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ABSTRACT

We have developed the open-source software Tesseroids, a
set of command-line programs to perform forward modeling
of gravitational fields in spherical coordinates. The software is
implemented in the C programming language and uses tesseroids
(spherical prisms) for the discretization of the subsurface mass
distribution. The gravitational fields of tesseroids are calculated
numerically using the Gauss-Legendre quadrature (GLQ). We
have improved upon an adaptive discretization algorithm to guar-
antee the accuracy of the GLQ integration. Our implementation of
adaptive discretization uses a “stack-based” algorithm instead of
recursion to achieve more control over execution errors and

corner cases. The algorithm is controlled by a scalar value called
the distance-size ratio (D) that determines the accuracy of the in-
tegration as well as the computation time. We have determined
optimal values of D for the gravitational potential, gravitational
acceleration, and gravity gradient tensor by comparing the com-
puted tesseroids effects with those of a homogenous spherical
shell. The values required for a maximum relative error of
0.1% of the shell effects areD ¼ 1 for the gravitational potential,
D ¼ 1.5 for the gravitational acceleration, and D ¼ 8 for the
gravity gradients. Contrary to previous assumptions, our results
show that the potential and its first and second derivatives require
different values of D to achieve the same accuracy. These values
were incorporated as defaults in the software.

INTRODUCTION

Satellite missions dedicated to measuring the earth’s gravity field
(such as CHAMP, GRACE, and GOCE) have provided geophysicists
with almost uniform and global data coverage. These new data have
enabled interpretations on regional and global scales (e.g., Reguzzoni
et al., 2013; Braitenberg, 2015). Modeling at such scales requires
taking into account the curvature of the earth and calculating gravity
gradients as well as the traditional gravitational acceleration. A com-
mon approach to achieve this is to discretize the earth into tesseroids
(Figure 1) instead of rectangular prisms. An analytical solution exists
when the computation point is along the polar axis, and the tesseroid
is extended into a spherical cap (LaFehr, 1991; Mikuška et al., 2006;
Grombein et al., 2013). For more general cases, the integral formula
for the gravitational effects of a tesseroid must be solved numerically.
Approaches to this numerical integration include the Taylor-series
expansion (Heck and Seitz, 2007; Grombein et al., 2013) and the
Gauss-Legendre quadrature (GLQ) (Asgharzadeh et al., 2007).

The Taylor-series expansion produces accurate results at low latitudes
but presents a decrease in accuracy toward the polar regions. This is
attributed to tesseroids degenerating into an approximately triangular
shape at the poles. The GLQ integration consists in approximating the
volume integral by a weighted sum of the effect of point masses.
An advantage of the GLQ approach is that it can be controlled by
thenumberofpointmassesused.Thelarger thenumberofpointmasses,
the better the accuracy of GLQ integration. A disadvantage is the in-
creased computation time as the number of point masses increases.
Thus, there is a trade-off between accuracy andcomputation time. This
is a common theme in numericalmethods.Wild-Pfeiffer (2008) inves-
tigates the use of differentmass elements, including tesseroids, to com-
pute the gravitational effects of topographic masses. The author
concludes that using tesseroidswithGLQ integration gives the best re-
sults for near-zone computations. However, the question of how to de-
termine the optimal parameters for GLQ integration remained open.
Previous work by Ku (1977) investigates the use of the GLQ

in gravity forward modeling. Ku (1977) numerically integrates
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the vertical component of the gravitational acceleration of right rec-
tangular prisms. The author suggests that the accuracy of the GLQ
integration depends on the ratio between distance to the computa-
tion point and the distance between adjacent point masses. Based on
this, Ku (1977) proposes an empirical criterion that the distance be-
tween point masses should not be greater than the distance to the
computation point. Asgharzadeh et al. (2007) use this criterion for
the GLQ integration of the gravity gradient tensor of tesseroids. To
our knowledge, an analysis of how well this ad hoc criteria of Ku
(1977) works for gravity gradient components or for tesseroids has
never been done before. There has also been no attempt to quantify
the error committed in the GLQ integration when applying the cri-
teria of Ku (1977).
Li et al. (2011) devise an algorithm to automatically enforce the

