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ABSTRACT

In most applications, the Euler deconvolution aims to define the
nature (type) of the geologic source (i.e., the structural index [SI])
and its depth position. However, Euler deconvolution also esti-
mates the horizontal positions of the sources and the base level
of the magnetic anomaly. To determine the correct SI, most au-
thors take advantage of the clustering of depth estimates. We have
analyzed Euler’s equation to indicate that random variables con-
taminating the magnetic observations and its gradients affect the
base-level estimates if, and only if, the SI is not assumed correctly.
Grounded on this theoretical analysis and assuming a set of ten-
tative SIs, we have developed a new criterion for determining the
correct SI by means of the minimum standard deviation of base-
level estimates. We performed synthetic tests simulating multiple
magnetic sources with different SIs. To produce mid and strongly
interfering synthetic magnetic anomalies, we added constant and

nonlinear backgrounds to the anomalies and approximated the si-
mulated sources laterally. If the magnetic anomalies are weakly
interfering, the minima standard deviations either of the depth or
base-level estimates can be used to determine the correct SI. How-
ever, if the magnetic anomalies are strongly interfering, only the
minimum standard deviation of the base-level estimates can de-
termine the SI correctly. These tests also show that Euler decon-
volution does not require that the magnetic data be corrected
for the regional fields (e.g., International Geomagnetic Reference
Field [IGRF]). Tests on real data from part of the Goiás Alkaline
Province, Brazil, confirm the potential of the minimum standard
deviation of base-level estimates in determining the SIs of the
sources by applying Euler deconvolution either to total-field mea-
surements or to total-field anomaly (corrected for IGRF). Our re-
sult suggests three plug intrusions giving rise to the Diorama
anomaly and dipole-like sources yielding Arenópolis and Montes
Claros de Goiás anomalies.

INTRODUCTION

Euler deconvolution is one of the most popular techniques in
potential field methods. It is a semiautomatic interpretation technique
proposed by Reid et al. (1990), which allows fast processing of large
data sets. The technique is grounded on Euler equation for homo-
geneous functions (Hood, 1965; Thompson, 1982). Euler deconvolu-
tion relates potential-field measurements, their gradients, and a given
integer number called the structural index (SI), which in turn depends
on the nature (type) of the geologic source (Henderson and Zietz,
1948; Smellie, 1956; Stavrev and Reid, 2007; Reid and Thurston,
2014; Uieda et al., 2014). Usually, Euler deconvolution assumes a ten-
tative SI and estimates four parameters, such as base level, horizontal
and vertical positions of an isolated, and single-point geologic source.
One practical hindrance for Euler deconvolution is the need

to assume a tentative SI. The SI can only be an integer number

(Mas-Colell et al., 1995; Ravat, 1996; Thurston, 2010; Reid and
Thurston, 2014; Reid et al., 2014); otherwise, the index changes
under the variation of the source-observation vector (Ravat, 1996;
Reid and Thurston, 2014). Assuming some tentative SI values,
Thompson (1982) notices the relation between the use of the correct
SI and a tight clustering in depth estimates and uses this behavior to
determine the correct SI. Other authors, such as Reid et al. (1990),
follow this approach to propose slight modifications of Thompson’s
(1982) criterion for determining the SI. Following this approach,
other authors propose other techniques (e.g., Mikhailov et al.,
2003; Ugalde and Morris, 2010) to treat the spreading of depth sol-
utions and define the correct SI. Silva et al. (2001) show that the
criterion for determining the SI as the tentative value producing the
smallest solution scattering, that includes the depth estimates, is
theoretically sound but can fail in practice because of data noise. On
the other hand, Barbosa et al. (1999) show that the minimum
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correlation between base-level estimates and profile magnetic data
in modulus gives the correct SI, and Melo et al. (2013) use this ap-
proach in gridded magnetic data. Alternatively, some authors modi-
fied Euler deconvolution and develop new techniques solving for
SI and depth simultaneously (Stavrev, 1997; Mushayandebvu
et al., 2001; Nabighian and Hansen, 2001; Hsu, 2002; Keating and
Pilkington, 2004; Fedi et al., 2009) or deal with nonideal sources
(Stavrev and Reid, 2007, 2010; Thurston, 2010; Florio and Fedi,
2014; Fedi et al., 2015).
According to Thompson (1982), it is hard to detect the anoma-

lous field by itself so he introduces the concept of base level that is a
constant background value of the field inside an evaluating data
window. He stresses that the base level can be generated, for exam-
ple, by interfering anomalies or regional field. By handling the
Euler deconvolution mathematically, some authors assumed a con-
stant and nonnull base level (e.g., Thompson, 1982; Reid et al.,
1990; Barbosa et al., 1999; Hsu, 2002), a null base level (Silva and
Barbosa, 2003), linear base levels (e.g., Stavrev, 1997; Gerovska
and Araúzo-Bravo, 2003), and nonlinear base levels (e.g., Pasteka,
2006; Dewangan et al., 2007). Although the base level is estimated
by the Euler deconvolution, few authors have used this estimate in
practice. Fairhead et al. (1994), for example, estimate and remove
the base level from the anomaly to estimate focused Euler solutions
in a two-step approach. Reid and Thurston (2014) state that it is
possible to determine the correct SI using the base-level estimates;
however, these estimates were only used by Barbosa et al. (1999)
and Melo et al. (2013) to this end in a straightforward way.
In this paper, we show that realizations of random variables con-

