃ is rejected, the inversion control parameters are
modified and a new inversion is started. This process is repeated
until all sample standard deviations attain small values.

In this paper, we use this procedure to evaluate the stability of
the solution either in synthetic or real gravity anomalies. In all

applications presented in this paper, we set Q = 30 and use the stable
sample mean parameter vector m̃ (eq. 10) as the stable estimated
solution (or stable estimated parameter vector). Finally, we compute
the fitted gravity anomaly produced by m̃.

3 C R I T E R I O N F O R E S T I M AT I N G T H E
T RU E ( O R M I N I M U M ) D E P T H T O T H E
B O T T O M O F T H E S O U RC E

In Section 2.1, we established the discretization of a finite region �
into a set of L prisms (Fig. 1b), with a constant and known thickness
dz. The shallowest prism has the depth to the top equal to zo that
presumably coincides with the top of the true geological source.
These variables (L, dz and zo) define the maximum depth to the
bottom of the estimated body by

zmax = zo + L · dz. (12)

After setting up the interpretation model, our method obtains
a stable estimate of the 3-D geometry of the source by applying
the practical procedure described in the Section 2.3. Besides being
stable, the solution m̃ must yield an acceptable anomaly fit.

For a fixed maximum depth to the bottom of the interpretation
model zmax, we obtain a stable estimate m̃ that fits the data. How-
ever, this estimate depends on zmax; so, by assigning different values
to zmax, the method produces other stable solutions m̃ that fit the
data as well. To overcome this vexatious dependence of the solution
on the correct choice of the maximum bottom depth for the true
body, we developed a new criterion for reducing the class of pos-
sible solutions compatible with the gravity anomaly by estimating
an ‘optimum’ maximum depth to the bottom of the interpretation
model. This optimum maximum depth can be an estimate of the
true (or minimum) depth to the bottom of the source, depending
on whether the true source produces a gravity anomaly that is able
(or unable) to resolve the depth to the source bottom. This new
criterion is based on the fact that an increase of the thickness (dz)
of the prisms defining the interpretation model leads to an increase
of its depth to the bottom and allows an increase of the estimated
source volume, and, therefore, of the total-anomalous mass (mt). By
calculating mt and adopting a convenient data-misfit measure (s),
we construct a curve mt versus s. This curve is used to estimate an
optimum maximum depth to the bottom of the interpretation model
and, consequently, the depth-to-bottom estimate of the source.

3.1 Relationship between the data-misfit measure and the
estimated total-anomalous mass

The total anomalous mass (Hammer 1945; LaFehr 1965; Blakely
1995) can be calculated from an application of Gauss’ theorem. As-
sume that the vertical component of the gravity attraction gz(x, y, z)
is known in a continuous way over an infinite horizontal surface Sp ,
located above all anomalous masses causing gz(x, y, z). Hence, the
vertical component of gravity integrated over Sp is proportional to
the total-anomalous mass, that is,

mt = 1

2πγ

∫ ∫
Sp

gz(x, y, z) ds, (13)

where γ is Newton’s gravitational constant.
Because the measured or computed vertical component of gravity

gz(x, y, z) is not obtained continuously over an infinite plane, but
as a discrete set of N gravity observations, distributed over a finite
plane, the integral in eq. (13) must be numerically approximated
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by finite sums. Let g ≡ (g1 , . . . , gN )T be a set of N fitted gravity
observations produced by the stable estimated solution m̃ (see the
Section 2.3). Let us consider a sufficiently dense set of gravity data
such as the integral in eq. (13) can be numerically approximated by

mt ≈ 1

2πγ

∑
gi dsi , (14)

where dsi is the i th horizontal element of area and mt will henceforth
be referred to as estimated total-anomalous mass.

On the other hand, we define a data-misfit measure as

s = 1

N

∑
|(go

i dsi ) − (gi dsi )| = 1

N

∑
|ai − bi |, (15)

where ai = go
i dsi and bi = gi dsi . So, given a vector of pa-

rameter estimates m̃ which yields a vector of fitted gravity data
g ∈ {gi , i = 1, . . . N }, the total-anomalous mass can be approxi-
mated by the expression

mt ≈ κ
∑

bi , (16)

where κ = 1/2πγ .
In deducing the relationship between the data-misfit measure (eq.

15) and the approximation of the estimated total-anomalous mass
(eq. 16), we consider two extreme possibilities. In the first one, let’s
assume that bi < ai , for all observation point i . In this case, the
fitted gravity data underestimate the observed gravity data (Fig. 2a)
and the data-misfit measure (eq. 15) can be rewritten as

s = 1

N

∑
|ai | − 1

N

∑
|bi |. (17)

By inserting the form of the approximate estimate of total-
anomalous mass (eq. 16) into the data-misfit measure defined by
eq. (15), we have the first relationship between the data-misfit mea-
sure and the estimated total-anomalous mass, that is,

mt ≈ κ
∑

|ai | − (Nκ)s. (18)

The above equation shows a linear relationship between the esti-
mated total-anomalous mass mt and the data-misfit measure s with
a negative angular coefficient. Hence, mt increases as s decreases.

In the second possibility, let us assume that bi > ai , for all
observation point i . In this case, the fitted gravity data overestimate
the observed gravity data (Fig. 2b) and the data-misfit measure (eq.
15) can be rewritten as

s = 1

N

∑
|bi | − 1

N

∑
|ai |. (19)

By inserting the form of the approximate estimate of total-
anomalous mass (eq. 16) into the data-misfit measure defined by
eq. (19), we have the second relationship between the data-misfit
measure and the estimated total-anomalous mass, that is,

mt ≈ κ
∑

|ai | + (Nκ)s. (20)

The above equation shows a second linear relationship between
the estimated total-anomalous mass mt and the data-misfit mea-
sure s with a positive angular coefficient. Hence, mt increases with
increasing s.

