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à obtenção do t́ıtulo de Doutor em Geof́ısica.

Orientador(a): Dr. Vanderlei Coelho

Oliveira Jr.

Co-orientador(a): Dra. Valéria C. F. Barbosa
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Neste trabalho foi desenvolvida uma eficiente e rápida técnica de camada equivalente

para o processamento de dados de campos potenciais usando um método de con-

volução discreta que modifica o cálculo do problema direto dos métodos iterativos

baseado em um v́ınculo de excesso de massa para o caso gravimétrico e o algoritmo do

gradiente conjugado por mı́nimos quadrados para o caso magnético. Aproveitando

as estruturas block-Toeplitz Toeplitz-block (BTTB) da matriz de sensibilidade, que

surge quando grids de observações e de fontes equivalentes (pontos de massa ou dipo-

los) são regulares, desenvolvemos um algoritmo que reduz drasticamente o número

de cálculos de pontos flutuantes (flops) e de memória RAM necessária para estimar

a distribuição de propriedade f́ısica 2D sobre a camada equivalente. A estrutura da

matriz BTTB pode ser escrita usando somente a primeira coluna da matriz de sen-

sibilidade, que pode ser transformada em uma matriz block-circulant circulant-block

(BCCB). Similarmente, somente a primeira coluna da matriz BCCB é necessária

para reconstrui-la. Usando a primeira coluna da BCCB também é posśıvel calcular

seus auto-valores por uma transformada de Fourier 2D (2D FFT), que pode ser

usada para calcular rapidamente o problema direto da camada equivalente. Como

resultado, este método pode ser usado para processar grandes conjuntos de dados

de forma eficiente. Testes com dados sintéticos mostram que o método estima as

fontes equivalentes de forma satisfatória para técnicas de processamento, como por

exemplo, a continuação para cima de dados gravimétricos e magnéticos. Os resul-

tados mostram efeitos de borda e de rúıdo muito reduzidos comparados ao método

tradicional no domı́nio de Fourier. Para o caso gravimétrico, os testes sintéticos

mostram que para processar N = 1000 000 de observações, este método precisou

de ≈ 30, 9 segundos, enquanto que o método iterativo com v́ınculo de massa levou

≈ 46, 8 segundos com apenas N = 22 500. Um teste com o dado real da Prov́ıncia de
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Carajás, Brasil, mostra o baixo custo computacional deste método para processar

grandes volumes de dados, usando N = 250 000 observações. Testes sintéticos com

dados magnéticos mostram uma diminuição da ordem de ≈ 104 em flops e ≈ 25

vezes em tempo computacional com um grid de tamanho médio de 100 × 50 se

comparado o método clássico da solução de sistemas lineares das equações normais

por mı́nimos quadrados usando o método da decomposição de Cholesky. Resulta-

dos ainda melhores são obtidos usando milhões de dados, mostrando um decréscimo

exponencial no uso de memória RAM e de custo computacional, permitindo o uso

deste método em computadores pessoais. Os resultados mostram, comparado ao

método de Fourier, que o processamento magnético requer tempo computacional

similar, mas produz menores efeitos de borda sem usar nenhum tipo de padding e

também se mostrando muito mais robusta para lidar com dados irregulares ou su-

perf́ıcies onduladas. Um teste com N = 1310 000 dados irregularmente espaçados

da Prov́ıncia de Carajás, Brasil, confirma com sucesso este método levando ≈ 385, 56

segundos para estimar a distribuição de propriedade f́ısica e ≈ 2, 64 segundos para

calcular a continuação para cima.
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We have developed an efficient and very fast equivalent-layer technique for grav-

ity and magnetic data processing by modifying the forward problem calculation of

an iterative method grounded on excess mass constraint that does not require the

solution of linear systems and of the conjugate gradient least squares algorithm,

respectively, using a discrete convolutional method. Taking advantage of the Block-

Toeplitz Toeplitz-block (BTTB) structure of the sensitivity matrix, that raises when

regular grids of observation points and equivalent sources (point masses or dipoles)

are used to set up a fictitious equivalent layer, we have developed an algorithm which

greatly reduces the number of floating-point operations (flops) and computer mem-

ory necessary to estimate a 2D physical property distribution over the equivalent

layer. The structure of the BTTB matrix can be written by using only the elements

of the first column of the sensitivity matrix, which in turn can be transformed into

a block-circulant circulant-block (BCCB) matrix. Likewise, only the first column

of the BCCB matrix is needed to reconstruct the full sensitivity matrix completely.

Also, from the first column of BCCB matrix, its eigenvalues can be calculated using

the 2D Fast Fourier Transform (2D FFT), which can be used to readily compute the

matrix-vector product of the forward modeling in the fast equivalent-layer technique.

As a result, our method is efficient to process very large datasets. Tests with syn-

thetic data demonstrate the ability of our method to satisfactorily use the estimated

equivalent sources for data processing, for example, upward-continuing the gravity

and magnetic data. Our results show very small border effects and noise amplifica-

tion compared to those produced by the classical approach in the Fourier domain.

For the gravity case, our synthetic results show that while the running time of our

method is ≈ 30.9 seconds for processing N = 1, 000, 000 observations, the iterative

method grounded on excess mass constrain spent ≈ 46.8 seconds with N = 22, 500.
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A test with field data from Carajás Province, Brazil, illustrates the low compu-

tational cost of our method to process a large data set composed of N = 250, 000

observations. Synthetic tests for magnetic data with a mid-size 100×50 grid of total-

field anomaly data show a decrease of ≈ 104 in floating-point operations and ≈ 25×
in computation runtime of our method compared to the classical approach of solving

the least-squares normal equations via Cholesky decomposition. Faster results are

obtained for millions of data, showing drastic decreases in computer memory usage

and runtime, allowing to perform magnetic data processing of large data sets on

regular desktop computers. Our results also show that, compared to the classical

Fourier approach, the magnetic data processing with our method requires similar

computation time, but produces significantly smaller border effects without using

any padding scheme and also is more robust to deal with data on irregularly spaced

points or on undulating observation surfaces. A test with 1, 310, 000 irregularly

spaced field data over the Carajás Province, Brazil, confirms the efficiency of our

method by taking ≈ 385.56 seconds to estimate the physical-property distribution

over the equivalent layer and ≈ 2.64 seconds to compute the upward-continuation.
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Chapter 1

Introduction

The equivalent layer is a well-known technique for processing potential-field data in

applied geophysics since the 60’s (BOTT, 1967; DAMPNEY, 1969; DANES, 1961).

It comes from potential theory as a mathematical solution of the Laplace’s equa-

tion, in the region above the sources, by using the Dirichlet boundary condition

(KELLOGG, 1929). This theory states that any potential-field data produced by

an arbitrary 3D physical-property distribution can be exactly reproduced by a fic-

titious layer located at any depth and having a continuous 2D physical-property

distribution. In practical situations, the layer is approximated by a finite set of

sources (e.g., point masses or dipoles) and their physical properties are estimated

by solving a linear system of equations that yields an acceptable potential-field data

fit. These fictitious sources are called equivalent sources.

Many previous works have used the equivalent layer to perform different potential-

field data transformations such as gridding (e.g., CORDELL, 1992; DAMPNEY,

1969; MENDONÇA and SILVA, 1994), upward- and downward-continuation (e.g.,

EMILIA, 1973; HANSEN and MIYAZAKI, 1984; LI and OLDENBURG, 2010), re-

duction to the pole (e.g., GUSPÍ and NOVARA, 2009; LEÃO and SILVA, 1989; LI

et al., 2014; OLIVEIRA JR. et al., 2013; SILVA, 1986), combining multiple data sets

(e.g., BOGGS and DRANSFIELD, 2004), gradient data processing (e.g., BARNES

and LUMLEY, 2011) first and second vertical derivatives fields (EMILIA, 1973) and

total magnetic induction vector components calculation (SUN et al., 2019).

Although the use of the equivalent-layer technique increased over the last decades,

one of the biggest problems is still its high computational cost for processing large-

data sets. This problem propelled several studies to improve the computational

efficiency of the equivalent layer technique. LEÃO and SILVA (1989) developed a

fast method for processing a regular grid of potential-field data. The method con-

sists in estimating an equivalent layer which exactly reproduces the potential-field

data within a small data window. The data window is shifted over the whole gridded

data in a procedure similar to a discrete convolution. The equivalent layer extends

1



CHAPTER 1. INTRODUCTION 2

beyond the moving-data window and is located at a depth between two and six

times the grid spacing of the observations. For each data window, the equivalent

layer is estimated by solving an underdetermined linear system. After estimating an

equivalent layer, the transformed-potential field is computed only at the center of

the moving-data window. The use of a small moving-data window greatly reduces

the total number of floating-point operations (flops) and computer memory storage.