taminating the potential-field measurements affect the base-level
estimates if, and only if, the SI is not assumed correctly. Hence,
we propose a criterion to determine the SI based on the standard
deviation of the estimates of base level using different values of
SI. The optimal SI is one that produces the smallest standard
deviation of the base-level estimates. In our tests, we noticed that
even for strongly interfering anomalies, the minimum standard
deviation of base-level estimates gives the correct SI; however, it
fails if the anomaly is not produced by a single-point source.
We also confirmed that anomalies generate nonlinear base-level es-
timates even when the true simulated base level added to the data is
constant or null (not shown). This happens not only because of the
interfering anomalies but also because base-level estimates have a
nonlinear pattern that mimics the potential-field anomalies even in-
side the current moving data window. Here, we show that anomaly
interference produced by the presence of nonlinear background and
nearby anomalies makes the criterion for determining the correct SI
based on the smallest scattering of depth estimates unfeasible. Con-
versely, we certify the good performance of our approach in deter-
mining the correct SI by assuming null (not shown), constant, and
nonlinear backgrounds that were added to the data. We applied our
methodology to total-field measurements and total-field anomaly
(corrected for International Geomagnetic Reference Field [IGRF])
from a portion of Goiás Alkaline Province (GAP) located in central
Brazil, and the numerical results are similar. Both applications de-
termine the same SI and mean depths for the geologic sources in the
study area. These results show that the prior remove of the IGRF is
not mandatory in Euler deconvolution application. The estimated
base level reveals a nonlinear pattern that mimics the pattern of the
anomaly. The Diorama anomaly is the main target alkaline intrusion
to be interpreted in the study area. Our result suggests that Diorama

anomaly is generated by more than one plug intrusion. We also
expanded our interpretation using Euler deconvolution to other
anomalies in the study area (e.g., Arenópolis, Montes Claros de Goiás,
and Córrego dos Bois). However, some of the results may not be re-
liable because the magnetic sources may not behave as single-point
sources violating the concept of Euler homogeneity.

METHODOLOGY

Euler deconvolution is defined by Reid et al. (1990) as

ðx − xoÞ
∂h
∂x

þ ðy − yoÞ
∂h
∂y

þ ðz − zoÞ
∂h
∂z

¼ ηðb − hÞ; (1)

where η is the SI, b is a base level or background value, xo, yo, and
zo are the source positions, x, y, and z are the observation positions,
h ¼ hðx; y; zÞ is the total-field anomaly, and ∂h∕∂x, ∂h∕∂y, and
∂h∕∂z are the gradients of anomaly with respect to the variables
x, y, and z, respectively. We use a tentative SI in equation 1, in a
moving data-window scheme, and the estimated parameters are x̂o
and ŷo (horizontal positions of the source), ẑo (vertical position of
the source), and b̂ (base level). The caret (hat) denotes an estimated
quantity.
Here, we extend and modify the criterion of Barbosa et al. (1999)

for determining the best SI for gridded data. By applying Euler
deconvolution with a moving data-window scheme and the correct
SI, η, over a region that encompass the anomaly, we obtain the
estimated parameters x̂ko, ŷko, ẑko, and b̂k for the kth position of the
moving data window. Hence, equation 1 can be written as

x̂ko
∂hki
∂x

þ ŷko
∂hki
∂y

þ ẑko
∂hki
∂z

þ ηb̂k

¼ xki
∂hki
∂x

þ yki
∂hki
∂y

þ zki
∂hki
∂z

þ ηhki ; (2)

where the subscript i is related to the ith observation position (xi, yi,
and zi) inside the kth moving data window.
By assuming a wrong SI, μ, we obtain the estimates x̀ko, ỳko, z̀ko,

and b̀k, and equation 1 can be rewritten as

x̀ko
∂hki
∂x

þ ỳko
∂hki
∂y

þ z̀ko
∂hki
∂z

þ μb̀k

¼ xki
∂hki
∂x

þ yki
∂hki
∂y

þ zki
∂hki
∂z

þ μhki : (3)

By subtracting equation 3 from equation 2 and rearranging the
terms, we obtain

ðx̀ko − x̂koÞ
∂hki
∂x

þ ðỳko − ŷkoÞ
∂hki
∂y

þ ðz̀ko − ẑkoÞ
∂hki
∂z

þ μb̀k − ηb̂k ¼ ðμ − ηÞhki : (4)

Let us assume that additive random noises ε1, ε2, ε3, and ε4
contaminate, respectively, the terms ∂hki ∕∂x, ∂hki ∕∂y, ∂hki ∕∂z, and
hki . Accordingly, equation 4 can be rewritten as
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ðx̀ko − x̂koÞ
�
∂hki
∂x

þ ε1

�
þ ðỳko − ŷkoÞ

�
∂hki
∂y

þ ε2

�
þ ðz̀ko − ẑkoÞ

×
�
∂hki
∂z

þ ε3

�
þ μb̀k − ηb̂k ¼ ðμ − ηÞ½hki þ ε4�: (5)