Note that the deduced relationships between the estimated total-
anomalous mass (mt ) and the data-misfit measure (s) can be approx-
imated as straight lines (eqs 18 and 20). These two straight lines
intercept each other if and only if s is equal to zero. In this case, the
observed gravity data are perfectly fitted (Fig. 2c) and the estimated
total-anomalous mass (mt ) is approximately equal to the computed
total-anomalous mass MT from the observed gravity data, that is,

mt ≈ κ
∑

|ai | ≈ 1

2πγ

∑
go

i dsi ≈ MT . (21)

Fig. 2d shows a schematic representation on the plane mt ×s of the
theoretical straight lines I and II given by eqs 18 and 20, respectively.
The intersection point of these straight lines is indicated by a black
dot, in Fig. 2(d). The graph shown in Fig. 2(d) will be referred to as
theoretical mt × s curve.

3.2 Departure from the predicted relationship between the
data-misfit measure s and the estimated total-anomalous
mass mt in the neighbourhood of s = 0

We have deduced two linear relationships (eqs 18 and 20) between
the data-misfit measure (s) and the estimated total-anomalous mass
(mt ) given a stable parameter estimate m̃. We have also deduced
that the intersection point of these straight lines occurs when s is
exactly equal to zero. In this section, we analyse the departure of the
intersection point of the straight lines from s = 0, and the departure
of the relationship between mt and s from a straight line in the
neighbourhood of s = 0.

Let q be a non-negative number representing the smallest data-
misfit value still fitting the data. If q is equal to zero the intersection
point of the straight lines (eqs 18 and 20) occurs at s = 0; otherwise
it departs from s = 0. Three factors contribute to this departure.
The first one is the presence of noise in data. The second one is
the decrease of the gravity data power to resolve very deep source’s
bottons. The third factor is the inadequacy of the interpretation
model to retrieve the geological body. Then, if q is different from
zero, eq. (15) becomes

s = 1

N

∑
|(go

i dsi ) − (gi dsi )| = 1

N

∑
|ai − bi | + q. (22)

Consequently, the two linear relationships between s and mt given
by eqs (18) and (20) will be modified to

mt ≈ κ
∑

|ai | − (Nκ)s + (Nκ)q, (23)

and

mt ≈ κ
∑

|ai | + (Nκ)s − (Nκ)q, (24)

respectively. In this case, the intersection point of these straight
lines (eqs 23 and 24) occurs at s = q . It will, therefore, be displaced
towards the positive s-axis when s > 0.

In the neighbourhood of the point s = q, the relationship between
mt and s will depart from the predicted straight lines (eqs 18 and
20) because of the presence of noise in data and of the inadequacy
of the interpretation model to retrieve the geological body leading
to violation of conditions ai < bi and ai > bi , for all observation
points i (Fig. 2e). These conditions are necessary to guarantee the
straight line behaviour described by eqs 15 and 18.

3.3 Practical procedure to determine the true (or
minimum) depth to the bottom of the source through the
mt × s curve

To determine the true (or minimum) depth to the source’s bottom,
we first need to understand the relationship between the mt × s
curve with the maximum depth of the interpretation model (zmax,
eq. 12) and the true (or minimum) depth to the source’s bottom.
This approach is valid only if the gravity anomaly is caused by an
isolated body with a homogeneous density contrast with the host
rocks and having a known depth to the top.

First, consider the following theoretical statements. Assume that
a homogeneous source with maximum depth to the bottom at zb

C© 2011 Obsevatório Nacional, GJI, 187, 754–772

Geophysical Journal International C© 2011 RAS



3-D radial inversion of gravity data 761

Figure 2. Schematic representation of the observed and fitted gravity data. The fitted gravity data (a) underestimate, (b) overestimate and (c) correctly estimate
the observed gravity data. (d) Theoretical mt × s curve whose straight lines I and II are given by eqs (18) and (20), respectively. The intersection point of these
straight lines occurs at s = 0 (black dot).

produces a gravity anomaly wo(x, y). If this source is modified by
removing mass from its bottom up to zb

1 (zb
1 < zb), then this new

source will produce a gravity anomaly w(x, y) < wo(x, y),∀x, y
because no matter how small, the removed mass will add a negative
gravity effect measured on all observation locations. Similarly, if
the original source is modified by accruing mass to its bottom up to

zb
2 (zb

2 > zb), then this new source will produce a gravity anomaly
w(x, y) > wo(x, y), ∀x, y.

Now we extend the above statements to the construction of the
mt × s curves. This is possible because the mt × s curves are
produced through the proposed method which assumes homogenous
sources and allows either the removal or the accretion of masses
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at the bottom of different tentative solutions simply by defining
the maximum depth, zmax, of the interpretation model. If zmax is
smaller than the true depth to the bottom of the source, the fitted
gravity data (produced by a solution using the proposed method)
underestimate the observed gravity data (as shown in Fig. 2a) and
lead to the theoretical straight line I approximation (Fig. 2d) on the
mt × s plane. Conversely, if zmax is greater than the true depth to the
bottom of the source, the fitted gravity data (produced by a solution
using the proposed method) overestimate the observed gravity data
(Fig. 2b) and lead to the theoretical straight line II approximation
(Fig. 2d) on the mt × s plane. Finally, if zmax coincides with the true
depth to the bottom of the source, the fitted gravity data (produced
by a solution using the proposed method) are approximately equal to
the observed gravity data (Fig. 2c) and a minimum value of the data-
misfit measure s (such as the one shown schematically by a black dot
in Fig. 2d), is expected. In this way, by varying the maximum depth
of the interpretation model (zmax, eq. 12) we construct an observed
mt × s curve similar to the theoretical mt × s curve (Fig. 2d). The
tentative value for zmax producing the smallest data-misfit measure
s on the observed mt × s curve is an optimum estimate of the true
(or minimum) depth to the bottom of the source.