The computational efficiency of this method relies on the strategy of constructing

the equivalent layer by successively solving small linear systems instead of solv-

ing just one large linear system for the entire equivalent layer. MENDONÇA and

SILVA (1994) also followed the strategy of solving successive small linear systems

for constructing an equivalent layer. Their method is based on the equivalent-data

concept, which consists in determining a subset of all potential-field data (named

equivalent-data set), such that the interpolating surface that fits the chosen subset

also automatically fits all remaining data. The equivalent-data set is obtained by

iteratively introducing the potential-field observation with the greatest residual in

the preceding iteration. By applying to the interpolation problem, the method is

optimized by approximating dot products by the discrete form of an analytic integra-

tion that can be evaluated with less computational effort. According to the authors,

the equivalent-data set is usually smaller than the total number of potential-field

observations, leading to computational savings. The authors also pointed out that

the computational efficiency of the method depends on the number of equivalent

data. If the potential-field anomaly is nonsmooth, the number of equivalent data

can be large and the method will be less efficient than the classical approach.

By following a different strategy, LI and OLDENBURG (2010) developed a rapid

method that transforms the dense sensitivity matrix associated with the linear sys-

tem into a sparse one by using a wavelet technique. After obtaining a sparse rep-

resentation of the sensitivity matrix, those authors estimate the physical-property

distribution within the equivalent layer by using an overdetermined formulation.

Those authors pointed out that, given the sparse representation, their method re-

duces the computational time required for solving the linear system by as many as

two orders of magnitude if compared with the same formulation using a dense ma-

trix. BARNES and LUMLEY (2011) followed a similar strategy and transformed

the dense sensitivity matrix into a sparse one. However, differently from LI and

OLDENBURG (2010), their method operates in the space domain by grouping

equivalent sources far from an observation point into blocks with average physi-

cal property. This procedure aims at reducing the memory storage and achieving

computational efficiency by solving the transformed linear system with a weighted-

least-squares conjugate-gradient algorithm. Notice that, instead of constructing the

equivalent layer by solving successive small linear systems, these last two methods
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first transform the large linear system into a sparse one and then take advantage of

this sparseness.

OLIVEIRA JR. et al. (2013) developed a fast method based on the reparame-

terization of the physical-property distribution within the equivalent layer. Those

authors divided the equivalent layer into a regular grid of equivalent-source windows

inside which the physical-property distribution is described by bivariate polynomial

functions. By using this polynomial representation, the inverse problem for esti-

mating the equivalent layer is posed in the space of the total number of polynomial

coefficients within all equivalent-source windows instead of in the space of the to-

tal number of equivalent sources. According to OLIVEIRA JR. et al. (2013), the

computational efficiency of their method relies on the fact that the total number of

polynomial coefficients needed to describe the physical-property distribution within

the equivalent layer is generally much smaller than the number of equivalent sources,

leading to a very smaller linear system to be solved. Those authors could verify that

the total number of flops needed for building and solving the linear inverse prob-

lem of estimating the total number of polynomial coefficients can be reduced by

as many as three and four orders of magnitude, respectively, if compared with the

same inverse problem of estimating the physical property of each equivalent source

via Cholesky decomposition.

There is another class of methods that iteratively estimates the physical-property

distribution within the equivalent layer without solving linear systems. The method

presented by CORDELL (1992), and later generalized by GUSPÍ and NOVARA

(2009), updates the physical property of the sources, which are located below each

potential-field data, using a procedure that removes the maximum residual between

the observed and predicted data. XIA and SPROWL (1991) and XIA et al. (1993)

developed fast iterative schemes for updating the physical-property distribution

within the equivalent layer in the wavenumber and space domains, respectively.

Grounded on excess mass constraint, SIQUEIRA et al. (2017) developed an iter-

ative scheme starting with a mass distribution within the equivalent layer that is

proportional to observed gravity data. Then, their method iteratively adds mass

corrections that are proportional to the gravity residuals. The total number of flops

required by these iterative methods for estimating the physical-property distribution

within the equivalent layer depends on the total number of iterations, however this

number is generally much smaller than the total number of flops required to solve a

large-scaled linear system. Generally, the most computational expensive step in each

iteration of these methods is the forward problem of calculating the potential-field

data produced by the equivalent layer.

In the present work, we show that the sensitivity matrix associated with a pla-

nar equivalent layer of point masses/dipoles has a very well-defined structure called
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Block-Toeplitz Toeplitz-Block (BTTB) for the case in which (i) the observed gravity

or magnetic data is located on a regularly spaced grid at constant height and (ii)

there is one equivalent source directly beneath each observation point. This tech-

nique have been successfully used in potential-field methods for 3D gravity inversion

(ZHANG and WONG, 2015), downward-continuation (ZHANG et al., 2016) and 3D

magnetic modeling (QIANG et al., 2019). More recently in HOGUE et al. (2020)

the authors provided an overview on modeling the gravity and magnetic kernels

using the BTTB structures and RENAUT et al. (2020) used for inversion of both

gravity and magnetic data to recover sparse subsurface structures. By using this

property, we propose an efficient algorithm based on FFT convolution (e.g., VAN

LOAN, 1992, p. 207) for computing the forward problem at each iteration of the

fast equivalent-layer technique proposed by SIQUEIRA et al. (2017) for the gravity

case and also for computing the forward problem at each iteration of the conjugate

gradient least squares algorithm for the magntic case.

In Part I, our method uses the gravitational effect produced by a single point

mass to compute the effect produced by the whole equivalent layer, which results in

a drastic reduction not only in the number of flops, but also in the RAM memory

usage of the fast equivalent-layer technique. Tests with synthetic and field data

illustrate the good performance of our method in processing large gravity data sets.

In Part II, we achieve very fast solutions using a conjugate gradient algorithm

combined with the fast Fourier transform. We present a novel method of exploring

the symmetric structures of the second order derivatives of the inverse of the distance

contained in the magnetic kernel, to keep the memory RAM usage to the minimal by

using only one equivalent source to carry the calculations of the forward problem.

We also show tests of the magnetic convolutional equivalent layer when irregular

grids are used. The convergence of the conjugate gradient maintains an acceptable

level even using irregular grids. Our results show a good performance of our method

in producing fast and robust solutions for processing large amounts of magnetic data

using the equivalent layer technique.



Chapter 2

Fundamentals

2.1 Classical equivalent layer

2.1.1 Classical equivalent layer for gravity data processing

Let doi be the observed gravity data at the point (xi, yi, zi), i = 1, ..., N , of a local

Cartesian system with x-axis pointing to north, the y-axis pointing to east and

the z-axis pointing downward from the N × 1 data vectopr do. Let us consider

an equivalent layer composed by a set of N point masses (equivalent sources) over

a layer located at depth zc (zc > zi) and whose x- and y- coordinates of each

point mass coincides with the corresponding coordinates of the observation directly

above. There is a linear relationship that maps the unknown mass distribution onto

the gravity data given by

d(pg) = Agpg , (2.1)

where d(pg) is an N×1 vector whose ith element is the predicted gravity data at the

ith point (xi,yi,zi), p is the unknown N×1 parameter vector whose jth element pj is

the mass of the jth equivalent source (point mass) at the jth Cartesian coordinates

(xj,yj,zc) and Ag is an N ×N sensitivity matrix whose ijth element is given by

agij =
cg G (zc − zi)

[(xi − xj)2 + (yi − yj)2 + (zi − zc)2]
3
2

, (2.2)

where G is the Newton’s gravitational constant and cg = 105 transforms from m/s2

to mGal. Notice that equation 2.2 is the product of these constants with the vertical

derivative of the function inverse of the distance

1

rij
=

1√
(xi − xj)

2 + (yi − yj)
2 + (zi − zc)

2
(2.3)

5
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Also, notice that the sensitivity matrix depends on the ith coordinate of the observa-

tion and the jth coordinate of the equivalent source. For convenience, we designate

these coordinates as matrix coordinates and the indices i and j as matrix indices.

To estimate the unknown mass distibution pg the Cholesky factorization method

will introduced in section 2.1.3.