As shown by Silva and Barbosa (2003), the estimates of the hori-
zontal source positions are not affected by the choice of the SI
because these estimates do not depend on the SI. Hence, even as-
suming a wrong SI, μ, we have that x̀ko ¼ x̂ko and ỳko ¼ ŷko. As result,
the first and second terms on the left side of equation 5 are very
close to zero. Thus, rearranging equation 5, we have

b̀k¼ηb̂k

μ
þðẑko− z̀koÞ

μ

�
∂hki
∂z

þε3

�
þ
�
1−

η

μ

�
½hki þε4�: (6)

Notice that the second and third terms on the right side of
equation 6 are corrupted with random variables (ε3 and ε4). Hence,
estimates of the base level can be affected by uncertainties in the
total-field data hki and in its vertical gradient ∂hki ∕∂z. However, ran-
dom variables do not affect base-level estimates if, and only if,
we assume the correct SI (i.e., if μ ¼ η). Only in this case, we have
z̀ko ¼ ẑko and the second and third terms on the right side of equa-
tion 6 are negligible. Therefore, equation 6 shows that the presence
of random noise will affect the base-level estimates if we do
not correctly assume the SI (i.e., if μ ≠ η). In this case, the terms
ðẑko − z̀koÞ∕μ½ð∂hki ∕∂zÞ þ ε3� and ð1 − ðη∕μÞÞ½hki þ ε4� in equation 6
will be nonnegligible.
Let us assume a set of L moving data windows and thus, a set of

L base-level estimates using either a wrong SI (b̀1; : : : ; b̀L) or the
correct SI (b̂1; : : : ; b̂L). Thus, the standard deviation of base-level
estimates obtained over the anomaly will be minimum only if the SI
is correctly assumed (i.e., μ ¼ η).
In our approach, we provisionally assigned a tentative SI. For

each SI, we estimate four parameters x̂o, ŷo, ẑo, and b̂, which
are plotted against the central position of the moving data window
forming maps as proposed by Silva and Barbosa (2003). The maps
of x̂o and ŷo form plateaus over the anomaly (Silva and Barbosa,
2003; Melo et al., 2013); however, plateaus may not be clearly
formed for depth (ẑo) and base-level (b̂) estimates in the presence
of interfering anomalies. By assuming any tentative SI, we propose
to evaluate the standard deviation of base-level estimates over an
area delineated by depth estimates that lie over the anomaly. In the
presence of interfering anomalies, we delineate this area using the
approach of Melo et al. (2013), which is defined through the inter-
section of mapped plateaus on horizontal estimates (x̂o and ŷo). The
minimum standard deviation of a set of estimated base levels will
define the correct SI. With the knowledge of the correct SI, the aver-
age of depth estimates in the area previously selected can give one
solution per anomaly (Melo et al., 2013).

SYNTHETIC TESTS

We applied our methodology to different geologic scenarios in
which the magnetic sources are approximated by simple geometry
(Hinze et al., 2013). However, these simple geometries represent
real geologic bodies such as a semi-infinite prism simulating a fault

(SI ¼ 0), a line of poles simulating a vertical sheet or thin dike
(SI ¼ 1), a point pole simulating a vertical cylinder or a plug/pipe
(SI ¼ 2), and a dipole simulating a sphere or a magmatic chamber/
unexploded ordnance (UXO) (SI ¼ 3).
In the first test, we assume a constant background value, simulat-

ing the magnetic field on a region. In the second test, we simulate a
nonlinear background; this background can be generated by a strong
magnetic source or poor definition of the IGRF. Finally, in the last
test, we simulate constant and nonlinear backgrounds and approxi-
mate the sources distance, generating strong-interfering anomalies
more close to real-world scenario.
In all tests, we run Euler deconvolution using tentative SIs of

0, 1, 2, and 3. The moving data window size is 9 × 9 grid points,
following the recommendation of Reid et al. (2014) about window
size, grid space, and depth of investigation. Throughout these tests,
values of declination, inclination, and total-field intensity were
based on Chulliat et al. (2014), simulating the field in Phoenix, Ari-
zona, USA, and derivatives were calculated in the Fourier domain
(Blakely, 1996). All anomalies were corrupted with pseudorandom
Gaussian noise with zero mean and standard deviation of 0.01 nT.
We assume a coordinate system with the x-axis increasing north,
y-axis increasing east, and z-axis increasing down. The surveys
were simulated on plane z ¼ 0 km at a grid of 325 × 300 observa-
tion points in the north and east directions, with a regular equal
space of 0.2 km in the north and east directions.

Test 1 — Constant background

Figure 1 shows the synthetic noise-corrupted total field anomaly
produced by semi-infinite prism (SI ¼ 0), a line of 1220 poles
(SI ¼ 1) separated by grid distance, a monopole (SI ¼ 2), and a
sphere (SI ¼ 3) of radius 0.5 km. The simulated geomagnetic field
has an inclination of 59° and a declination of 10° with a constant