criteria of Ku (1977). Their algorithm divides the tesseroid into
smaller ones instead of increasing the number of point masses per
tesseroid. A tesseroid is divided if the minimum distance to the
computation point is smaller than the largest dimension of the tes-
seroid. This division is repeated recursively until all tesseroids obey
the criterion. Then, GLQ integration is performed for each of the
smaller tesseroids using the specified number of point masses.
The advantage of this adaptive discretization over increasing the
number of point masses is that the total distribution of point masses
will be greater only close to the computation point. This makes the
adaptive discretization more computationally efficient.
Grombein et al. (2013) develop optimized formula for the gravi-

tational fields of tesseroids using Cartesian integral kernels. These
formulas are faster to compute and do not have singularities at the
poles like their spherical counterparts. The Cartesian formula are
numerically integrated using a Taylor-series expansion as per Heck
and Seitz (2007). Grombein et al. (2013) use a near-zone separation
to mitigate the increased error at high latitudes. In the so-called
“near zone” of the computation point, they use a finer discretization
composed by smaller tesseroids. This is accomplished by dividing
the tesseroids along their horizontal dimensions. However, the de-
termination of an optimal size of the near zone remains an open
question (Grombein et al., 2013).

We have implemented a modified version of the adaptive discre-
tion of Li et al. (2011) into the open-source software package
Tesseroids. The software uses the Cartesian formula of Grombein
et al. (2013) for improved performance and robustness. Previous
versions of the software have been used by, e.g., Álvarez et al.
(2012), Bouman et al. (2013a, 2013b), Mariani et al. (2013), Brai-
tenberg et al. (2011, 2013), and Fullea et al. (2014).
This paper describes the software design and the implementation

of our modified adaptive discretization algorithm. We also present a
numerical investigation of the error committed in the computations.
These results allow us to calibrate the adaptive discretization algo-
rithm separately for the gravitational potential, gravitational accel-
eration, and the gravity gradient tensor components.

THEORY

A tesseroid is a mass element defined in geocentric spherical co-
ordinates (Figure 1). It is bounded by two meridians, two parallels,
and two concentric circles. The gravitational fields of a tesseroid at a
point P ¼ ðr;ϕ; λÞ are determined with respect to the local north-
oriented coordinate system at P (x, y, z in Figure 1). Grombein et al.
(2013) formulate Cartesian kernels for the volume integrals that de-
fine the tesseroid gravitational potential, gravitational acceleration,
and Marussi tensor, respectively,

Vðr;ϕ; λÞ ¼ Gρ
Zλ2
λ1

Zϕ2

ϕ1

Zr2
r1

1

l
κdr 0dϕ 0dλ 0; (1)

gαðr;ϕ; λÞ ¼ Gρ
Zλ2
λ1

Zϕ2

ϕ1

Zr2
r1

Δα

l3
κdr 0dϕ 0dλ 0; (2)

and

gαβðr;ϕ; λÞ ¼ Gρ
Zλ2
λ1

Zϕ2

ϕ1

Zr2
r1

Iαβκdr 0dϕ 0dλ 0; (3)

Iαβ ¼
�
3ΔαΔβ

l5
−
δαβ
l3

�
; (4)

where α; β ∈ fx; y; zg, ρ is the density, G ¼ 6.674 ×
10−11 m3 kg−1 s−1 is the gravitational constant, δαβ is Kronecker’s
delta (δαβ ¼ 1 if α ¼ β and δαβ ¼ 0 if α ≠ β), and

Δx ¼ r 0ðcos ϕ sin ϕ 0 − sin ϕ cos ϕ 0 cosðλ 0 − λÞÞ; (5)

Δy ¼ r 0 cos ϕ 0 sinðλ 0 − λÞ; (6)

Δz ¼ r 0 cos ψ − r; (7)

κ ¼ r 02 cos ϕ 0; (8)