Here, we do not compute the estimated total-anomalous mass
mt by eqs (14) or (16). Rather, it is computed from the stable
parameter estimates m̃ (see the Section 2.3). So, by assuming the
correct knowledge of the density contrast between the geological
source and the host rock, we first calculate the area of the estimated
horizontal section of the kth vertical prism by computing one half of
the magnitude of the cross product between two estimated adjacent
radius,

ak = 1

2

[(
x̂k

Mk − x̂ok
) (

ŷk
1 − ŷok

) − (
x̂k

1 − x̂ok
) (

ŷk
Mk − ŷok

)]1/2 +
Mk−1∑

j=1

1

2

[(
x̂k

j − x̂ok
) (

ŷk
j+1 − ŷok

) − (
x̂k

j+1 − x̂ok
) (

ŷk
j − ŷok

)]1/2
,

(25)

where x̂k
j and ŷk

j , i = 1 . . . Mk , are the horizontal Cartesian coor-
dinates of the Mk vertices, (white dots in Fig. 1d) obtained from
the estimated radii of the Mk vertices of the kth vertical prism and
x̂ok and ŷok are the estimated horizontal Cartesian coordinates of
the kth arbitrary origin Ok (grey dot in Fig. 1d). Then, the exact
expression of the estimated total-anomalous mass is written as

mt = dz
L∑

k=1

ρkak . (26)

The practical procedure to construct the observed mt × s curve
is as follows. First, we assign a small value to zmax that defines the
initial interpretation model. Then, we compute the stable estimated
solution m̃ (see Section 2.3) whose j th element is given by eq. (10).
Next, we compute the fitted gravity data produced by m̃ that al-
lows computing the data-misfit measure s(eq. 15) and the estimated
total-anomalous mass mt (eq. 26). Finally, we plot mt against s,
producing the first point of the observed mt × s curve. We repeat
this procedure for increasingly larger values of maximum depths
zmax of the interpretation model.

3.4 Illustration of the practical procedure to determine the
true (or minimum) depth to the bottom of the source
through the mt × s curve

We illustrate how the true (or minimum) depth to the bottom of the
source can be estimated from the observed mt × s curve. To do

this, we simulated three outcropping dipping volcanic ducts with
a density contrast ρ of 0.5 g cm–3 relative to the background and
differing from each other by their maximum depth to the bottom.
The first one is a shallow-bottomed dipping duct which attains
a maximum bottom depth of 3 km (Figs 3a–c red prisms). The
second simulation consists of a middle-bottomed dipping duct with
bottom depth of 6 km (not shown). The third simulation involves a
deep-bottomed dipping duct whose maximum bottom depth is 9 km
Figs 4a–c in red prisms). For each simulation, we computed, on the
plane z = 0 km, the theoretical noise-free (not shown) and the noise-
corrupted gravity data. Figs 3(a)–(c) and 4(a)–(c) show, in half-tone
maps, the noise-corrupted gravity data produced, respectively, by
shallow- and deep-bottomed dipping volcanic ducts.

In all inversions, we set zo = 0 km because we simulated out-
cropping dipping volcanic ducts and assumed that the depths to
the tops of the interpretation models coincide with the actual tops
of the sources. To all interpretation models we set an ensemble of
L = 5 prisms, all of them with the same density contrast and the
same number of polygon vertices that describe the horizontal cross-
sections. Specifically, to all prisms we set ρk = ρ = 0.5 g cm–3

and Mk = 4, for all k, k = 1,..., L . We used all the constraining
functions described in the Section 2, except for the third constraint
(named source’s outcrop constraint, see eq. 9c).

For each simulated test, we followed the same practical procedure
described in the Section 3.3, but built two sets of observed mt × s
curves. The first one is obtained by using the noise-free data (Fig. 5a)
and second set of mt × s curves is obtained by using the noise-
corrupted data (Fig. 5b). Each mt × s curve is composed by 11
estimated values of mt and s, each one associated with a fixed
maximum depth zmax of the interpretation model, in which the value
of zmax varies from 1 km to 11 km by steps of 1 km. This step implies
that the uncertainty in the estimated true (or minimum) depth to the
bottom of the source is at most ±0.5 km. Fig. 5 shows the observed
mt × s curves obtained for the three simulated tests where the dots
correspond to different values of maximum depths zmax assumed
for the interpretation models.

Although the observed mt × s curves (Fig. 5) are different from
the theoretical behaviour of the mt × s curve (Fig. 2d), they show
two asymptotic linear relationships between the estimated total-
anomalous mass mt and the data-misfit measure s, one with a nega-
tive and the other with a positive angular coefficient, in accordance
with the theoretical results given by eqs (18) and (20), respectively.