2.1.2 Classical equivalent layer for magnetic data processing

Let do be a N × 1 observed data vector where, doi (xi, yi, zi), i = 1, . . . , N , is the

total-field anomaly produced by arbitrarily magnetized sources at the ith position,

aranged in a right-handed Cartesian coordinate system with x-, y- and z-axis point-

ing to north, east and down, respectively. We consider that the total-field anomaly

data doi represent the discrete values of a harmonic function. Besides, we consider

that the main geomagnetic field direction at the study area can be defined by the

unit vector

F̂ =

Fx

Fy

Fz

 =

cos(I0) cos(D0)

cos(I0) sin(D0)

sin(I0)

 , (2.4)

with constant inclination I0 and declinationD0. In this case, doi can be approximated

by the predicted total-field anomaly (BLAKELY, 1996)

∆Ti =
M∑
j=1

pja
m
ij , (2.5)

which describes the magnetic induction exerted, at the observation point (xi, yi, zi),

by a discrete layer of M dipoles (equivalent sources) defined on the horizontal plane

z = zc, where pj is the magnetic moment intensity (in Am2) of the jth dipole, that

has unit volume and is located at the point (xj, yj, zc). In equation 2.5, aij is the

harmonic function

amij = cm
µ0

4π
F̂⊤Hij û , (2.6)

the unit vector

û =

ux

uy

uz

 =

cos(I) cos(D)

cos(I) sin(D)

sin(I)

 , (2.7)

defines the magnetization direction of all dipoles, with constant inclination I and

declination D, µ0 = 4π 10−7 H/m is the magnetic constant, cm = 109 is a factor

that transforms the magnetic induction from Tesla (T) to nanotesla (nT) and Hij
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is a 3× 3 matrix

Hij =

h
xx
ij hxy

ij hxz
ij

hxy
ij hyy

ij hyz
ij

hxz
ij hyz

ij hzz
ij

 , (2.8)

with elements defined in terms of matrix coordinates and matrix indices according

to

hαβ
ij =


3(αi−αj)

2

r5ij
− 1

r3ij
, α = β

3(αi−αj)(βi−βj)

r5ij
, α ̸= β

, α, β = x, y, z , (2.9)

which are the second derivatives of the inverse distance function (equation 2.3) with

respect to the coordinates of the observation point (xi, yi, zi).

Equation 2.5 can be rewritten in matrix notation as follows:

d(pm) = Ampm , (2.10)

where d(pm) is the N × 1 predicted data vector with ith element defined as the

predicted total-field anomaly ∆Ti (equation 2.5), pm is the M × 1 parameter vector

whose jth element is the magnetic moment intensity pj of the jth dipole and Am

is the N ×M sensitivity matrix with element ij defined by the harmonic function

aij (equation 2.6).

2.1.3 Cholesky factorization

In the classical equivalent-layer technique, the common approach for estimating the

parameter vector from the observed gravity or the total-field anomaly data do is by

solving the least-squares normal equations

p̃ =
(
A⊤A

)−1
A⊤do . (2.11)

This equation can be rewritten to

A⊤A p = A⊤do . (2.12)

Equation 2.12 is usually solved by first computing the Cholesky factor G of matrix

A⊤A and then using it to solve the linear systems (GOLUB and LOAN, 2013, p.

262):

Gw = A⊤do

G⊤p̃ = w
, (2.13)
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where w is a temporary variable. This approach to estimating the parameter vector

will be referenced throughout this work as the classical method. The computational

cost associated with the classical method can be very high when dealing with large

datasets. In the following subsections, we will show how to explore the structures

of the sensitivity matrices Ag and Am to efficiently solve the least-squares normal

equations (equation 2.12).

2.2 Fast equivalent-layer methods

2.2.1 Fast equivalent-layer technique for gravity data pro-

cessing

SIQUEIRA et al. (2017) developed an iterative least-squares method to estimate

the mass distribution over the equivalent layer based on the excess of mass and

the positive correlation between the observed gravity data and the masses on the

equivalent layer. They showed that the fast equivalent-layer technique has a better

computational efficiency than the classical equivalent layer approach (equation 2.11)

if the dataset is greater than at least 200 observation points, even using a large

number of iterations.

Considering one equivalent source (point mass) directly beneath each observation

point, the iteration of the SIQUEIRA et al.’s (2017) method starts by an initial

approximation of mass distribution given by

p̃0 = Ã−1
g do , (2.14)

where Ã−1
g is an N ×N diagonal matrix with elements

ã−1
ii =

∆si
(2π G cg)

, (2.15)

where ∆si is the ith element of surface area located at the ith horizontal coordinates

xi and yi of the ith observation. At the kth iteration, the masses of the equivalent

sources are updated by

p̃k+1 = p̃k +∆p̃k , (2.16)

where the mass correction is given by

∆p̃k+1 = Ã−1
g (do −Agp̃

k) . (2.17)

At the kth iteration of SIQUEIRA et al.’s (2017) method, the matrix-vector

product Agp̃
k = d(p̃k) must be calculated to get a new residual do −Agp̃

k, which
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represents a bottleneck. Considering the limitation of 16 Gb of computer memory

in our system, we could run the SIQUEIRA et al.’s (2017) method only up to

22, 500 observation points; Otherwise, it is costly and can be prohibitive in terms of

computer memory to maintain such operation.

2.2.2 Conjugate Gradient Least Squares (CGLS) method

for magnetic data processing

The computational cost associated with the classical method to estimate the param-

eter vector p̃ by solving the linear system 2.12 can be very high or even prohibitive

when dealing with large data sets. In these cases, a well-known alternative is solving

the normal equations (equation 2.12) iteratively by using the standard Conjugate

Gradient Least Squares (CGLS) method :

Algorithm 1 Standard CGLS pseudocode (ASTER et al., 2019, p. 166).

Input: Am and do.

Output: Estimated parameter vector p̃.

Set it = 0, p̃(it) = 0, c(it−1) = 0, β(it) = 0, s(it) = do and r(it) = Am
⊤s(it).

1 - If it > 0, β(it) =
∥r(it)∥22
∥r(it−1)∥22

2 - c(it) = r(it) + β(it) c(it−1)

3 - α(it) =
∥r(it)∥22

∥Am c(it)∥22
4 - p̃(it+1) = p̃(it) + α(it) c(it)

5 - s(it+1) = s(it) − α(it) Am c(it)

6 - r(it+1) = Am
⊤ s(it+1)

7 - it = it+ 1

8 - Repeat previous steps until convergence (stops if δ =
|r(it+1) − r(it)|

N
≤ 10−3).

Setting a convergence criterion δ (Algorithm 1) based on the minimum tolerance

of the residuals is a good option to carry out this algorithm efficiently and still

obtaining very good results. Another possibility is to set an invariance limit to the

normalized Euclidean norm of residuals between iterations, which would increase

algorithm runtime, but with smaller residuals. We chose the latter option, as we

could achieve better results.



Chapter 3

Methodology

3.1 Regular grids

3.1.1 x- and y-oriented grids

Consider that the observed data are located on an Nx × Ny regular grid of points

regularly spaced by ∆x and ∆y along the x- and y-directions, respectively, on a

horizontal plane defined by the constant vertical coordinate z0 < zc. As a conse-

quence, a given pair of matrix coordinates (xi, yi), defined by the matrix index i,

i = 1, . . . , N = NxNy, is equivalent to a pair of coordinates (xk, yl) given by:

xi ≡ xk = x1 + [k(i)− 1] ∆x , (3.1)

and

yi ≡ yl = y1 + [l(i)− 1] ∆y , (3.2)

where k(i) and l(i) are integer functions of the matrix index i. These equations

can also be used to define the matrix coordinates xj and yj associated with the jth

equivalent source, j = 1, . . . , N = NxNy. In this case, the integer functions are

evaluated by using the index j instead of i. For convenience, we designate xk and

yl as grid coordinates and the indices k and l as grid indices, which are computed

with the integer functions.

The integer functions assume different forms depending on the orientation of the

regular grid of data. Consider the case in which the grid is oriented along the x-axis

(Figure 3.1 left panel). For convenience, we designate these grids as x-oriented grids.