Figure 1. View of a tesseroid, the integration point Q inside the
tesseroid, a geocentric coordinate system (X, Y, Z), the computation
P and it’s local coordinate system ðx; y; zÞ; r, ϕ, λ are the radius,
latitude, and longitude, respectively, of point P, and l is the Car-
tesian distance between P and Q. After Uieda (2015a).
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l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 02 þ r2 − 2r 0r cos ψ

q
; (9)

cos ψ ¼ sin ϕ sin ϕ 0 þ cos ϕ cos ϕ 0 cosðλ 0 − λÞ: (10)

Wewill follow Asgharzadeh et al. (2007) and perform the numeri-
cal integration using the GLQ. The GLQ consists in approximating
the integral by a weighted sum of the integration kernel (Hildebrand,
1987),

Zb

a

fðxÞdx ≈
b − a
2

XN
i¼1

WifðxiÞ; (11)

whereN is the order of the quadrature, i.e., the number of points used
in the GLQ. The points xi are called the quadrature nodes. They are
the roots of theNth-order Legendre polynomial PNðxÞ. For a second-
order polynomial (P2ðxÞ), the roots are x ¼ �0.577350269. Roots
for larger order polynomials can be determined by a root-finder al-
gorithm. Roots of Legendre polynomials will be within the range
½−1;1�. Before being used for GLQ integration, the roots must be
scaled to the integration limits ½a; b� using

xscaledi ¼ b − a
2

xi þ
bþ a
2

: (12)

The weights of the GLQ are given by (Hildebrand, 1987)

Wi ¼
2

ð1 − x2i ÞðP 0
NðxiÞÞ2

: (13)

The values of PNðxÞ and its first derivative P 0
NðxÞ can be calcu-

lated with recursive relations.
The GLQ for 3D volume integrals, such as equations 1–3, becomes

(Asgharzadeh et al., 2007)

ZZZ
Ω

fðr 0; λ 0;ϕ 0ÞdΩ ≈ A
XNr

i¼1

XNϕ

j¼1

XNλ

k¼1

Wr
iW

ϕ
j W

λ
kfðri;ϕj; λkÞ;

(14)

where

A ¼ ðλ2 − λ1Þðϕ2 − ϕ1Þðr2 − r1Þ
8

: (15)

Comparing equation 14 with equations 1–3, we see that
fðri;ϕj; λkÞ is the effect of a point mass located on the quadrature
nodes. Thus, it can be said that the GLQ integration approximates
the volume integrals by a weighted sum of point mass effects.
The accuracy of the integration depends on the number of point

masses used in the summation. Ku (1977) shows that it also depends
on the ratio between the distance to the computation point and the
distance between adjacent nodes. Figure 2 illustrates this effect on

the gxy gravity gradient component. The gxy component was pro-
duced by a 7° × 7° × 20 km tesseroid with 2.67 g cm−3 density and
top at z ¼ 0 km. The maps were calculated on a regular grid with
100 × 100 points. Figure 2a shows the gxy component calculated at
400 km height using GLQ with order two (2 × 2 × 2 ¼ 8 point
masses). Figure 2b shows gxy computed with order two GLQ as
well but at 150 km height. Note that the computed effect is concen-
trated around each point mass of the GLQ (black dots) and does not
resemble the effect of a tesseroid. Ku (1977) determines an ad hoc
criterion that the distance between point masses (quadrature nodes)
should be smaller than the minimum distance to the computation
point. Thus, if a computation point is too close to the tesseroid,
one would have to decrease the distance between the point masses
to obtain an accurate result. One way to accomplish this would be
increase the order of the quadrature N in all three directions. Fig-
ure 2c shows the gxy component calculated at 150 km height but
with a GLQ order of 30 (30 × 30 × 30 ¼ 27;000 point masses).
The computed gxy component more closely resembles the expect
results for a single tesseroid (Asgharzadeh et al., 2007).