In the case of the shallow-bottomed dipping duct, the minima of
s are very well defined in the observed mt × s curves, shown in blue
lines, both for noise-free (Fig. 5a) and noise-corrupted (Fig. 5b)
data. These minima are well defined because the gravity anomaly
produced by this shallow-bottomed source is able to estimate, under
the imposed constraints, the true maximum depth of the source pro-
ducing the minimum of s. According to the theoretical derivation
presented in Section 3.1, the tentative value for the maximum depth
zmax producing the minimum of the data-misfit measure s (see the
blue lines in Fig. 5) is the best estimate of the true depth to the
bottom of the simulated shallow-bottomed dipping duct, both for
noise-free and noise-corrupted data. The best estimate of the true
depth to the bottom of this source is zmax = 3 ± 0.5 km which agrees
with the true one. Fig. 3(b) shows that the estimated 3-D geometry
of the source (blue prisms) using the maximum depth zmax = 3 km
recovers very well the geometry of the true shallow-bottomed dip-
ping duct. The corresponding fitted anomaly is displayed in Fig. 3(b)
in dashed black lines. Figs 3(a) and (c) show the estimated 3-D ge-
ometries of the source (blue prisms) using smaller (zmax = 2 km)
or larger (zmax = 4 km) maximum depth to the bottom zmax of the
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Figure 3. Synthetic data application produced by a simulated outcropping dipping volcanic duct. Perspective views of the true (red prisms) and estimated
(blue prisms) shallow-bottomed dipping duct; the latter is obtained by inverting the noise-corrupted gravity data (half-tone contour map) and assuming an
interpretation model with maximum bottom depths zmax (a) smaller (2 km); (b) equal (3 km) and (c) larger (4 km) than the true one. The corresponding fitted
gravity anomalies produced by the estimated sources (blue prisms in a–c) are shown in dashed black lines in the contour maps (a)–(c).

interpretation models relative to the true one. In this case, neither
estimated 3-D geometry of the sources (blue prisms in Figs 3a and
c) recover the true geometry of the shallow-bottomed dipping duct
(red prisms), even though both solutions fit the gravity observations
(dashed black lines in Figs 3a and c). In the case of the deep-
bottomed dipping duct, the minimum of s is reasonable, defined by
the mt × s curve obtained for noise-free data (green line in Fig. 5a).
On the other hand, the noise-corrupted gravity data produced by
the deep-bottomed dipping duct do not have enough resolution to
define the smallest value of s in the mt × s curve (green line in
Fig. 5b) and, consequently, to produce reliable estimates of the true
maximum depth of the source. So, the ambiguous smallest value
of s in the mt × s curve (green line in Fig. 5b) indicates the im-
possibility of determining the true maximum depth of the source.
In this case, this mt × s curve can be used to estimate, at most, a
lower bound (zmax = 6 ± 0.5 km) for the maximum depth of the
source. The loss of resolution of the gravity data with depth leads
to the impossibility of retrieving the 3-D geometry of the deepest
part of the true source (red prisms) as shown in Figs 4(a)–(c); how-
ever, the shallowest part of the true source geometry is reasonably
retrieved. In Figs 4(a)–(c) the maximum depth zmax, assumed for
the interpretation models, are, respectively, smaller (zmax = 8 km),
equal (zmax = 9 km) and larger (zmax = 10 km) than the true one.
Neither estimated geometries (blue prisms in Figs 4a–c) perfectly

recovered the true dipping volcanic duct (red prisms in Figs 4a–c),
even though all of them fit the gravity data (dashed black lines in
Figs 4a–c) and are stable. These unsatisfactory results, even using
an interpretation model whose maximum depth of the interpretation
model coincides with the true one (Fig. 4b), are expected because
of the inevitable loss of data resolution with depth. The gravity data
lack the necessary in depth resolution and this low resolution makes
it impractical to estimate the deepest portion of the source without
using prior information (e.g. Silva Dias et al. 2009).

Some striking features in Fig. 5 deserve attention. First, the theo-
retical linear behaviour of the mt × s curve at its extremities, shown
schematically in Fig. 2(d) has been confirmed numerically. Besides,
we have also confirmed numerically that the smallest value of the
data-misfit measure in the observed mt × s curve occurs close to
s = 0 in the case of noise-free data (Fig. 5a); in the case of noise-
corrupted data, the minimum of s is displaced towards the positive
s-axis (Fig. 5b). Finally, our new criterion for determining the true
(or minimum) depth to the bottom of the source is theoretically
sound. This criterion determines the true depth to the bottom of
the source if the gravity anomaly has enough resolution to resolve
it. A better resolution of the data is inferred from inspecting the
existence of a well-defined minimum of s on the observed mt × s
curve, such as those produced by the shallow- and middle-bottomed
dipping ducts (blue and red lines in Fig. 5). Otherwise, if the data
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Figure 4. Synthetic data application produced by a simulated outcropping dipping duct. Perspective views of the true (red prisms) and estimated (blue prisms)
deep-bottomed dipping duct; the latter is obtained by inverting the noise-corrupted gravity data (half-tone contour map) and assuming an interpretation model
with maximum bottom depths zmax(a) smaller (8 km); (b) equal (9 km) and (c) larger (10 km) than the true one. The corresponding fitted gravity anomalies
produced by the estimated sources (blue prisms in a–c) are shown in dashed black lines in the contour maps (a)–(c).

do not have enough resolution, our criterion can determine, at most,
the minimum depth to the bottom of the source and retrieve the
geometry of part of the true source above this determined minimum
depth. This aspect is illustrated in Fig. 4 whose shallowest part of
the estimated geometries (blue prisms above the depth of 6 km)
coincide with the upper portion of the true source (red prisms). A
poor resolution of the data is evidenced by an observed mt ×s curve
exhibiting an ill-defined minimum value of s, such as the one shown
by the green line in Fig. 5(b).

4 . A P P L I C AT I O N T O S Y N T H E T I C DATA

We present two applications using synthetic gravity data simulating
two different isolated geological sources with known density con-
trasts. In the first one we simulated an outcropping granitic pluton
emplaced in homogeneous country rocks. In the second application

we simulated an outcropping dipping intrusive body having variable
dips and strikes and exhibiting a complex form.