Figure 1. Noise-corrupted total-field anomaly generated by a prism
(SI ¼ 0), a line of poles (SI ¼ 1), a single pole (SI ¼ 2), and a di-
pole (SI ¼ 3). The simulated geomagnetic field with intensity
of 47,500 nT has an inclination of 59° and a declination of 10°.
The dipole is magnetized uniformly, with magnetization intensity
of 5 A∕m, magnetization inclination of 9°, and declination of
−32°, whereas the other sources are magnetized by induction only.
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intensity of 47,500 nT. The prism with magneti-
zation intensity of 1 A∕m extends infinitely
along the x-direction, from 10 km to the infinite
along the y-direction, and in depth from 0.5 km
to infinite. The line of poles is located at yo ¼
45 km and zo ¼ 1.8 km and extends from xo ¼
15 to infinite, each pole has magnetization inten-
sity of 0.5 A∕m. The single pole is located at
xo ¼ 45 km, yo ¼ 25 km, and zo ¼ 2 km, with
magnetization intensity of 5 A∕m. Finally, the
sphere is magnetized uniformly, with magnetiza-
tion intensity of 5 A∕m, magnetization inclina-
tion of 9°, and declination of −32°. The sphere
is located at xo ¼ 25 km, yo ¼ 25 km, and zo ¼
1.5 km. Although applied to a constant base
level, the results shown in this test were also ap-
plied to a null base level (not shown), i.e., mag-
netic anomaly corrected for IGRF. By inspecting
Figure 1 qualitatively, we can note a subtle dis-
tortion of the data isovalue curves that indicate
weakly interfering anomalies due to the proxim-
ity between the simulated sources.
Figure 2a–2d shows the depth estimates from

Euler deconvolution assuming SIs of 0, 1, 2, and
3, respectively. For depth estimates, plateaus of
solutions appear only when the correct SI is used,
for non- or weak-interfering anomalies. When
thewrong SI is used, depth estimates do not define
a plateau; rather, they form a cavity or a promi-
nence. A plateau of depth estimates is clearly evi-
dent in Figure 2a over the edge of the prism
because the correct SI ¼ 0 is used; whereas in
Figure 2b–2d, we can see protuberances for the
depth estimates of this source. The same occurs
for the line of poles, single pole, and dipole, with
respect to their correct SIs. Table 1 shows standard
deviations of depth estimates using four different
SI values for each source and considering this test
with a constant background. The minimum stan-
dard deviation for each source (highlighted in
boldface) occurs if the correct SI is used.
Figure 2e–2h shows the base-level estimates

from Euler deconvolution assuming SIs of 0, 1,
2, and 3. These estimates fall at the same positions
as depth estimates (Figure 2a–2d) and exhibit the
same pattern when the correct SI is used. Specifi-
cally, a plateau of constant base-level estimates is
exhibited when the correct SI is used, whereas
cavities or bulges appear when the wrong SI is
used. Thus, comparing at the same source position
using different SI is easy to identify that the small-
est variation of the base-level estimates at source
location indicates the correct SI. In addition, no-
tice that the base-level estimates mimic the mag-
netic anomaly (Figure 1). Later in this paper, this
nonlinear pattern of the base-level estimates will
show up clearly. Table 2 shows standard devia-
tions of base-level estimates using four different
SI values for each simulated source. The mini-

Figure 2. Euler deconvolution estimates for anomaly with constant background (Figure 1).
(a-d) Depth and (e-h) base-level estimates assuming SIs of 0, 1, 2, and 3, respectively.
Depth estimates assuming the correct SI form a plateau of correct values, whereas estimates
using the wrong SI not only failed to form a plateau but they also failed in their estimates.
Base-level estimates using the correct SI has minimum values compared with the estimates
using the wrong SI. For each source, the plateau areas, where the methodology is applied,
are outlined by the dashed rectangles. These areas were defined by the plateaus on the depth
estimates shown in (a-d).
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mum standard deviation for each source is in boldface. As expected,
for each source, the standard deviation is minimum using the correct
SI. Once the correct SI is defined, the mean depth calculated in the
same area gives the correct depth of the sources.
The areas used to calculate the standard deviations of depth

(Table 1) and base-level (Table 2) estimates are outlined in Fig-
ure 2a–2d (the dashed rectangles) for each source. These areas were
defined by the plateau areas in the depth estimates.
This test shows that the minima standard deviations calculated

either from base-level estimates (Table 2) or from depth estimates
(Table 1) are able to correctly define SI in the presence of a constant
background. In addition, this test shows that a constant background
does not interfere in Euler deconvolution estimates. Therefore, the
magnetic data do not need to be previously corrected for IGRF to
the application of Euler deconvolution.

Test 2 — Nonlinear background

Here, we generated a synthetic total-field anomaly (Figure 3a)
produced by the same sources and magnetization direction of the
previous test. In this test, a simulated nonlinear background (Fig-
ure 3b) is added to the original data (Figure 3a) by

bðxi; yiÞ ¼
ðxi þ 10Þðyi þ 10Þ

30
; (7)

giving rise to the noise-corrupted magnetic anomaly (Figure 3c) to
be used in Euler deconvolution. In equation 7, the subscript i is
related to the ith observation position ðxi; yiÞ. This polynomial can
simulate a regional field, a strongly interfering anomaly, or a poor
definition of the IGRF. Notice that the nonlinear background
(Figure 3b) has high values of the same order of magnitude as

Table 1. Standard deviations of depth estimates for the
constant background.

Source SI ¼ 0 SI ¼ 1 SI ¼ 2 SI ¼ 3

Prism 0.002 0.277 0.555 0.833

Line of poles 0.109 0.017 0.113 0.222

Pole 0.095 0.057 0.051 0.086

Dipole 0.102 0.068 0.041 0.037

Minimum standard deviation for each source is highlighted in boldface.