Adaptive discretization

Li et al. (2011) propose an alternative method for decreasing the
distance between point masses on the quadrature nodes aiming at
achieving an accurate integration. Instead of increasing the GLQ
order, they keep it fixed to a given number and divide the tesseroid
into smaller volumes. The sum of the effects of the smaller tesseroids
is equal to the gravitational effect of the larger tesseroid. This division
effectively decreases the distance between nodes because of the
smaller size of the tesseroids. The criterion for dividing a tesseroid
is that the distance to the computation point should be smaller than a
constant times the size of the tesseroid. This is analogous to the cri-
terion proposed by Ku (1977) because the size of the tesseroid serves
as a proxy for the distance between point masses. This procedure is
repeated recursively until all tesseroids are within the acceptable ratio
of distance and size or a minimum size is achieved.
The advantage of this adaptive discretization is that the number of

point masses is only increased in parts of the tesseroid that are closer
to the computation point. Note that the alternative approach of in-
creasing the order of the GLQ would increase the number of point
masses evenly throughout the whole tesseroid.

IMPLEMENTATION

We have implemented the calculation of the tesseroid gravitational
fields with adaptive discretization in version 1.2 of the open-source
package Tesseroids. It is freely available online (Uieda, 2015b) under
the BSD 3-clause open-source license. An archived version of the
source code is also available as part of this paper.
Tesseroids consists of command-line programs written in the C

programming language. The package includes programs to calcu-
late the gravitational fields of tesseroids and rectangular prisms (in
Cartesian and spherical coordinates). All programs receive input
through command-line arguments and the standard input channel
(“STDIN”) and output the results through the standard output chan-
nel (“STDOUT”). For example, the command to generate a regular
grid with NLON × NLAT points, calculate gz and gzz caused by the
tesseroids in a file “MODELFILE”, and save the results to a file
called “OUTPUT” is

Tesseroids: Modeling in spherical coordinates F43
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tessgrd -rW/E/S/N -bNLON/NLAT -zHEIGHT | \
tessgz MODELFILE | \
tessgzz MODELFILE > OUTPUT.

The src folder of the source code archive contains the C files that
build the command-line programs (e.g., tessgz.c). The src/lib folder
contains the source files that implement the numerical computa-
tions. Wewill not describe here the implementation of the input/out-
put parsing and other miscellanea. Instead, we will focus on the
details of the GLQ integration of equations 1–3 and the adaptive
discretization of tesseroids.

Numerical integration

The source file src/lib/glq.c contains the code necessary to per-
form a GLQ integration. The first step in the GLQ is to compute the
locations of the discretization points (i.e., the point masses). These
points are roots of Legendre polynomials. Precomputed values are
available for low-order polynomials, typically up to order five. For
flexibility and to compute higher order roots, we use the multiple
root-finder algorithm of Barrera-Figueroa et al. (2006). The addi-
tional computational load is minimal because the root-finder algo-
rithm must be run only once per program execution. The root finder
is implemented in functions glq_nodes and glq_next_root. The
computed roots will be in the range ½−1;1� and must be scaled to
the integration limits (the physical boundaries of the tesseroid) us-
ing function glq_set_limits (see equation 12).
The GLQ weights (equation 13) are computed by function glq_

weights. The computed roots and weights are stored in a data struc-
ture (a C struct) called GLQ. Function glq_new handles memory
allocation, calculates the roots and weights, and returns the complete
GLQ structure.
The numerical integration of the tesseroid gravitational fields is

performed by the functions in module src/lib/grav_tess.c. Functions
tess_pot, tess_gx, tess_gy, and so on compute the gravitational fields
of a single tesseroid on a single computation point. These functions
require three GLQ structures, each containing the roots and weights
for GLQ integration in the three dimensions. The roots must be
scaled to the integration limits ½λ1; λ2�; ½ϕ1;ϕ2�; ½r1; r2� (see equa-
tions 1–3). The integration consists of three loops that sum the
weighted kernel functions evaluated at each GLQ point mass (the
scaled roots).
The biggest bottlenecks for the numerical integration are the num-

ber of point masses used and the evaluation of the trigonometric func-
tions in equations 1–3 inside the inner loops. Better performance is
achieved by precomputing the sine and cosine of latitudes and mov-
ing some trigonometric function evaluations to the outer loops.