In all applications the irregularly distributed gravity data were
computed on plane z = 0 km and contaminated with different pseu-
dorandom Gaussian noise sequences with zero mean and a standard
deviation as specified below. In each application we adopted the
same practical procedure described in the Section 3.3 to obtain not
only a stable solution that fits the data, but also to determine the
true (or minimum) depth to the bottom of the source.

In all inversions, we set zo = 0 km because we simulated out-
cropping bodies and assumed that the depths to the tops of the
interpretation models coincide with the actual tops of the sources.
We established that all prisms defining the interpretation model
have the same density contrast and the same number of the vertices
of the polygons which describe their horizontal cross-sections. We
also assumed the correct density contrast between the source and
the host rocks.

C© 2011 Obsevatório Nacional, GJI, 187, 754–772

Geophysical Journal International C© 2011 RAS



3-D radial inversion of gravity data 765

Figure 5. Observed mt × s curves obtained for a simulated outcropping dipping volcanic ducts for noise-free (a) and noise-corrupted (b) data. The dots are
associated with different values of maximum depths zmax assumed for the interpretation models. The blue, red and green lines are the observed mt × s curves
associated, respectively, with the shallow- (shown in Fig. 3), middle- (not shown) and deep- (shown in Fig 4) bottomed dipping ducts and whose depths to the
bottom are 3, 6 and 9 km, respectively. The well-defined minimum of the data-misfit measure s yields an optimum estimate of the true depth to the bottom of
the shallow- and middle-bottomed dipping ducts which are, respectively, 3 km (blue lines in a and b) and 6 km (red lines in a and b). The ill-defined minimum
of the data-misfit measure s (green line in b) may determine, at most, a minimum depth to the bottom of the source.

In each application, we generated the observed mt × s curve by
computing seven estimates of mt and s, each one associated with a
fixed maximum depth zmax of the interpretation model in which the
value of zmax varies from 3 km to 9 km in steps of 1 km leading to
an uncertainty of ±0.5 km.

4.1 Outcropping granite pluton

Fig. 6(a) shows the perspective view of a simulated outcropping
granite pluton (grey prisms) with a constant density contrast of
−0.09 g cm−3 relative to the homogeneous background. To simu-
late this granite pluton we set an ensemble of L = 10 prisms, with
thicknesses dz = 0.65 km and with horizontal cross-sections de-
scribed by polygons with Mk = 30 vertices, for all k, k = 1,..., L .
By adopting the practical procedure described in the Section 2.3,
we generated 30 pseudo-random sequences of random variables fol-
lowing a zero-mean Gaussian distribution with standard deviation

of 0.5 mGal, and added each noise sequence to the theoretical grav-
ity anomaly (not shown) computed at 110 stations. This procedure
created 30 sets of noise-corrupted gravity anomalies and Fig. 6(b)
shows one of them (half-tone map) which differ from the other
anomalies by small and random perturbations in the observations.

We inverted each noise-corrupted gravity anomaly using the pro-
posed method to construct the observed mt × s curve. In all inver-
sions, we started with the same initial guess which consists of an en-
semble of 10 vertically stacked prisms (dark grey prisms in Fig. 6a)
compounding a vertical prism with polygonal cross-section in-
scribed into a cylindrical body with radius of 2 km whose horizontal
Cartesian coordinates of the arbitrary origin are xok = 9101.13 km
and yok = 604.03 km, for all k, k=1,. . ., L. All constraints described
in Section 2 have been used except for the fourth constraint (named
the source’s horizontal location constraint, see eq. 9d). We used
μ = 1.0, α1 = 0.003, α2 = 0.0005, α3 = 0.5, α4 = 0.0, α5 =
0.3 and α6 = 0.00007. In the case of the source’s outcrop con-
straint (eq. 9c), the priorly specified radii (ro

j , j = 1, . . . , 30) which
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Figure 6. Synthetic data application produced by a simulated outcropping granite. (a) Perspective views of the simulated outcropping granite (light grey
prisms) and the initial guess (dark grey prisms) used in all inversions. (b) Noise-corrupted gravity anomaly (half-tone contour map) produced by the granite
shown in (a) and fitted gravity anomaly (dashed black lines) produced by the solution shown in Figs 7(b) and (c) (blue prisms). The intersection between the
horizontal erosion surface and the interface separating the granite from the host rock is shown by the white line. The white cross indicates the priorly specified
horizontal Cartesian coordinates (xoo, yoo) used in eq. 9c.

describe the edge of the polygonal cross-section of the first vertical
prism were defined by using the known outcropping interface sep-
arating the granite from the host rock (white line in Fig. 6b). This
set of priorly specified radii of the shallowest prism of the interpre-
tation model will be referred to an origin whose priorly specified
horizontal Cartesian coordinates are xoo = 9101.13 km and yoo =
604.03 km (white cross in Fig. 6b). We used xomin = 9090.0 km,
xomax = 9115.0 km, yomin = 590 km, yomax = 610 km, rmin = 0 km
and rmax = 25 km for all prisms. In the inversions, the interpretation
model consists of an ensemble of L = 10 prisms with horizontal
cross-sections described by polygons with Mk = 30 vertices, for
all k, k = 1,..., L . Then, the 30 estimates are used to compute the
stable sample mean parameter vector m̃ (eq. 10) that will be used
to build the mt × s curve.