Table 2. Standard deviations of base-level estimates for the
constant background.

Source SI ¼ 0 SI ¼ 1 SI ¼ 2 SI ¼ 3

Prism 86.436 124.742 124.949 125.040

Line of poles 2959.662 4.451 15.550 20.226

Pole 1869.891 9.835 2.989 4.169

Dipole 3244.212 21.072 5.074 1.970

Minimum standard deviation for each source is highlighted in boldface.

Figure 3. Nonlinear background anomaly. (a) Noise-corrupted
total-field anomaly generated by a prism (SI ¼ 0), a line of poles
(SI ¼ 1), a single pole (SI ¼ 2), and a dipole (SI ¼ 3). The simu-
lated geomagnetic field with intensity of 47,500 nT has inclination
of 59° and declination of 10°. The dipole is magnetized uniformly,
with magnetization intensity of 5 A∕m, magnetization inclination
of 9°, and declination of −32°, whereas the other sources are mag-
netized by induction only. (b) Nonlinear polynomial to simulate a
regional field. (c) Noise-corrupted magnetic anomaly obtained by
adding the total-field anomaly shown in (a) to the nonlinear poly-
nomial shown in (b).
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the original data (Figure 3a) producing strongly interfering anoma-
lies, as displayed in Figure 3c.
In Figure 4a–4d, we can see depth estimates from Euler decon-

volution assuming SIs of 0, 1, 2, and 3, respectively. Figure 4b

shows the plateau on the depth estimates over the line of poles with
a too-slight difference compared with Figure 2b. In contrast, by
comparing Figure 4c and 4d with Figure 2c and 2d, we notice that
depth estimates of the correct sources for SIs 2 and 3 do not form

plateaus and show different shapes. This means
that the depth estimates are affected by the pres-
ence of a nonlinear background. In a case like
this, where the plateaus are not clearly defined on
depth estimates (Figure 4c and 4d), we use the
procedure of Melo et al. (2013), which delineates
the plateau areas, to determine in our work the
best SI, through the intersections of the plateaus
formed on the horizontal estimates (x̂o and ŷo).
Figure 5 shows the horizontal estimates using
Euler deconvolution applied to noise-corrupted
magnetic anomaly (Figure 3c) in the presence of
nonlinear background. Figure 5a–5d shows the
x̂o estimates, and Figure 5e–5h shows the ŷo
estimates assuming SIs of 0, 1, 2, and 3, respec-
tively. Because these horizontal estimates (x̂o and
ŷo) are less sensitive to interfering anomalies than
ẑo estimates, the intersections of the plateaus of x̂o
(Figure 5a–5d) and ŷo (Figure 5e–5h) are used in
this test to delineate the areas (shown in the
dashed rectangles in Figure 4a–4d), which are
used to determine the best SI.
Table 3 shows the standard deviations for depth

estimates in the presence of a nonlinear back-
ground, and the minimum standard deviation for
each source is in boldface. For the prism and the
line of poles, the minima standard deviations of
depth estimates indicate the correct sources. How-
ever, in contrast with the previous test, the mini-
mum standard deviation for the pole indicates
SI ¼ 1 and for the dipole indicates SI ¼ 2, which
are the wrong SIs for these sources. Let us recall
that the correct SI to a pole-like source is SI ¼ 2

and a dipole-like source is SI ¼ 3. Thus, the pres-
ence of a nonlinear background gives rise to some
interference in depth estimates.
Figure 4e–4h shows the base-level estimates

from Euler deconvolution assuming SIs of 0, 1,
2, and 3, respectively. The presence of a nonlinear
background yields interfering anomalies (Fig-
ure 3c) that lead to strongly deformed base-level
estimates (Figure 4e–4h). Thus, this presence
makes it much harder to “see” the plateaus in Fig-
ure 4e–4h that were clearly viewed in the previous
test with a constant background (Figure 2e–2h).
Table 4 shows the standard deviations of base-
level estimates for the nonlinear background test.
The minima standard deviations of base-level es-
timates, in boldface, confirm the correct SI of each
source.
This test shows that the minimum standard

deviation of base-level estimates (Table 4) is more
robust than the minimum standard deviation of
depth estimates (Table 3) to define the correct SI
when a nonlinear background exists. The mini-

Figure 4. Euler deconvolution estimates for anomaly with nonlinear background (Fig-
ure 3c). (a-d) Depth and (e-h) base-level estimates assuming SIs of 0, 1, 2, and 3, respec-
tively. For each source, the plateau areas, where the methodology is applied, are outlined
by the dashed rectangles. These areas were defined by the intersection of mapped plateaus
on horizontal estimates (x̂o and ŷo) shown in Figure 5.
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mum standard deviation of depth estimates does
not give the correct SI for all sources; it fails for
the monopole and dipole cases. In addition, the
nonlinear background does not need to be previ-
ously removed to perform the Euler deconvolution
when base-level estimates are used to define the
correct SI.