Implementation of adaptive discretization

Our implementation of the adaptive discretization algorithm dif-
fers in a few ways from the one proposed by Li et al. (2011). In Li
et al. (2011), a tesseroid will be divided when the smallest distance
between it and the computation point is smaller than a constant
times the largest dimension of the tesseroid. Instead of the smallest
distance, we use the easier-to-calculate distance between the com-
putation point ðr; λ;ϕÞ and the geometric center of the tesseroid
ðrt; λt;ϕtÞ

d ¼ ½r2 þ r2t − 2rrt cos ψ t�12; (16)

cos ψ t ¼ sin ϕ sin ϕt þ cos ϕ cos ϕt cosðλ − λtÞ: (17)

a)

b)

c)

Figure 2. Example of the effect of varying the computation height
and the number of point masses in the GLQ. Black circles represent
the horizontal location of the point masses. (a) gxy calculated at
400 km height using GLQ order 2 (2 × 2 × 2 ¼ 8 point masses).
(b) At 150 km height and GLQ order 2, the result resembles that
of four point masses instead of a single tesseroid. This effect is
shown by Ku (1977). (c) At 150 km but with a higher GLQ order
of 30. In panel (c), the horizontal locations of the point masses were
not shown. Note that the results shown in panel (c) are similar to that
expected for a single mass source.

F44 Uieda et al.

D
ow

nl
oa

de
d 

07
/2

1/
16

 to
 1

79
.3

4.
40

.8
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Our definition of the dimensions of the tesseroid (the “side
lengths” of Li et al., 2011) along longitude, latitude, and radius,
respectively, is (Figure 3a)

Lλ ¼ r2 arccosðsin2 ϕt þ cos2 ϕt cosðλ2 − λ1ÞÞ; (18)

Lϕ ¼ r2 arccosðsin ϕ2 sin ϕ1 þ cos ϕ2 cos ϕ1Þ; (19)

Lr ¼ r2 − r1: (20)

Here, Lλ and Lϕ are arc-distances measured along the top surface
of the tesseroid (Figure 3a). Specifically, Lλ is measured long the
middle latitude of the tesseroid (ϕt).
To determine if a tesseroid must be divided, we check if

d
Li

≥ D; (21)

for each i ∈ ðλ;ϕ; rÞ; D is a positive scalar hereafter referred to as
the “distance-size ratio.” If the inequality holds for all three dimen-
sions, the tesseroid is not divided. Thus, the distance-size ratio de-
termines how close the computation point can be before we must
divide the tesseroid. The value of D is indirectly responsible for the
accuracy of the solution and the computation time. We will explore
the relationship with the accuracy in the following section.
Figure 3 shows examples of the resulting tesseroid models after

adaptive discretization. Figure 3a shows the initial tesseroid and
computation point P. Figure 3b–3d is the result of adaptive discre-
tization using different values of the distance-size ratio D, respec-
tively, D ¼ 1, 2, and 6. The number of tesseroids in the resulting
discretization is 4, 38, and 936, respectively.
Instead of using recursive function calls, as

originally proposed by Li et al. (2011), we use
a stack-based implementation of the algorithm.
Stacks are arraylike data structures with a particu-
lar way of inserting and removing elements from
it. In a stack, one can only insert elements to the
top of the stack (the last empty position). Likewise,
one can only remove the last element of the stack
(commonly referred to as “popping” the stack).
Because of these restrictions, stacks are also
known as “last-in-first-out” data structures.
The discretization algorithm is implemented

in function calc_tess_model_adapt of the file
src/lib/grav_tess.c. This function calculates the
effect of a single tesseroid on a single computa-
tion point. The stack of tesseroids is represented
by the stack variable, an array of TESSEROID
structures. We must define a maximum size for
the stack to allocate memory for it. Defining a
maximum size allows us to avoid an infinite loop
in case the computation point is on (or suffi-
ciently close to) the surface of the tesseroid.
We use the integer stktop to keep track of the in-
dex of the last element in the stack (the top of
the stack).

Below, we describe the algorithm to calculate the effect of a sin-
gle tesseroid from the input model on a single computation point.
The algorithm starts by creating an empty stack of tesseroids. Then,
the stack is initialized with the single input tesseroid. The initial-
ization is done by copying the tesseroid into the stack and setting
stktop to zero (the first element). It is important to note that the stack
is not the input tesseroid model. Instead, it is a buffer used to tem-
porarily store each stage of the discretization algorithm.
Once the stack is initialized, the steps of the algorithm are as

follows:

1) “Pop” the stack (i.e., take the last tesseroid from it). This will
cause stktop to be reduced by one. This tesseroid is the one that
will be evaluated in the following steps.