For them, we have the following integer functions:

i(k, l) = (l − 1)Nx + k , (3.3)

10
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l(i) =

⌈
i

Nx

⌉
(3.4)

and

k(i) = i−

⌈
i

Nx

⌉
Nx +Nx , (3.5)

where ⌈·⌉ denotes the ceiling function (GRAHAM et al., 1994, p. 67). These integer

functions are defined in terms of the matrix index i, but they can be defined in the

same way by using the index j. Figure 3.1 left panel illustrates an x-oriented grid

defined by Nx = 3 and Ny = 2. In this example, the matrix coordinates x5 and y5,

defined by the matrix index i = 5 (or j = 5), are equivalent to the grid coordinates

x2 and y2, which are defined by the grid indices k = 2 and l = 2, respectively. These

indices are computed with equations 3.4 and 3.5, by using the matrix index i = 5

(or j = 5).

Now, consider the case in which the regular grid of data is oriented along the

y-axis (Figure 3.1 right panel). For convenience, we call them y-oriented grids.

Similarly to x-oriented grids, we have the following integer functions associated

with y-oriented grids:

i(k, l) = (k − 1)Ny + l , (3.6)

k(i) =

⌈
i

Ny

⌉
(3.7)

and

l(i) = i−

⌈
i

Ny

⌉
Ny +Ny . (3.8)

Figure 3.1 right panel illustrates an y-oriented grid defined by Nx = 3 and Ny = 2.

In this example, the matrix coordinates x5 and y5, defined by the matrix index i = 5

(or j = 5), are equivalent to the grid coordinates x3 and y1, which are defined by

the grid indices k = 3 and l = 1, respectively. Differently from the example shown

in Figure 3.1 left panel, the grid indices of the present example are computed with

equations 3.7 and 3.8, by using the matrix index i = 5 (or j = 5).

Using equations 3.4 or 3.8 and 3.5 or 3.7 it is also possible to define a difference

between the grid indices:

∆lij = l(i)− l(j) , (3.9)

∆kij = k(i)− k(j) . (3.10)

In the following sections we will use this grid indices differences to represent the

sensitivity matrices both of gravity and magntic cases.
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Figure 3.1: Schematic representation of an Nx × Ny regular grid of points (black
dots) with Nx = 3 and Ny = 2, where each point has an associated index. This
index may represent i or j, that are associated with observation points (xi, yi, z0)
and equivalent sources (xj, yj, zc). Left panel shows an example of x-oriented grid,
with indices varying along x-axis, while right panel shows an example of y-oriented
grid, with indices varying along y-axis.

3.1.2 Elements of gravity sensitivity matrix for regular grids

To access the structure of the sensitivity matrixAg (equation 2.1), let us first rewrite

its elements aij (equation 2.2) by using equations 3.1 and 3.2, i.e.

aij =
cg G∆z[

(∆kij ∆x)2 + (∆lij ∆y)2 + (∆z)2
] 3

2

, (3.11)

where ∆z = zc − z0,

∆kij =
xi − xj

∆x

= k(i)− k(j) , (3.12)

∆lij =
yi − yj
∆y

= l(i)− l(j) (3.13)

and
1

rij
=

1√
(∆kij ∆x)

2 + (∆lij ∆y)
2 +∆2

z

. (3.14)

Note that the integer functions k(i), k(j), l(i) and l(j) (equations 3.5–3.8) defining

∆kij (equation 3.12), ∆lij (equation 3.13) and 1
rij

(equation 3.14) assume different

forms depending on the grid orientation. Despite of that, it can be shown that

∆kij = −∆kji , (3.15)
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∆lij = −∆lji (3.16)

and
1

rij
=

1

rji
(3.17)

for any grid orientation. Notice that the structure of matrix A (equation 2.1), for

the case in which its elements are given by aij (equation 3.11), is defined by the

coefficients ∆kij and ∆lij.

3.1.3 Elements of magnetic sensitivity matrix for regular

grids

To access the structure of the sensitivity matrix Am (equation 2.10), let us first

rewrite its elements aij (equation 2.6) in the following way:

aij = axxij + axyij + axzij + ayyij + ayzij + azzij , (3.18)

where

aαβij =

cm
µ0

4π
(Fαuβ)h

αβ
ij , α = β

cm
µ0

4π
(Fαuβ + Fβuα)h

αβ
ij , α ̸= β

, α, β = x, y, z , (3.19)

are defined by the elements of F̂ (equation 2.4), û (equation 2.7) and Hij (equations

2.8 and 2.9). Then, we can rewrite the sensitivity matrix Am (equation 2.10) as:

Am = Axx +Axy +Axz +Ayy +Ayz +Azz , (3.20)

where Aαβ are N ×M matrices with elements ij defined by aαβij (equation 3.19).

Now we can define the structure ofAm in terms of its componentsAαβ (equation

3.20). To do this, we consider the particular case in which the observed total-field

anomaly is located on an Nx × Ny regular grid of points spaced by ∆x and ∆y

along the x- and y-directions, respectively, on a constant vertical coordinate z0.

We also consider that the equivalent layer is formed by one dipole right below each

observation point, at a constant coordinate zc. In this case, the number of equivalent

sources M is equal to the number of data N and, consequently, matrices Am and

Aαβ become square (N ×N).

By using equations 3.1–3.8 to define the coordinates xi and yi of the observation

points and xj and yj of the equivalent sources, we can rewrite the elements hαβ
ij
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(equation 2.9) of matrix Hij (equation 2.8) as follows:

hxx
ij =

3 (∆kij ∆x)
2

r5ij
− 1

r3ij
, (3.21)

hyy
ij =

3 (∆lij ∆y)
2

r5ij
− 1

r3ij
, (3.22)

hzz
ij =

3∆2
z

r5ij
− 1

r3ij
, (3.23)

hxy
ij =

3 (∆kij ∆x) (∆lij ∆y)

r5ij
, (3.24)

hxz
ij =

3 (∆kij ∆x)∆z

r5ij
(3.25)

and

hyz
ij =

3 (∆lij ∆y)∆z

r5ij
. (3.26)

3.2 General structure of sensitivity matrices

For x-oriented grids, the coefficients ∆kij and ∆lij are computed by using equations

3.5 and 3.4, respectively. In this case, Ag, Am or Aαβ (equations 2.1, 2.10 or 3.20)

are composed of Ny ×Ny blocks, where each block is formed by Nx ×Nx elements.

For y-oriented grids, the coefficients ∆kij and ∆lij are computed by using equations

3.7 and 3.8, respectively. In this case, Ag, Am or Aαβ (equations 2.1, 2.10 or 3.20)

are composed of Nx×Nx blocks, where each block is formed by Ny×Ny elements. In

all cases, the matrices are Toeplitz blockwise, i.e., the blocks lying at the same block

diagonal are equal to each other and each block are Toeplitz matrices themselves.

Matrices with this well-defined pattern are called Doubly Block Toeplitz (JAIN,

1989, p. 28) or Block-Toeplitz Toeplitz-Block (BTTB), for example. We opted for

using the second term.

This well-defined pattern is better represented by using the block indices q and

p. For x-oriented grids (Figure 3.1 left panel), Q = Ny, P = Nx and the block

indices q and p are given by:

q ≡ q(i, j) = ∆lij (3.27)

and

p ≡ p(i, j) = ∆kij , (3.28)

where ∆kij and ∆lij (equations 3.15 and 3.16) are defined by integer functions k(i),

k(j), l(i) and l(j) given by equations 3.5 and 3.4. For y-oriented grids (Figure 3.1
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right panel), Q = Nx, P = Ny and the block indices q and p are given by:

q ≡ q(i, j) = ∆kij (3.29)

and

p ≡ p(i, j) = ∆lij , (3.30)

where ∆kij and ∆lij (equations 3.12 and 3.13) are defined by integer functions k(i),

k(j), l(i) and l(j) given by equations 3.7 and 3.8. Equations 3.27–3.30 show that q

varies from −Q + 1 to Q − 1 and p from −P + 1 to P − 1, regardless of the grid

orientation.