Test 3 — Strongly interfering anomalies
with constant and nonlinear background

Here, we moved the position of the single pole
to xo ¼ 25 km and yo ¼ 38 km and the dipole
to xo ¼ 20 km and yo ¼ 38 km to give rise
strongly interfering anomalies; the other sources
were kept at the same position. Also, we added a
polynomial nonlinear background (Figure 3b)
using equation 7 to the original data (not shown)
and a constant background of 47,500 nT (as in
the first test shown in Figure 1). Figure 6 shows
the simulated interfering magnetic data, in which
we note how hard is to distinguish and locate cor-
rectly the pole-like and the dipole-like sources.
Figure 7a–7d shows the depth estimates from

Euler deconvolution assuming SIs of 0, 1, 2, and
3, respectively. Like the previous test, plateaus on
depth estimates are not clearly defined for the sin-
gle pole (Figure 7c) and dipole (Figure 7d). The
poorly disclosed plateaus in Figure 7c and 7d
exhibit a smoothing oscillation being bounded
by abrupt variations of the depth estimates. These
results differ from the plateaus shown in Figure 2c
(single pole) and 2d (dipole) in the case of syn-
thetic test simulating weakly interfering anomalies
(Figure 1). Again, this third test shows that the
depth estimates are influenced by interfering
anomalies, generated either by close sources or by
nonlinear background. As in the previous test, we
use the intersection of mapped plateaus on hori-
zontal estimates (not shown) to delineate the areas
to compute the standard deviations. Figure 7a–7d
outlines these areas by the dashed rectangles.
Here, the minima standard deviations of depth

estimates (Table 5) of the prism and the line of
poles are able to correctly determine the SIs
equal to zero and one. However, the minima stan-
dard deviations of depth estimates (Table 5) of
the single pole and the dipole indicate a wrong
SI ¼ 1 because the true ones are SI ¼ 2 (in
the case of a pole-like source) and SI ¼ 3 (in
the case of a dipole-like source).
Figure 7e–7h shows the base-level estimates

from Euler deconvolution by assuming SIs of
0, 1, 2, and 3, respectively. As in the previous test,
the locations of the pole- and dipole-like sources
are not clearly defined through the base-level es-
timates. Table 6 confirms that the minima standard
deviations of base-level estimates are able to cor-
rectly determine the SIs, even if the anomalies
strongly interfere (Figure 6). Although the minima

Figure 5. Euler deconvolution horizontal estimates for anomaly with nonlinear back-
ground (Figure 3c). (a-d) x̂o and (e-h) ŷo estimates assuming SIs of 0, 1, 2, and 3, respec-
tively, for both set of estimates. For each source, the plateau areas, where the methodology
is applied, are outlined by the dashed rectangles. These areas were defined by the inter-
section of mapped plateaus on the horizontal estimates (x̂o and ŷo).
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standard deviations of base-level estimates indicate the correct sources
(marked in boldface in Table 6), the differences in the standard de-
viations for different SIs are quite small. This happens because Euler
deconvolution is applied to strongly interfering anomalies (Figure 6).
Contrary to the results shown in Table 2, in which the minima standard
deviations are very distinguishable because the Euler deconvolution is
applied to weak-interfering anomalies (Figure 1).
In this test, we also show that base-level estimates are more ro-

bust than depth estimates to define the correct SI when strong-in-
terfering anomalies are generated either by nearby sources or by a
nonlinear background. The smallest scattering of depth estimates
failed in determining the correct SI (e.g., pole and dipole cases,
see Table 5). Finally, we stress that there is no theoretical restriction
in applying the Euler deconvolution to total-field measurements
without removing either any constant or nonlinear backgrounds.

APPLICATION TO REAL DATA SET

The GAP is a region in the central part of Brazil subject to mafic-
alkaline magmatism (Marangoni and Mantovani, 2013). The region
is characterized by mafic-ultramafic alkaline complexes (plutonic
intrusions) in the northern portion, and subvolcanic alkaline intru-
sions (diatremes) in the central part and volcanic products (kama-
fugite lava flows) in the south with several dikes throughout the area
(Junqueira-Brod et al., 2005; Dutra and Marangoni, 2009; Dutra
et al., 2012). Thirteen anomalies are notable in the total-field mag-
netic map of GAP (Dutra et al., 2012; Marangoni and Mantovani,
2013), and these intrusions have remanent magnetization (Dutra
et al., 2014; Marangoni et al., 2016).
The real aeromagnetic data were acquired between June and

November 2004 with financial support from the government of the
state of Goiás, Brazil (LASA Prospection and Engineer, 2004). The
flight lines in the north–south direction were acquired every 500 m,

and the tie lines in the east–west direction were acquired every
5 km. The flight height was approximately constant at 100 m, and
the interval between the measurements was 0.1 s, this interval re-
sulted in one measurement at each approximately 8.2 m. The data
set is gridded with the same size in the x- and y-directions, 125 m, as
originally done by the data-acquisition company (LASA, 2004).
Figure 8a shows the total-field anomaly in the northern portion
of the GAP (Junqueira-Brod et al., 2002), and the inset shows the
location of the GAP. In Figure 8a, the numbers indicate the main
alkaline intrusions in this region: (1) Montes Claros de Goiás com-
plex, (2) Diorama, (3) Córrego dos Bois complex, (4) Fazenda Bur-
iti complex, and (5) Arenópolis.
Junqueira-Brod et al. (2002) present a detailed geologic study of