2) Compute the distance d (equation 16) between the geometric
center of the tesseroid and the computation point.

3) Compute the dimensions of the tesseroid Lλ, Lϕ, and Lr using
equations 18–20.

4) Check the condition in equation 21 for each dimension of the
tesseroid.

5) If all dimensions hold the inequality 21, the tesseroid is not di-
vided and its gravitational effect is computed using the GLQ
(equations 1–3 and 14). We use a GLQ order of two for all three
dimensions (2 × 2 × 2 ¼ 8 point masses) by default. This value
can be changed using a command-line argument of the model-
ing programs.

6) If any of the dimensions fail the condition:

• Divide the tesseroid in half along each dimension that
failed the condition.

• Check if there is room in the stack for the new tesseroids
(i.e.,the number of new elements plus stktop is smaller
than the maximum stack size). If there is not, warn the
user of a “stack overflow” and compute the effect of the
tesseroid, as in step 5. If there is room in the stack, place
the smaller tesseroids into the stack.

a)

c)

b)

d)

Figure 3. Adaptive discretization of the tesseroid shown in panel (a) for a computation
point P using the distance-size ratio D equal to (b) 1, (c) 2, and (d) 6; Lr, Lϕ, and Lλ are
the dimensions of the tesseroid. Note that increasing D results in a fine division of the
tesseroid close the computation point and a coarser division further away.
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7) Repeat the above steps until the stack is empty (stktop is equal
to −1).

The algorithm above is repeated for every tesseroid of the input
model and the results are summed. This will yield the gravitational
effect of the input tesseroid model on a single point. Thus, the com-
putations must be repeated for every computation point. The whole
algorithm can be summarized in the following pseudocode:

Initialize the output array with zeros.

for tesseroid in model:

for point in grid:

Initialize the stack with tesseroid.

stktop = 0

while stktop >= 0:

Perform steps 1-6 of the algorithm.

Sum the calculated value to the output.

This stack-based implementation has some advantages over the
original recursive implementation, namely, (1) it gives the developer
more control over the recursion step, and (2) in general, it is faster
because it bypasses the overhead of function calls. In recursive im-
plementations, the developer has no control over the maximum
number of consecutive recursive calls (i.e., the “recursion depth”).
This limit may vary with programming language, compiler, and op-
erating system. Overflowing the maximum recursion depth may re-
sult in program crashes, typically with cryptic or inexistent error
messages. In the stack-based implementation, the developer has
complete control. Overflowing of the stack can be handled grace-
fully with an error message or even performing a suitable approxi-
mation of the result.

Code for figures and error analysis

The error analysis and all figures in this article were produced in
IPython notebooks (Pérez and Granger, 2007). The notebook files
combine source code in various programming languages, program
execution, text, equations, and the figures generated by the code
into a single document. We used the following Python language
libraries to perform the error analysis and generate figures: pandas
by McKinney (2010), matplotlib by Hunter (2007) for 2D figures
and maps, andMayavi by Ramachandran and Varoquaux (2011) for
3D figures.
The IPython notebooks and the data generated for the error analy-

sis, as well as instructions for installing the software and running

the programs, are also included in the source code archive that ac-
companies this article. Alternatively, all accompanying material is
available in an online repository (Uieda et al., 2016).

EVALUATION OF THE ACCURACY

The key controlling point of the adaptive discretization algorithm
is the distance-size ratio D (equation 21). The specific value chosen
for D determines how many divisions will be made (Figure 3).
Thus, D indirectly controls the accuracy of the integration and the
computation time. In this section, we investigate the relationship
between the distance-size ratio and the integration error. We per-
form the analysis for the gravitational potential, acceleration, and
gradient tensor components to evaluate if the same value ofD yields
compatible error levels for different fields.
The reference against which we compare the computed tesseroid