Let us consider the small regular grid of Nx = 3 and Ny = 2 points shown by

Figure 3.1. This grid may represent observation points (xi, yi, z0) with constant

vertical coordinate z0 or equivalent sources (xj, yj, zc) with constant vertical coor-

dinate zc > z0. In both cases, the horizontal coordinates are defined by equations

3.1 and 3.2. Given an index i, associated with an observation point, and an index

j, associated with an equivalent source, we can compute ∆kij (equation 3.12), ∆lij

(equation 3.13) and 1
rij

(equation 3.14). The matrices ∆K and ∆L having elements

ij defined by ∆kij and ∆lij, respectively, assume different forms, depending on the

grid orientation. For x-oriented grids (Figure 3.1 left panel), they are given by:

∆K =



0 −1 −2 0 −1 −2

1 0 −1 1 0 −1

2 1 0 2 1 0

0 −1 −2 0 −1 −2

1 0 −1 1 0 −1

2 1 0 2 1 0


(3.31)

and

∆L =



0 0 0 −1 −1 −1

0 0 0 −1 −1 −1

0 0 0 −1 −1 −1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0


. (3.32)
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For y-oriented grids (Figure 3.1 right panel), they are given by:

∆K =



0 0 −1 −1 −2 −2

0 0 −1 −1 −2 −2

1 1 0 0 −1 −1

1 1 0 0 −1 −1

2 2 1 1 0 0

2 2 1 1 0 0


(3.33)

and

∆L =



0 −1 0 −1 0 −1

1 0 1 0 1 0

0 −1 0 −1 0 −1

1 0 1 0 1 0

0 −1 0 −1 0 −1

1 0 1 0 1 0


. (3.34)

For example, consider the matrix coordinates x5, y5 for the observation point and

x3, y3 for the source in a x-oriented grid, these are defined by the matrix index i = 5

and j = 3. Using equations 3.5 and 3.4 the grid indices k(i) = 2, l(i) = 2 and

k(j) = 3, l(j) = 1 can be calculated. Equations 3.12 and 3.13 define ∆kij = −1

and ∆lij = 1, which represents the the value in the fifth row and third column of

matrices ∆K and ∆L (equations 3.31 and 3.32), respectively. Using the matrix

coordinates x4 (y4) for the observation point and x2 (y2) for the source, lead us to

the same values for ∆kij and ∆lij (fourth row and second column of equations 3.31

and 3.32). These examples (equations 3.31–3.34) show that different combinations

of indices i and j result in integer functions ∆kij and ∆lij (equations 3.12 and 3.13)

having the same numerical value. In these cases, not only the numerical values of the

corresponding elements aαβij (equation 3.19), but also their associated block indices

q and p (equations 3.27–3.30) are the same. The contrary is also true: elements

aαβij having different associated block indices q and p also have different numerical

values. Because of that, using the alternative notation aαβqp to define the elements aαβij
in terms of its associated block indices q and p is a good approach to investigating

the structure of a given matrix component Aαβ (equation 3.20). This approach

allows identifying elements aαβij having the same numerical value only by inspecting

their associated block indices.

Note that, for x-oriented grids, matrices ∆K (equation 3.31) and ∆L (equation

3.32) define the block indices p (equation 3.28) and q (equation 3.27), respectively.

In this case, they are composed of Q × Q blocks with P × P elements each, where

Q = Ny and P = Nx. For y-oriented grids, matrices ∆K (equation 3.33) and ∆L
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(equation 3.34) define the block indices q (equation 3.29) and p (equation 3.30),

respectively. In this case, they are also composed of Q × Q blocks with P × P

elements each, but now Q = Nx and P = Ny. The examples shown by equations

3.31–3.34 also illustrate that, regardless of grid orientation, (i) the block index q is

constant inside each block; (ii) blocks disposed along the same block diagonal are

equal to each other; (iii) the block index p is constant on each diagonal of a given

block; (iv) elements of a given block located on the same diagonal are also equal

do each other. The results obtained with the small grid shown in Figure 3.1 can

be easily generalized for larger grids. Based on the well-defined structure of block

indices, we can define matrices Ag, Am or Aαβ in a general form

Ag, Am, Aαβ ≡ A =


A0 A−1 · · · A−Q+1

A1 . . . . . .
...

...
. . . . . . A−1

AQ−1 · · · A1 A0


N×N

, (3.35)

with blocks Aq
g, A

q
m or Aq

αβ, q = −Q+ 1, . . . , Q− 1, given by

Aq
g, A

q
m, Aq

αβ ≡ Aq =


aq0 aq(−1) · · · aq(−P+1)

aq1
. . . . . .

...
...

. . . . . . aq(−1)

aq(P−1) · · · aq1 aq0


P×P

, (3.36)

formed by elements agqp, a
m
qp or aαβqp , p = −P + 1, . . . , P − 1.

3.3 Detailed structure of the sensitivity matrices

3.3.1 Detailed structure of the gravity sensitivity matrix

From equations 3.35 and 3.36 we can define the structure of matrix Ag (equa-

tion 2.1). Considering the elements agij (equation 2.2), defined by the first vertical

derivative of equation 2.3, it is possible to verify from equations 3.15 and 3.17 that

agij = agji. As a consequence

Ag = (Ag)
⊤ , (3.37)

for both x- and y-oriented grids. Using a x-oriented grid (Figure 3.1 left panel), the

block indices q and p are defined by equations 3.27 and 3.28 and agqp can be rewritten

as follows

agqp =
cg G∆z

[(p∆x)2 + (q∆y)2 +∆2
z]

3
2

, (3.38)
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where ∆z = zc − zi.

For y-oriented grids (Figure 3.1 right panel), the block indices q and p are defined

by equations 3.29 and 3.30 thus, agqp becomes

agqp =
cg G∆z

[(q∆x)2 + (p∆y)2 +∆2
z]

3
2

. (3.39)

Equations 3.38 and 3.39 show us that

Aq
g = A(−q)

g , (3.40)

which demonstrates the symmetry by blocks of matrix Ag and

Aq
g =

(
Aq

g

)⊤
, (3.41)

that demonstrates the symmetry inside the blocks of matrix Ag. Therefore, Ag has

a strucuture of a symmetric-Block-Toeplitz symmetric-Toeplitz-Block matrix for x-

and y-orientation grids. Using the symmetry presented in equations 3.40 and 3.41,

the gravity sensitiviry matrix from equations 3.35 and 3.36 can be rewritten as

Ag =


A0 A1 · · · AQ−1

A1 . . . . . .
...

...
. . . . . . A1

AQ−1 · · · A1 A0


N×N

, (3.42)

with blocks Aq
g, q = −Q+ 1, . . . , Q− 1, given by

Aq
g =


aq0 aq(1) · · · aq(P−1)

aq1
. . . . . .

...
...

. . . . . . aq(1)

aq(P−1) · · · aq1 aq0


P×P

. (3.43)

Figures 3.2 and 3.3 shows a example of this type of BTTB matrix structure for

a 3× 2 x- and y-oriented grids, respectively.
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Figure 3.2: Example of a symmetric-Block-Toeplitz symmetric-Toeplitz-Block ma-
trix for 3 × 2 x-oriented grid. This matrix represents the structure of the gravity
sensitivity matrix Ag.
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Figure 3.3: Example of a symmetric-Block-Toeplitz symmetric-Toeplitz-Block ma-
trix for 3 × 2 y-oriented grid. This matrix represents the structure of the gravity
sensitivity matrix Ag.

3.3.2 Detailed structure of matrices Axx , Ayy and Azz

The direct second derivatives matrices Axx , Ayy and Azz have the same stru-

cuture of the gravity sensitivity matrix. Equations 3.35 and 3.36 also define the

general BTTB structure of all matrix components Aαβ, but there are some differ-

ences between them. Let us consider the matrix component Axx, with elements axxij

(equation 3.19) defined by the second derivative hxx
ij (equation 3.21). It can be easily

verified from equations 3.15 and 3.17 that hxx
ij = hxx

ji . As a consequence, axxij = axxji ,

which means that

Axx = (Axx)
⊤ (3.44)

for any grid orientation. Now, let us investigate the elements axxqp forming the blocks

Aq
xx. For x-oriented grids (Figure 3.1 left panel), the block indices q and p are

defined by equations 3.27 and 3.28 and axxqp can be rewritten as follows:

axxqp = cm
µ0

4π
(Fxux)

3 (p∆x)
2

r5qp
− 1

r3qp
, (3.45)
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where
1

rqp
=

1√
(p∆x)

2 + (q∆y)
2 +∆2

z

. (3.46)

For y-oriented grids (Figure 3.1 right panel), the block indices q and p are defined

by equations 3.29 and 3.30 and axxqp can be rewritten as follows:

axxqp = cm
µ0

4π
(Fxux)

3 (q∆x)
2

r5qp
− 1

r3qp
, (3.47)

where
1

rqp
=

1√
(q∆x)

2 + (p∆y)
2 +∆2

z

. (3.48)

From equations 3.45–3.48, we can easily verify that

Aq
xx = A(−q)

xx (3.49)

and

Aq
xx = (Aq

xx)
⊤ . (3.50)