Fig. 7(a) shows the observed mt × s curve where the dots cor-
respond to different values of maximum depths zmax assumed for
the interpretation models. We clearly note a well-defined minimum
of s on the observed mt × s curve, associated with zmax = 6 km.
Because this minimum is well defined, we conclude that the gravity
data have good resolution to estimate the depth to the bottom of
the simulated granite as 6 ± 0.5 km. Figs 7(b) and (c) show the
perspective views of the estimated (blue prisms) and the true (red
prisms) granites using the maximum depth zmax = 6 km. Fig. 7(d)
shows a set of horizontal depth slices of the estimated (blue lines)
and true (red lines) upper edges of the polygonal cross-sections
describing the geometry of the granite. This inversion result shows
that the estimated 3-D body efficiently retrieves the true geometry
of the granite body. The corresponding fitted anomaly is displayed
in Fig. 6(b) in dashed black lines.

4.2 Outcropping dipping intrusion

We simulated an isolated outcropping dipping intrusion that is em-
bedded in homogeneous rocks with a constant density contrast of
0.4 g cm–3 relative to the host rocks. This body fills a simulated
opening created along a curved fracture. Fig. 8(a) displays a per-
spective view of this dipping intrusion (light grey prisms) whose
shape resembles a spiral staircase. To simulate this intrusion we set

up an ensemble of L = 14 prisms, with thicknesses dz = 0.5 km and
horizontal cross-sections described by polygons with Mk = 16 ver-
tices, for all k, k = 1,..., L . Here, we adopted the same procedure
described in the previous application. Hence, we inverted 30 sets of
noise-corrupted gravity data obtained by adding different pseudo-
random sequences of Gaussian noise, with zero mean and a standard
deviation of 0.8 mGal, to the theoretical data. Fig. 8(b) shows one
of them (half-tone map). To determine the bottom of the source and
invert the gravity anomaly aiming at estimating the 3-D geometry
of the simulated intrusion, we constructed initially the mt × s curve
(Section 3.3). In this way, we inverted the 30 sets of noise-corrupted
gravity data by starting at the same initial guess shown in Fig. 8(a)
by dark grey prisms. This initial guess has been selected on the
basis of the anomaly features and it consists of two parts. In both
parts, an ensemble of seven vertically stacked prisms compounding
a vertical prism with polygonal cross-section inscribed into a cylin-
drical body with radius of 5 km. The first part is composed by the
seven shallowest prisms that make up the interpretation model. All
these prisms have the same horizontal Cartesian coordinates of the
arbitrary origin, equal to xok = 51.671 km and yok = 96.453 km,
k = 1,..., 7 (indicated by point A in Fig. 8b). The second part of the
initial guess is composed by the seven deepest prisms that make up
the interpretation model. All these prisms have the same horizontal
Cartesian coordinates of the arbitrary origin of xok = 128.156 km
and yok =65.686 km, k = 1,..., 7, (indicated by point B in Fig. 8b).
The horizontal Cartesian coordinates of the arbitrary origin related
with the shallow- and the deep-seated cylinders were taken from
the horizontal coordinates of, respectively, the gravity high and the
smooth gravity signal (Fig. 8b). In the previous synthetic example,
we assumed the knowledge about the intersection of the erosion sur-
face with the interface separating the intrusion source from the host
rock. Here, we assumed just the knowledge about the horizontal co-
ordinates of the centre outcropping intrusion (eq. 9d) and assigned:
xoo =38.420 km and yoo =98.121 km (white cross in Fig. 8b). We
used μ = 1.0, α1 = 0.0005, α2 = 0.005, α3 = 0.0, α4 = 0.1, α5 =
0.1 and α6 = 0.00005. Hence, all constraints described in Section 2
have been used, except for the third constraint (named the source’s
outcrop constraint presented in eq. 9c). We used xomin = 20 km,
xomax = 160 km, yomin = 10 km, yomax = 130 km, rmin = 0 km
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Figure 7. Synthetic data application produced by a simulated outcropping granite. (a) Observed mt × s curve where the dots are associated with different
values of maximum depths zmax assumed for the interpretation models. The well-defined minimum value of s, which is associated with zmax = 6 km, determines
the depth to the bottom of the simulated granite. (b) and (c) Perspective views of the true (red prisms) and estimated (blue prisms) granites; the latter is obtained
by inverting the gravity anomaly shown in Fig. 6(b) in half-tone contours and assuming an interpretation model with maximum bottom depth of 6.0 km
estimated from the mt × s curve criterion shown in (a). (d) Ensemble of horizontal depth slices of the true (red lines) and estimated (blue lines) edges of the
polygonal cross-sections describing the geometry of the granite.

and rmax = 50 km for all prisms. In the inversions, the interpretation
model consists of an ensemble of L = 14 prisms with horizontal
cross-sections described by polygons with Mk = 16 vertices, for all
k, k = 1,..., L .

Fig. 9(a) shows the observed mt × s curve where the dots are
related with the different maximum depths zmax assumed for the
interpretation models. Again, the observed mt × s curve reveals a
well-defined minimum value of s, associated with zmax = 7 km, and
provides a well-resolved depth-to-bottom estimate of 7 ± 0.5 km

for the simulated outcropping dipping intrusion, coinciding with
the true depth to the bottom of this intrusion. Figs 9(b) and (c)
show the perspective views of the estimated (blue prisms) and the
true (red prisms) dipping intrusions using the maximum depth of
zmax = 7 km for the interpretation model. Fig. 9(d) shows a set of
horizontal depth slices of the estimated (blue lines) and true (red
lines) upper edges of the polygonal cross-sections describing the
geometry of the dipping intrusion. This solution shows the excellent
performance of our method in recovering the 3-D geometry of true
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Figure 8. Synthetic data application produced by a simulated outcropping dipping intrusion. (a) Perspective views of the simulated dipping intrusion (light
grey prisms) and the initial guess (dark grey prisms) used in all inversions. (b) Noise-corrupted gravity anomaly (half-tone contour map) produced by the
intrusion shown in (a) and fitted gravity anomaly (dashed black lines) produced by the solution shown in Figs 9(b) and (c) (blue prisms). The white cross
indicates the priorly specified horizontal Cartesian coordinates (xoo, yoo) used in eq. 9d. Points A and B define the horizontal coordinates where the two parts
of the initial guess are located.

dipping intrusion resembling a spiral staircase-shaped feature. The
corresponding fitted anomaly is shown in Fig. 8(b) in dashed black
lines.