fields is a homogenous spherical shell. The shell has analytical sol-
utions along the polar axis (LaFehr, 1991; Mikuška et al., 2006;
Grombein et al., 2013) and can be perfectly discretized into tesse-
roids. We chose a spherical shell with a thickness of 1 km, density
of 2670 kgm−3, bottom at height 0 km above the reference sphere,
and top at 1 km height. We produced tesseroid models of the shell
by discretizing it along the horizontal dimensions into a regular
mesh.
Figure 2 shows that the largest errors are spread over on top of the

tesseroid. Thus, calculating the tesseroid fields at a single point
might not capture the point of largest error. Instead, we calculate
the effect of the tesseroid model on a regular grid of 10 × 10 points
at different geographic locations (see Table 1). Fortunately, the sym-
metry of the shell allows us to consider the computation point at any
geocentric coordinate. Therefore, the effect of the shell will be same
along the entire grid. We compute the differences between the ef-
fects of the shell and the tesseroid model on the grid. However, we
will consider only the largest error in our analysis.
We placed the grid on top of a particular tesseroid to increase the

chances of capturing the true largest integration error. We calculate
the errors for values of the distance-size ratio D varying from 0 (i.e.,
no divisions) to 10 with 0.5 intervals. Furthermore, we repeated the
error analysis in four different numerical experiments, each with
computation grids at different locations and different tesseroid model
sizes. Table 1 describes the different numerical experiments and the
corresponding parameters of the computation grid and tesseroid
model.
Figure 4 shows the maximum difference between the shell and

tesseroid fields as a function of D for the four experiments. The
differences are given as a percentage of the shell value. We estab-

lished a maximum tolerated error of 0.1%, rep-
resented by the horizontal solid lines in Figure 4.
Only results for the gravitational potential gz and
gzz are shown. The results for the other diagonal
components of the gravity gradient tensor are
similar to gzz. Figures for these components
can be found in the supplementary material
(see the section “Code for figures and error
analysis”).
For the potential V, a distance-size ratioD ¼ 1

guarantees that the curves for all experiments are
less than the 0.1% error threshold. For gz, the
same is achieved with D ¼ 1.5. Conversely,
gzz requires a value of D ¼ 8 to achieve an error

Table 1. Parameters of the numerical experiments to quantify the accuracy of
the numerical integration. All grids had 10 × 10 regularly spaced computation
points at a constant height. Tesseroids used to discretize the spherical shell had
1 km thickness and horizontal dimensions as shown in the table.

Grid location Grid height Tesseroid size

Experiment 1 (pole) 89N–90N/0E–1E 2 km 1° × 1°

Experiment 2 (equator) 0N–1N/0E–1E 2 km 1° × 1°

Experiment 3 (260 km) 89N–90N/0E–1E 260 km 1° × 1°

Experiment 4 (30° size) 60N–90N/0E–30E 2 km 30° × 30°
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level of 0.1%. For a computation height of 260 km, the error curve
for gzz intercepts the error threshold line at D ¼ 2.5. This behavior
suggests that the error curves for gzz might depend on the compu-
tation height. To test this hypothesis, we computed the error curves
for gzz at heights 2, 10, 50, 150, and 260 km. Figure 5 shows the
results for gzz at varying computation heights. Notice that the dis-
tance-size ratio required to achieve 0.1% accuracy decreases as the
computation height increases. For example, computation at 260 km
height requires D ¼ 2.5 whereas at 10 km height, a value of
D ¼ 5.5 is required to achieve the same accuracy. One can take
advantage of this behavior to reduce the distance-size ratio for com-
putations of the gravity gradient tensor at high altitudes, saving
computation time.
We implemented the values of the distance-size ratio producing

0.1% accuracy determined above as defaults for the software
Tesseroids. We chose the conservative value of D ¼ 8 for the grav-
ity gradient components as a fail-safe alternative. Users can control
the value of D used in the computations through command-line ar-
guments to achieve greater performance at the cost of accuracy.