this area. According to these authors, the Montes Claros de Goiás
complex is an outcrop with 28 km2 of superficial area formed by
dunes, peridotites, pyroxenites, gabbros, and syenites. The ultramafic
rocks form two nuclei that rise to the southwest and north, separated
by a central syenitic intrusion. The Arenópolis intrusion is an elon-
gated body generated by three distinct lithologic types: pyroxenite,
melteigites, and syenite, the latter outcrops. The Córrego dos Bois
complex consists of two domes, mainly of dunites, covering an area
of 33 km2. The structure is surrounded by a narrow and discontinu-
ous intrusion of syenite and being intruded by dikes. The Fazenda
Buriti complex covers an area of 35 km2 and consists of olivine cli-
nopyroxenite, melagabbro, syenogabbro, and syenite (Dutra et al.,
2012). Finally, in the Diorama area are common subvolcanic intru-
sions, dikes, plugs, and sills of picrite (Marangoni et al., 2016).
Here, we apply Euler deconvolution to the whole area, but we

focus our interpretation on the magnetic anomaly over the Diorama
alkaline intrusion (Dutra et al., 2014; Oliveira et al., 2015; Maran-

Table 3. Standard deviations of depth estimates for the
nonlinear background.

Source SI ¼ 0 SI ¼ 1 SI ¼ 2 SI ¼ 3

Prism 0.003 0.232 0.468 0.703

Line of poles 0.109 0.047 0.113 0.223

Pole 0.099 0.078 0.098 0.143

Dipole 0.120 0.092 0.081 0.099

Minimum standard deviation for each source is highlighted in boldface.

Table 4. Standard deviations of base-level estimates for the
nonlinear background.

Source SI ¼ 0 SI ¼ 1 SI ¼ 2 SI ¼ 3

Prism 98.227 115.501 116.438 116.752

Line of poles 3129.689 21.849 27.660 31.178

Pole 1862.679 11.252 5.748 6.383

Dipole 2161.655 15.889 5.532 2.974

Minimum standard deviation for each source is highlighted in boldface.

Figure 6. Strong-interfering anomalies with constant and nonlinear
background. Noise-corrupted total-field anomaly generated by a
prism (SI ¼ 0), a line of poles (SI ¼ 1), a single pole (SI ¼ 2), and
a dipole (SI ¼ 3). The simulated geomagnetic field with intensity of
47,500 nT has an inclination of 59° and a declination of 10°. The
dipole is magnetized uniformly, with a magnetization intensity of
5 A∕m, magnetization inclination of 9°, and declination of −32°,
whereas the other sources are magnetized by induction only. The
same nonlinear background generated in Figure 3b was added to
the anomaly.
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goni et al., 2016). The Diorama is our target anomaly because its
shape resembles a weakly interfering anomalies produced by iso-
lated sources. However, we interpret the main alkaline intrusions
that yield the strongest magnetic anomalies
(labeled 1–5 in Figure 8a) in our study area.
Although, we interpret the strongest magnetic
anomalies, we stress that there are many other
weak anomalies that can generate interferences.
We run Euler deconvolution with a moving data
window size of 9 × 9 grid points. Figure 8b
shows depth estimates, and Figure 8c shows
base-level estimates of Euler deconvolution for
the whole area assuming SI ¼ 2. The estimates
assuming other indices are not shown because
there are no large plateaus as for SIs 0 and 1
and the shapes for SIs 2 and 3 are similar. Fig-
ure 8b shows many forms that seem plateaus on
depth estimates. The selected plateau areas are
indicated by the first letter of the name of the
anomalies and delineated by the rectangles in
Figure 8b. Notice that over the Diorama anomaly,
we identified three plateaus (D1–D3 in Fig-
ure 8b), we could also identify these plateaus us-
ing Euler deconvolution with a window size of
15 x 15 points (not shown). On the other hand,
we could not clearly identify any plateau over the
anomaly Fazenda Buriti (labeled 4 in Figure 8).
Base-level estimates in Figure 8c follow the same
pattern of the anomalies shown in Figure 8a
and exhibit nonlinear patterns of the strong and
the weak anomalies. Besides, a possible poor
definition of IGRF in South America can also
contribute to this nonlinear pattern (Marangoni
et al., 2016).
We applied our methodology and calculated

the standard deviations of depth and base-level
estimates assuming SIs of 0, 1, 2, and 3. Table 7
shows the minima standard deviations of base-
level estimates highlighted in boldface. Based
on this analysis, we may infer that the alkaline
intrusion of Diorama is generated by three plug
intrusions (D1–D3 in Figure 8b). Also, the re-
sults point out that Arenópolis (A1) and Montes
Claros de Goiás (CM1) are dipole-like sources,
and Córrego dos Bois (C1) is generated by line
of poles. The unrealistic result about Córrego dos
Bois complex (labeled 3 in Figure 8a) is expected
because this anomaly does not seem to be pro-
duced by an ideal single-point source and thus
the Euler’s solutions are not reliable. In fact, it
seems that it is generated by a complex source
or multiple sources (a nonideal source). Let
us recall that Euler deconvolution is grounded
on the Euler theorem equation for homogeneous
functions; hence, it should only be applied to
limited situations in which it can be expected to
work and under the premises previously dis-
cussed. As pointed out by Barbosa and Silva
(2011), there is still more to be done to improve

Euler deconvolution to reduce its disadvantages (e.g., its poor per-
formance in interpreting anomalies produced by nonideal sources)
but without losing its advantage (e.g., computational efficiency).