5 . A P P L I C AT I O N T O R E A L DATA

The Archean Matsitama greenstone belt in northeastern Botswana
occurs at the southwestern extremity of the Zimbabwe Craton
(Ranganai et al. 2002; McCourt et al. 2004). Fig. 10 shows a sim-
plified geological map of Matsitama, northeastern Botswana, where
the greenstone belt from Matsitama becomes progressively masked
to the west because of the overlying Kalahari and Karoo sediments.
The original gravity observations (see Reeves 1985; Silva et al.
2007) indicates that greenstone rocks extend themselves westwards
and then northeastwards (open circles in Fig. 10). In this area, a
shallow borehole directed to coal exploration in the sedimentary
cover confirmed the presence of Precambrian ultramafic rocks.

Fig. 11 shows the residual Bouguer anomaly map (half-tone map)
over the Matsitama greenstone belt. We used the same practical
procedure described for the previous test. Hence, we produced and
inverted 30 sets of noise-corrupted gravity anomalies obtained by
adding different pseudorandom sequences of Gaussian noise, with
zero mean and a standard deviation of 0.8 mGal, to the field data
(half-tone map in Fig. 11). We stress that the only physical aim of
adding extra noise to field data is to analyse the solution stability.
The final estimates are obtained with the original observations in
all inversions we have started at the same initial guess and have
assumed the constant density contrast of 0.4 g cm–3 between the
Matsitama intrusion and the country rocks. We also set an inter-
pretation model with L = 14 prisms, with a constant density con-
trast of 0.4 g cm–3 and with horizontal cross-sections described
by polygons with Mk = 16 vertices, for all k, k = 1,..., L . Then,

the 30 estimates are used to compute the stable sample mean pa-
rameter vector m̃ (eq. 10) that has been used to build the mt × s
curve.

Based on the synthetic application to interpret an outcropping
dipping intrusion, shown in Section 4.2, the initial guess (not shown)
consists of two ensembles of seven vertically stacked prisms, each
one consisting of a vertical prism with polygonal cross-section,
inscribed into a cylindrical body with radius 5 km and with different
horizontal coordinates of the centre. The first ensemble is composed
of the seven shallowest prisms that make up the interpretation model
with horizontal Cartesian coordinates of the arbitrary origin equal
to xok =51.671 km and yok = 96.453 km, k = 1,..., 7. These
horizontal Cartesian coordinates (point A in Fig. 11) were chosen
as the horizontal coordinates close to the gravity high. The second
ensemble is composed of the seven deepest prisms that make up
the interpretation model with horizontal Cartesian coordinates of
the arbitrary origin equal to xok =128.16 km and yok =65.69 km.
These horizontal Cartesian coordinates were chosen as those located
at the smooth gravity signal (point B in Fig. 11). The Matsitama
intrusion is in fact a shallow buried body; however, here we assumed
that this body crops out and that the knowledge about the horizontal
coordinates of its shallowest portion is xoo = 38.420 km and yoo =
98.121 km (white cross in Fig. 11). Hence, all constraints described
in the Section 2 have been used except for the third constraint
(named the source’s outcrop constraint; see eq. 9c) because the
shallowest boundary of the intrusion is unknown. The inversion
control variables used in all inversions are μ = 1.0, α1 = 0.0001,
α2 = 0.001, α3 = 0.0, α4 = 0.1, α5 = 0.01 and α6 = 0.00005. We
used xomin = 20 km, xomax = 160 km, yomin = 10 km, yomax =
130 km, rmin = 0 km and rmax = 50 km for all prisms.

According to the criterion described in the Section 3.3 the mini-
mum of s on the observed mt × s curve is associated with the true
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Figure 9. Synthetic data application produced by a simulated outcropping dipping intrusion. (a) Observed mt × s curve where the dots are associated with
different values of maximum depths zmax assumed for the interpretation models. The well-defined minimum value of s, which is associated with zmax = 7 km,
determines the depth to the bottom of the simulated intrusion. (b) and (c) Perspective views of the true (red prisms) and estimated (blue prisms) intrusions; the
latter is obtained by inverting the gravity anomaly shown in Fig. 8(b) in half-tone contours and assuming an interpretation model with maximum bottom depth
of 7 km estimated from the mt × s curve criterion shown in (a). (d) Ensemble of horizontal depth slices of the true (red lines) and estimated (blue lines) edges
of the polygonal cross-sections describing the geometry of the dipping intrusion.