Note that these symmetries are valid for any grid orientation. From this results

we conclude the matrix component Axx is symmetric-Block-Toeplitz symmetric-

Toeplitz-Block for any grid orientation. The same reasoning can be used to show

that matrices Ayy and Azz also have this symmetric structure. Figure 3.4 panels

a), d) and f) show examples of this type of BTTB matrices structures when 3 × 2

x-oriented grids are used for Axx, Ayy and Azz, respectively. Figure 3.5 panels

a), d) and f) show examples of this type of BTTB matrices structures when 3 × 2

y-oriented grids are used for Axx, Ayy and Azz, respectively.
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Figure 3.4: This figure shows examples of all the BTTB structures possible for Aαβ

matrix when 3 × 2 x-oriented grids are used. Panel a) Example of a symmetric-
Block-Toeplitz symmetric-Toeplitz-Block structure of the Axx matrix. Panel b) Ex-
ample of a skew symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block structure
of theAxy matrix. Panel c) Example of a symmetric-Block-Toeplitz skew symmetric-
Toeplitz-Block structure of the Axz matrix for x-oriented grids. Panel d) Example
of a symmetric-Block-Toeplitz symmetric-Toeplitz-Block structure of the Ayy ma-
trix. Panel e) Example of a skew symmetric-Block-Toeplitz symmetric-Toeplitz-Block
structure of the Ayz matrix for x-oriented grids. Panel f) Example of a symmetric-
Block-Toeplitz symmetric-Toeplitz-Block structure of the Azz matrix.
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Figure 3.5: This figure shows examples of all the BTTB structures possible for Aαβ

matrix when 3 × 2 y-oriented grids are used. Panel a) Example of a symmetric-
Block-Toeplitz symmetric-Toeplitz-Block structure of the Axx matrix. Panel b) Ex-
ample of a skew symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block structure
of theAxy matrix. Panel c) Example of a skew symmetric-Block-Toeplitz symmetric-
Toeplitz-Block structure of the Axz matrix for y-oriented grids. Panel d) Example
of a symmetric-Block-Toeplitz symmetric-Toeplitz-Block structure of the Ayy ma-
trix. Panel e) Example of a symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block
structure of the Ayz matrix for y-oriented grids. Panel f) Example of a symmetric-
Block-Toeplitz symmetric-Toeplitz-Block structure of the Azz matrix.

3.3.3 Detailed structure of matrix Axy

Let Axy be a matrix component with elements axyij (equation 3.19) defined by the

second derivative hxy
ij (equation 3.24). It can be easily verified from equations 3.15–

3.17 that hxy
ij = hxy

ji . As a consequence, axyij = axyji , which means that

Axy = (Axy)
⊤ (3.51)
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for any grid orientation. For x-oriented grids (Figure 3.1 left panel), the block indices

q and p are defined by equations 3.27 and 3.28 and axyqp can be rewritten as follows:

axyqp = cm
µ0

4π
(Fxuy + Fyux)

3 (p∆x) (q∆y)

r5qp
, (3.52)

with 1
rqp

defined by equation 3.46. For y-oriented grids (Figure 3.1 right panel), the

block indices q and p are defined by equations 3.29 and 3.30 and axyqp can be rewritten

as follows:

axyqp = cm
µ0

4π
(Fxuy + Fyux)

3 (q∆x) (p∆y)

r5qp
, (3.53)

with 1
rqp

defined by equation 3.48. From equations 3.46, 3.48, 3.52 and 3.53, we can

show that

Aq
xy = −A(−q)

xy (3.54)

and

Aq
xy = −

(
Aq

xy

)⊤
. (3.55)

Note that these symmetries are valid for any grid orientation. From this results

we conclude the matrix component Axy is skew symmetric-Block-Toeplitz skew

symmetric-Toeplitz-Block for any grid orientation. Figure 3.4 panel b) shows a

example of this type of BTTB matrix structure for 3 × 2 x-oriented grids. Figure

3.5 panel b) shows a example for 3× 2 y-oriented grids.

3.3.4 Detailed structure of matrices Axz and Ayz

Let Axz be a matrix component with elements axzij (equation 3.19) defined by the

second derivative hxz
ij (equation 3.25). It can be easily verified from equations 3.15–

3.17 that hxz
ij = −hxz

ji . As a consequence, axzij = −axzji , which means that

Axz = − (Axz)
⊤ (3.56)

for any grid orientation. For x-oriented grids (Figure 3.1 left panel), the block indices

q and p are defined by equations 3.27 and 3.28 and axzqp can be rewritten as follows:

axzqp = cm
µ0

4π
(Fxuz + Fzux)

3 (p∆x)∆z

r5qp
, (3.57)

with 1
rqp

defined by equation 3.46. In this case, we can see that

Aq
xz = A(−q)

xz (3.58)
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and

Aq
xz = − (Aq

xz)
⊤ . (3.59)

This structure is called symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block and

is valid only for x-oriented grids. For y-oriented grids (Figure 3.1 right panel), the

block indices q and p are defined by equations 3.29 and 3.30 and axzqp can be rewritten

as follows:

axzqp = cm
µ0

4π
(Fxuz + Fzux)

3 (q∆x)∆z

r5qp
, (3.60)

with 1
rqp

defined by equation 3.48. Now, we conclude that

Aq
xz = −A(−q)

xz (3.61)

and

Aq
xz = (Aq

xz)
⊤ . (3.62)

This structure is called skew symmetric-Block-Toeplitz symmetric-Toeplitz-Block and

is valid only for y-oriented grids.

The same reasoning can be followed to show that

Ayz = − (Ayz)
⊤ (3.63)

for any grid orientation. Besides, we can also show that

Aq
yz = −A(−q)

yz (3.64)

and

Aq
yz =

(
Aq

yz

)⊤
(3.65)

for x-oriented grids (skew symmetric-Block-Toeplitz symmetric-Toeplitz-Block), while

Aq
yz = A(−q)

yz (3.66)

and

Aq
yz = −

(
Aq

yz

)⊤
(3.67)

for y-oriented grids (symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block). Fig-

ure 3.4 panels c) and e) show examples of this type of BTTB matrix structure for

3×2 x-oriented grids. Figure 3.5 panels c) and e) show examples for 3×2 y-oriented

grids
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3.4 BTTB matrix-vector product

3.4.1 BTTBmatrix-vector product for gravimetric data pro-

cessing

The matrix-vector product Agp̃
k (equation 2.17) required by the fast equivalent-

layer technique (SIQUEIRA et al., 2017) accounts for most of its total computation

time and can cause computer memory shortage when large data sets are used. This

computational load can be drastically reduced by exploring the well-defined struc-

ture of matrix Ag (equation 2.1) for the particular case in which its elements aij are

defined by equation 3.11. In this case, Ag is a symmetric BTTB matrix (equations

3.37 and 3.40–3.41) and the predicted data vector d(p) (equation 2.1) can be effi-

ciently computed by using the 2D Discrete Fourier Transform (DFT). To do this,

let us first rewrite d(p) and pg (equation 2.1) as the following partitioned vectors:

d(p) =


d0(p)

...

dQ−1(p)


N×1

(3.68)

and

p =


p0

...

pQ−1


N×1

, (3.69)

where dq(p) and pq, q = 0, . . . , Q − 1, are P × 1 vectors. Notice that q is the

block index defined by equations 3.27 and 3.29, Q defines the number of blocks Aq
g

(equation 3.36) forming Ag (equation 2.1) and P defines the number of elements

forming each block Aq
g. Then, by using the partitioned vectors (equations 3.69 and

3.68) and remembering that N = QP , we define the auxiliary linear system

w = Cv , (3.70)

where

w =


w0

...

wQ−1

02N×1


4N×1

, (3.71)

wq =

[
dq(p)

0P×1

]
2P×1

, (3.72)
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v =


v0

...

vQ−1

02N×1


4N×1

, (3.73)

and

vq =

[
pq

0P×1

]
2P×1

, (3.74)

with dq(p) and pq defined by equations 3.68 and 3.69, respectively. Finally C

(equation 3.70) is a 4N × 4N symmetric Block Circulant matrix with Circulant

Blocks (BCCB) (DAVIS, 1979, p. 184). Matrix C (equation 3.70) is circulant

blockwise, formed by 2Q × 2Q blocks, where each block Cq, q = 0, . . . , Q − 1, is

a 2P × 2P circulant matrix. Similarly to the BTTB matrix Ag (equation 3.42),

the index q varies from 0 to Q − 1. Additionally, the blocks lying above the main

diagonal are equal to those located below.