Figure 7. Euler deconvolution estimates for strong-interfering anomalies with constant
and nonlinear background (Figure 6). (a-d) Depth and (e-h) base-level estimates assum-
ing SIs of 0, 1, 2, and 3, respectively. For each source, the plateau areas, where the
methodology is applied, are outlined by the dashed rectangles. These areas were defined
by the intersection of mapped plateaus on horizontal estimates (x̂o and ŷo, not shown).
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The most striking feature of Table 7 is the small differences in the
standard deviations for different SIs. Like the synthetic test using
strongly interfering anomalies (Figure 6; Table 6), in the real data
set (e.g., the Diorama anomaly in Figure 8a) the differences in the
standard deviations for different SIs are small (Table 7). Likewise,
the real data (Figure 8a) exhibit strongly interfering anomalies. We
also applied our methodology to the magnetic anomaly in which
the IGRF was removed (not shown), and the results are basically
the same.

CONCLUSION

By analyzing Euler’s equation, we show that realizations of ran-
dom variables contaminating the potential-field measurements and
its gradients affect the base-level estimates if, and only if, the SI is

Table 5. Standard deviations of depth estimates for
interfering anomalies with constant and nonlinear
background.

Source SI ¼ 0 SI ¼ 1 SI ¼ 2 SI ¼ 3

Prism 0.003 0.291 0.587 0.883

Line of poles 0.100 0.038 0.115 0.213

Pole 0.169 0.136 0.188 0.301

Dipole 0.149 0.134 0.155 0.201

Minimum standard deviation for each source is highlighted in boldface.

Table 6. Standard deviations of base-level estimates for
interfering anomalies with constant and nonlinear
background.

Source SI ¼ 0 SI ¼ 1 SI ¼ 2 SI ¼ 3

Prism 56.307 77.423 77.994 78.188

Line of poles 1534.905 18.558 20.280 21.493

Pole 2477.599 15.632 13.560 15.741

Dipole 3076.670 24.874 11.760 9.126

Minimum standard deviation for each source is highlighted in boldface.

Figure 8. Real data set application. (a) Total-field anomaly in the
northern portion of GAP. The numbers indicate the main alkaline
intrusions in this study area: 1, Montes Claros de Goiás complex; 2,
Diorama; 3, Córrego dos Bois complex; 4, Fazenda Buriti complex;
and 5, Arenópolis. The inset shows the location of GAP. (b) Depth
estimates assuming SI ¼ 2. The plateau areas, where the method-
ology is applied, are outlined in the rectangles with the first letters of
the name of the anomalies shown in (a). (c) Base-level estimates
assuming SI ¼ 2, notice the nonlinear pattern of the base-level es-
timates and how they mimic the anomaly shown in (a).

Table 7. Standard deviations of base-level estimates for
application to the real data set.

Source SI ¼ 0 SI ¼ 1 SI ¼ 2 SI ¼ 3

D1 5704.204 32.492 19.851 23.163

D2 36572.570 393.546 367.408 377.060

D3 17892.637 156.249 151.961 162.679

C1 49128.473 735.896 893.910 959.535

A1 61534.789 462.392 237.158 215.245

CM1 45298.429 777.376 665.279 646.095

Minimum standard deviation for each source is highlighted in boldface. The sources
are pinpointed in Figure 8b.
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not assumed correctly. We proposed a methodology to define the
correct SI based on the minimum standard deviation of base-level
estimates. For each tentative SI, we calculate the standard deviation
of base-level estimates over the geologic source which, in turn, is
defined by the areas depicted as plateau-shaped depth estimates or
plateau-shaped horizontal estimates. We tested our methodology
with different sources, related to different the SIs and achieved the
correct SI even in the case of strongly interfering anomalies. We
also show that Euler deconvolution does not require that the ob-
served total field be corrected either from constant or nonlinear
backgrounds, such as IGRF or regional tendency. Actually, the pres-
ence of backgrounds and nearby sources affects depth estimates, but
they do not affect base-level estimates. Consequently, the determi-
nation of the correct SI based on any criterion grounded on the
depth estimates can fail. Rather, the proposed criterion for determin-
ing the correct SI based on the minimum standard deviation of base-
level estimates is sound. Application to a real data set followed the
expected theoretical behavior, and we infer that the alkaline intrusion
over Diorama (Goiás, Brazil) is generated by three plugs, based on
SI ¼ 2 defined from our methodology. We applied our methodology
in total-field measurements and total-field anomaly (corrected for
IGRF), and the numerical results are basically the same. Both results
indicate the same SI for the Diorama alkaline intrusion and show that
the magnetic data do not need to be corrected for IGRF previously to
the application of Euler deconvolution. Applications in areas where
the anomalies do not even resemble to be generated by a single-point
source (ideal source) have impracticable and unpredictable results.
The standard Euler deconvolution is grounded on Euler theorem
equation for homogeneous functions; hence, theoretically, it should
only be applied to geologic situations in which it can be expected
to work and under the premises it was developed for working. How-
ever, complex geologic scenarios should not be ignored; ergo, there is
still room for improvement to modify and adapt Euler deconvolution
equation to nonideal sources.
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