CONCLUSIONS

We have presented the open-source software Tesseroids. It con-
sists of command-line programs, written in the C programming lan-
guage, to perform the forward modeling of gravitational fields in
spherical coordinates. The fields are calculated from a mass model
composed of spherical prisms, the so-called tesseroids. The volume
integrals of the gravitational fields of a tesseroid are solved numeri-
cally using the GLQ. The GLQ approximates the volume integrals
by weighted sums of point mass effects. The error of the GLQ in-
tegration increases as the computation point gets closer to the tes-
seroid. To counter this effect, the accuracy of the GLQ integration
can be increased by using more point masses or by dividing each
tesseroid into smaller ones.
We have implemented and improved upon an adaptive discreti-

zation algorithm to achieve an optimal division of tesseroids. Tes-
seroids are divided into more parts closer to the computation point,
where more point masses are needed. Our implementation of the
adaptive discretization uses a stack data structure in place of the
originally proposed recursive implementation. As a rule of thumb
in procedural languages (like C), stack-based implementations are
computationally faster than the equivalent code using function
recursion. Furthermore, the stack-based algorithm allows more con-
trol over errors when too many divisions are necessary. The adap-
tive discretization is controlled by a scalar called the distance-size
ratio (D). The algorithm ensures that all tesseroids will have dimen-
sions smaller than D times the distance to the computation point.
The value of D indirectly controls the accuracy of the integration as
well as the computation time.
We performed an error analysis to determine the optimal value of

D required to achieve a target accuracy. We used a spherical shell as
a reference to calculate the computation error of our algorithm for
different values ofD. Our results show that the values ofD required
to achieve a maximum error of 0.1% of the shell values are 1 for the
gravitational potential, 1.5 for the gravitational acceleration, and 8
for the gravity gradients. Previous assumptions in the literature were
that accurate results are guaranteed if the distance to the tesseroid is
larger than the distance between point masses. This condition was
previously applied indiscriminately to the gravitational acceleration
and the gravity gradients. That assumption is equivalent to using

a)

b)

c)

Figure 4. The maximum difference between the computed tesseroid
and shell effects as a function of the distance-size ratio D for (a) the
gravitational potential, (b) gz, and (c) gzz. The difference is given as a
percentage of the shell effect. Curves correspond to the different tes-
seroid models and computation grids shown in Table 1. The horizon-
tal solid black line marks the established error threshold of 0.1%. A
value of D ¼ 0 means that no divisions are made.

Figure 5. Difference between the computed gzz for the spherical shell
and the tesseroid model at different heights. Curves show the maxi-
mum difference as a percentage of the shell value. The horizontal
solid black line marks the established error threshold of 0.1%. Avalue
of D ¼ 0 means that no divisions are made.
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D ¼ 1.5 for all fields. Our results show that this is valid for the
gravitational acceleration and results in a 0.1% computation error.
This is expected because the original study that determined the
above condition was performed on the vertical component of gravi-
tational acceleration. However, applying the same condition to the
gravity gradients produces an error of the order of 102%.
For the gravity gradients in particular, the distance-size ratio

required for 0.1% error decreases with height. We believe this is be-
cause the decay factor for the gravity gradient components is d−3,
whereas the discretization algorithm uses d∕Li. As the computation
point becomes closer to the tesseroid, the field increases more rapidly
than the algorithm increases the amount of discretization. Hence, a
higher value of D (i.e., more discretization) is required.
The values of the distance-size ratio determined above were in-

corporated as defaults in the software Tesseroids. We choose the
value D ¼ 8 for the gravity gradients as a conservative default. If
the user desires, the value of D used can be controlled by a com-
mand-line argument.
In situations that require many tesseroid divisions, the stack used

in the algorithm will overflow and further divisions become impos-
sible. The current implementation warns the user that the overflow
occurred and proceeds with the GLQ integration without division.
Future improvements to the algorithm include a better way to han-
dle such situations as they arise. An alternative would be to replace
the tesseroid by an equivalent right rectangular prism and compute its
effects instead. This would allow accurate computations at smaller
distances. Furthermore, the computation time increases drastically
as the computation point gets closer to the tesseroid. This effect can
be prohibitive for computing the gravity gradients at relatively low
heights (e.g., for terrain corrections of ground or airborne surveys).
Further investigation of different criteria for dividing the tesseroids
could yield better performance through a reduced number of di-
visions.
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