It is well-known that a circulant matrix can be defined by properly downshifting

its first column (VAN LOAN, 1992, p. 206). Hence, the BCCB matrix C (equation

3.70) can be obtained from its first column of blocks, which is given by

[C](0) =



C0

...

CQ−1

0

CQ−1

...

C1


4N×2P

, (3.75)

where 0 is a 2P × 2P matrix of zeros. Similarly, each block Cq, q = 0, . . . , Q − 1,

can be obtained by downshifting its first column

cq0 =



aq0
...

aqP−1

0

aqP−1
...

aq1


2P×1

, (3.76)

where aqp (equation 3.39), p = 0, . . . , P − 1, are the elements forming the block Aq
g

(equation 3.43). The downshift can be thought off as permutation that pushes the
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components of a column vector down one notch with wraparound (GOLUB and

LOAN, 2013, p. 20). To illustrate this operation, consider our y-oriented grid

illustrated in the right panel of Figure 3.1. In this case, the resulting BCCB matrix

C (equation 3.70) is given by

C =



C0 C1 C2 C3 0 C3 C2 C1

C1 C0 C1 C2 C3 0 C3 C2

C2 C1 C0 C1 C2 C3 0 C3

C3 C2 C1 C0 C1 C2 C3 0

0 C3 C2 C1 C0 C1 C2 C3

C3 0 C3 C2 C1 C0 C1 C2

C2 C3 0 C3 C2 C1 C0 C1

C1 C2 C3 0 C3 C2 C1 C0


4N×4N

, (3.77)

where each block Cq, q = 0, 1, 2, 3, is represented as follows

Cq =



aq0 aq1 aq2 0 aq2 aq1

aq1 aq0 aq1 aq2 0 aq2

aq2 aq1 aq0 aq1 aq2 0

0 aq2 aq1 aq0 aq1 aq2

aq2 0 aq2 aq0 aq0 aq1

aq1 aq2 0 aq2 aq1 aq0


2P×2P

(3.78)

in terms of the block elements aqp (equation 3.39). Similar matrices are obtained for

our x-oriented grid illustrated in Figure 3.1a.

BCCB matrices are diagonalized by the 2D unitary DFT (DAVIS, 1979, p. 185).

It means that C (equation 3.70) satisfies

C = (F2Q ⊗ F2P )
∗Λ (F2Q ⊗ F2P ) , (3.79)

where the symbol “⊗” denotes the Kronecker product (NEUDECKER, 1969), F2Q

and F2P are the 2Q × 2Q and 2P × 2P unitary DFT matrices (DAVIS, 1979, p.

31), respectively, the superscritpt “∗” denotes the complex conjugate and Λ is a

4QP × 4QP diagonal matrix containing the eigenvalues of C.

What follows shows a step-by-step description of how we use the auxiliary sys-

tem (equation 3.70) to compute the matrix-vector product Agp̃
k (equation 2.17) in

a computationally efficient way by exploring the structure of matrix C. By sub-

stituting equation 3.79 in the auxiliary system (equation 3.70) and premultiplying
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both sides of the result by (F2Q ⊗ F2P ) (see the details in section 3.4.2), we obtain

Λ (F2Q ⊗ F2P )v = (F2Q ⊗ F2P )w . (3.80)

Now, by applying the vec-operator to both sides of equation 3.80 (see the details

in section 3.4.3), we obtain:

F∗
2Q [L ◦ (F2QVF2P )]F

∗
2P = W , (3.81)

where “◦” denotes the Hadamard product (HORN and JOHNSON, 1991, p. 298)

and L, V and W are 2Q× 2P matrices obtained by rearranging, along their rows,

the elements forming the diagonal of matrix Λ, vector v and vector w, respectively.

The left side of equation 3.81 contains the 2D Inverse Discrete Fourier Transform

(IDFT) of the term in brackets, which in turn represents the Hadamard product of

matrix L (equation 3.112) and the 2D DFT of matrix V (see equations 3.112 and

3.110 in section 3.4.3). Matrix L contains the eigenvalues of Λ (equation 3.79) and

can be efficiently computed by using only the first column of the BCCB matrix C

(equation 3.70) (see the details in section 3.4.4). Here, we evaluate equation 3.81

and compute matrix L by using the 2D Fast Fourier Transform (2D FFT). This

approach, that have been used in potential-field methods (e.g., QIANG et al., 2019;

ZHANG and WONG, 2015; ZHANG et al., 2016), is actually a fast 2D discrete

convolution (e.g., VAN LOAN, 1992, p. 213).

At each iteration kth of the fast equivalent-layer technique, (equation 2.17), we

efficiently compute Agp̃
k = d(p̃k) by following the steps below:

(1) Use equation 3.11 to compute the first column of each block Aq
g (equation

3.43), q = 0, . . . , Q− 1, forming the BTTB matrix Ag (equation 3.42);

(2) Rearrange the first column of Ag according to equations 3.75 and 3.76 to

obtain the first column c0 of the BCCB matrix C (equation 3.70);

(3) Rearrange c0 along the rows and use the 2D FFT to compute matrix L (equa-

tion 3.116, section 3.4.3);

(4) Rearrange the parameter vector p̃k (equation 2.1) in its partitioned form (equa-

tion 3.69) to define the auxiliary vector v (equation 3.73);

(5) Rearrange v to obtain matrix V, use the 2D FFT to compute its DFT and

evaluate the left side of equation 3.113(see section 3.4.3);

(6) Use the 2D FFT to compute the IDFT of the result obtained in step (5) to

obtain the matrix W (equation 3.81);
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(7) Use the vec-operator (equation 3.103, section 3.4.3) and equations 3.71 and

3.72 to rearrange W in order to obtain the predicted data vector d(p̃k).

3.4.2 BTTB matrix-vector product for magnetic data pro-

cessing

To efficiently compute the product of the sensitivity matrix Am (equation 2.10) and

a generic vector b for the magnetic equivalent layer let this product be represented

by

t = Am b , (3.82)

where

t = txx + txy + txz + tyy + tyz + tzz (3.83)

and

tαβ = Am
αβ b . (3.84)

Let us also consider that vectors

tαβ =


t0αβ
...

tQ−1
αβ


N×1

(3.85)

and

b =


b0

...

bQ−1


N×1

(3.86)

are composed of P × 1 vectors tqαβ and bq, respectively, where q is the block index

(equations 3.27 and 3.29). From equation 3.84, we obtain an auxiliary matrix-vector

product given by

wαβ = Cαβ v , (3.87)

where Cαβ is a 4N ×4N block circulant matrix with circulant blocks (BCCB) (e.g.,

DAVIS, 1979, p. 184),

wαβ =


w0

αβ
...

wQ−1
αβ

02N×1


4N×1

, (3.88)

wq
αβ =

[
tqαβ

0P×1

]
2P×1

, (3.89)
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v =


v0

...

vQ−1

02N×1


4N×1

(3.90)

and

vq =

[
bq

0P×1

]
2P×1

, (3.91)

with 02N×1 and 0P×1 being vectors of zeros. As shown in section 3.4.1 the auxiliary

matrix-vector product (equation 3.87) represents a 2D discrete convolution and can

also be efficiently computed by using the 2D Fast Fourier Transform (2D FFT).

The BCCB matrix Cαβ (equation 3.87) is formed by 2Q×2Q blocks, where each

block Cq
αβ is a 2P × 2P circulant matrix. The entire BCCB matrix Cαβ is defined

by properly downshifting its first block column

[Cαβ](0) =



C0
αβ
...

CQ−1
αβ

02P×2P

C−Q+1
αβ
...