(or minimum) depth of the source, depending on whether the true
source produces a gravity anomaly that is able (or not) to resolve the
source’s bottom. We generated the observed mt × s curve by com-
puting eight estimated values of mt and s, each one associated with
a fixed maximum depth zmax of the interpretation model, in which
the value of zmax varies from 3 km to 10 km in steps of 1 km leading
to an uncertainty of ±0.5 km. Fig. 12(a) shows that the minimum of
s is associated with a depth to the bottom of 8.0 ± 0.5 km. Because
this mt × s curve shows a well-defined minimum of s, it suggests
that the gravity data are able to resolve the depth-to-bottom estimate
of the Matsitama intrusion. The estimated source fits acceptably the
gravity anomaly (dashed black lines in Fig. 11) and retrieves a dip-
ping intrusion with variable dips and strikes with bottom’s depth
of 8 ± 0.5 km (Figs 12b and c). This result is consistent with the
available geological information reported by Reeves (1985) that

the greenstone rocks extend themselves westwards. However, the
anomaly fit obtained in the Matsitama application (dashed black
lines in Figs 12b and c) is worse than that obtained in the synthetic
applications. This poorer fitting yielded in Matsitama application
may be related to possible violations of premises assumed by our
method. The presence of multiple sources, for example, giving rise
to an interfering gravity anomaly, may produce a poor data fit. An-
other possibility is that we inverted a truncated gravity anomaly
(half-tone map in Fig. 11).

6 . C O N C LU S I O N S

We have proposed a gravity-inversion method and the mt × s
curve criterion to estimate the 3-D geometry of isolated sources,

C© 2011 Obsevatório Nacional, GJI, 187, 754–772

Geophysical Journal International C© 2011 RAS



770 V. C. Oliveira, Jr, V. C. F. Barbosa and J. B. C. Silva

Figure 10. Simplified geological map of Matsitama, northeastern Botswana, displaying igneous rocks (B) and its extension (open circles), inferred by the
inspection of the original Bouguer anomaly map (not shown). After Reeves (1985).

Figure 11. Matsitama greenstone rocks (Botswana). Bouguer anomaly map
(half-tone contour map) from the Matsitama area corrected for gravity effects
produced by the Moho. The dashed black lines show the fitted Bouguer
anomaly produced by the corresponding estimated source in Fig. 12(b)
and (c). The white cross indicates the prior specified horizontal Cartesian
coordinates (xoo, yoo) used in eq. 9d. Points A and B define the horizontal
coordinates where the two parts of the initial guess are located.

assuming the knowledge about the density contrast and about the
depth to the source’s top. Our method implicitly introduces ho-
mogeneity and compactness constraints through the interpretation
model which consists of a set of 3-D vertical, juxtaposed prisms
in the vertical direction, whose thicknesses and density contrasts
are known and whose horizontal cross-sections are described by an
arbitrary and unknown polygon. The geometry of the 3-D source is
defined by estimating the geometry of the set of polygons defining
the horizontal sections of vertically stacked prisms. The polygon
vertices of each prism are described by polar coordinates with an

unknown origin inside the top of the prism. Our method estimates
the radii associated with polygon vertices for a fixed number of
equally spaced angles spanning the interval between 0o and 360o,
and the horizontal Cartesian coordinates of the arbitrary origin. To
guarantee a stable solution which fits the gravity data, our method
imposes constraints on the source shape. Although the estimated
source shape is stable and yields an acceptable anomaly fit, it de-
pends on the maximum depth assumed by the interpretation model.

We have proposed a new criterion to reduce the class of possible
solutions compatible with the gravity anomaly and to determine the
optimum depth-to-bottom estimate of the source. This criterion is
based on the estimated data-misfit measure (s) and on the estimated
total-anomalous mass (mt ). These estimates are computed along
successive inversions by using different tentative maximum depths
for the interpretation model. The tentative value for the maximum
depth producing the smallest data-misfit measure is the best estimate
of the bottom’s depth of the source and it is chosen by means of a
mt × s curve for the range of different tentative maximum depths.
This criterion was extensively tested with synthetic data. In the case
that a minimum of s on the mt × s curve is well defined, the method
always produced correct estimates of the bottom’s depth of the
source and recovered the 3-D geometry of the source. Conversely,
if the smallest value of s on the mt ×s curve is ill-defined, the mt ×s
curve criterion may only determine a minimum source’s depth to
the bottom. Even in this case, our inversion method retrieves the
upper portion of the source above the lower bound estimated for the
source’s depth to the bottom.

This inversion method and the mt × s curve criterion have been
applied to both synthetic and field data sets showing their effi-
ciency in retrieving the geometry of 3-D sources, even in the case
of a complex simulated body with variable dips and strikes that
intrudes a curved fracture, a unique characteristic among most 3-D
gravity-inversion methods. This inversion method has the advan-
tage of requiring no explicit assumption about the geometry of
the anomalous source and, because the interpretation model con-
sists of homogeneous prisms, no constraints favouring homogeneity
and compactness are required, which makes it operationally simple.
However, the method is restricted to isolated sources with known
depth to the top and density contrast. When these assumptions hold
and the gravity data have sufficient resolution, the inversion method
and the mt ×s curve criterion produce good estimates of the geome-
try of the anomalous source. Otherwise, the estimated solution may
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Figure 12. Matsitama greenstone rocks (Botswana). (a) Observed mt × s curve where the dots are associated with different values of maximum depths zmax

assumed for the interpretation models. The well-defined minimum value of s, which is associated with zmax = 8 km, determines the depth to the bottom of
the Matsitama intrusion. (b) and (c) Perspective views of the initial guess (dark grey prisms) used in all inversions and the estimated 3-D geometry of the
greenstone belt (light grey prisms) obtained by inverting the gravity anomaly shown in Fig. 11 in half-tone contours.

produce a poor anomaly fit and may fail to retrieve the geometry of
the gravity source.

Our method can be extended to invert interfering gravity anoma-
lies produced by multiple sources. Additionally, the 3-D radial in-
version can be extended to invert magnetic data and the gradient
components of gravity and magnetic data.
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