C−1
αβ


4N×2P

, (3.92)

where 02P×2P is a matrix of zeros. Similarly, each block Cq
αβ, q = −Q+1, . . . , Q−1,

is obtained by properly downshifting its first column

cqαβ =



aαβq0
...

aαβq(P−1)

0

aαβq(−P+1)
...

aαβq(−1)


2P×1

, (3.93)

where aαβqp , p = −P + 1, . . . , P − 1, are the elements of matrix component Aαβ

described in terms of block indices q and p (equations 3.27–3.30). The BCCB matrix

Cαβ is diagonalized by F2Q ⊗F2P , where “⊗” denotes the Kronecker product (e.g.,

HORN and JOHNSON, 1991, p. 242) and F2Q and F2P are the 2Q × 2Q and

2P × 2P unitary DFT matrices (DAVIS, 1979, p. 31). Due to this property, the
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auxiliary matrix-vector product (equation 3.87) can be computed as follows

F∗
2Q [Lαβ ◦ (F2QVF2P )]F

∗
2P = Wαβ , (3.94)

where “◦” denotes the Hadamard (element-wise) product (e.g., HORN and JOHN-

SON, 1991, p. 298), “∗” denotes the complex conjugate, Wαβ and V are 2Q× 2P

matrices obtained by rearranging, respectively, vectors wαβ (equation 3.88) and v

(equation 3.90) along their rows and Lαβ is a 2Q× 2P matrix given by

Lαβ =
√

4QP F2QGαβ F2P , (3.95)

with

Gαβ =



(
c0αβ

)⊤
...(

cQ−1
αβ

)⊤

01×2P(
c−Q+1
αβ

)⊤

...(
c−1
αβ

)⊤


2Q×2P

, (3.96)

defined by the first columns cqαβ (equation 3.93), q = −Q + 1, . . . , Q − 1, of all

circulant blocks Cq
αβ (equation 3.92). Hence, the whole BCCB matrix Cαβ does

not have to be formed, but only its first column. Besides, the symmetries defined by

equations 3.44–3.67 imply that all elements of Gαβ can be obtained by using only

the first column of Aαβ. Consequently, the whole matrices Aαβ do not have to be

formed as well, but only their first columns.

It is important noting that the left side of equation 3.94 represents the 2D Inverse

Discrete Fourier Transform (2D IDFT) of the term in brackets. This term, in turn,

represents the Hadamard product of Lαβ (equation 3.95) and the 2D Discrete Fourier

Transform (2D DFT) of V. Similarly, equation 3.95 shows that Lαβ is obtained by

computing the 2D DFT of matrix Gαβ (equation 3.96). Hence, equations 3.94 and

3.95 can be efficiently computed by using the 2D FFT. After that, the elements

of vector tαβ (equation 3.84) can be retrieved from the first quadrant of matrix

Wαβ (equation 3.94). By combining the results obtained for all components αβ,

α,β = x,y, z, we can show that

F∗
2Q [L ◦ (F2QVF2P )]F

∗
2P = W , (3.97)

where

W = Wxx +Wxy +Wxz +Wyy +Wyz +Wzz (3.98)
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and

L = Lxx + Lxy + Lxz + Lyy + Lyz + Lzz , (3.99)

with Lαβ defined by equation 3.95. Then, the elements of t (equation 3.82) are

obtained from the first quadrant of W (equations 3.97 and 3.99).

Finally, it can be shown that the product

t = Am
⊤b (3.100)

can be computed by using equation 3.97. The difference is that, in this case, matrices

Gαβ (equation 3.96) are defined by using the new vectors

cqαβ =



aαβq0
...

aαβq(−P+1)

0

aαβq(P−1)
...

aαβq1


2P×1

. (3.101)

3.4.3 Computations with the 2D DFT

In the present section, we deduce equations 3.81 and 3.95 by using the row-ordered

vec-operator (here designated simply as vec-operator). This equation can be ef-

ficiently computed by using the 2D fast Fourier Transform. This operator was

implicitly used by JAIN (1989, p. 31) to show the relationship between Kronecker

products and separable transformations. The vec-operator defined here transforms

a matrix into a column vector by stacking its rows.

Let M be an arbitrary N ×M matrix given by:

M =


m⊤

1
...

m⊤
N

 , (3.102)

where mi, i = 1, . . . , N , are M × 1 vectors containing the rows of M. The elements

of this matrix can be rearranged into a column vector by using the vec-operator

(JAIN, 1989, p. 31) as follows:

vec (M) =


m1

...

mN


NM×1

. (3.103)
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This rearrangement is known as lexicographic ordering (JAIN, 1989, p. 150).

Two important properties of the vec-operator (equation 3.103) are necessary to

us. To define the first one, consider an N ×M matrix H given by

H = P ◦Q , (3.104)

where P and Q are arbitrary N × M matrices and “◦” represents the Hadamard

product (HORN and JOHNSON, 1991, p. 298). By applying the vec-operator to

H (equation 3.104), it can be shown that

vec (H) = vec (P) ◦ vec (Q) . (3.105)

To define the second important property of vec-operator, consider an N×M matrix

S defined by the separable transformation JAIN (1989, p. 31):

S = PMQ , (3.106)

where P andQ are arbitrary N×N andM×M matrices, respectively. By implicitly

applying the vec-operator to the S (equation 3.106), JAIN (1989, p. 31) showed

that:

vec (S) =
(
P⊗Q⊤) vec (M) , (3.107)

where “⊗” denotes the Kronecker product (NEUDECKER, 1969). It is important

to stress the difference between equation 3.107 and that presented by NEUDECKER

(1969), which is more commonly found in the literature. While that equation uses a

vec-operator that transforms a matrix into a column vector by stacking its columns,

equation 3.107 uses the vec-operator defined by equation 3.103, which transforms a

matrix into a column vector by stacking its rows.

Now, let us deduce equations 3.81 and 3.95 by using the above-defined properties

(equation 3.105 and 3.107). We start calling attention to the right side of equation

3.80. Consider that vector w (equation 3.80) is obtained by applying the vec-

operator (equation 3.103) to a matrix W, whose 2D DFT W̃ is represented by the

following separable transformation (JAIN, 1989, p. 146):

W̃ = F2Q WF2P , (3.108)

where F2Q and F2P are the 2Q × 2Q and 2P × 2P unitary DFT matrices. Using

equation 3.107 and the symmetry of unitary DFT matrices, we rewrite the right side

of equation 3.80 as follows:

vec
(
W̃

)
= (F2Q ⊗ F2P ) vec (W) . (3.109)
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Similarly, consider that v (equation 3.80) is obtained by applying the vec-operator

(equation 3.103) to a matrix V, whose 2D DFT (equation 3.108) is represented by

Ṽ. Using equation 3.107 and the symmetry of unitary DFT matrices, we can rewrite

the left side of equation 3.80 as follows:

Λ vec
(
Ṽ
)
= Λ (F2Q ⊗ F2P ) vec (V) . (3.110)

Note that both sides of equation 3.110 are defined as the product of the diagonal

matrix Λ (equation 3.79) and a vector. In this case, the matrix-vector product can

be conveniently replaced by

λ ◦ vec
(
Ṽ
)
= λ ◦ (F2Q ⊗ F2P ) vec (V) , (3.111)

where λ is a 4QP × 1 vector containing the diagonal of Λ (equation 3.79). Then,

consider that λ is obtained by applying the vec-operator (equation 3.103) to a

2Q× 2P matrix L, we can use equations 3.105 and 3.107 to rewrite equation 3.111

as follows:

vec
(
L ◦ Ṽ

)
= vec [L ◦ (F2QVF2P )] . (3.112)

Equations 3.108, 3.109 and 3.112 show that equation 3.80 is obtained by applying

the vec-operator to

L ◦ (F2QVF2P ) = F2QWF2P . (3.113)

Finally, we premultiply both sides of equation 3.113 by F∗
2Q and then postmultiply

both sides of the result by F∗
2P to deduce equation 3.81.

3.4.4 The eigenvalues of C

In the present section, we show how to efficiently compute matrix L (equations

3.112, 3.113, 3.81 and 3.95) by using only the first column of the BCCB matrix C

(equations 3.70 and 3.87).

We need first premultiply both sides of equation 3.79 by (F2Q ⊗ F2P ) to obtain

(F2Q ⊗ F2P )C = Λ (F2Q ⊗ F2P ) . (3.114)

From equation 3.114, we can easily show that (CHAN and JIN, 2007, p. 77):

(F2Q ⊗ F2P ) c0 =
1√
4QP

λ , (3.115)

where c0 is a 4QP × 1 vector representing the first column of C (equations 3.70 and

3.87) and λ (equation 3.111) is the 4QP × 1 vector that contains the diagonal of

matrix Λ (equation 3.79) and is obtained by applying the vec-operator (equation
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3.103) to matrix L. Now, let us conveniently consider that c0 is obtained by applying

the vec-operator to a 2Q × 2P matrix G. Using this matrix, the property of the

vec-operator for separable transformations (equation 3.106) and the symmetry of

unitary DFT matrices, equation 3.115 can be rewritten as follows

F2Q GF2P =
1√
4QP

L . (3.116)

This equation shows that the eigenvalues of the BCCB matrix C (equations 3.70

and 3.87), forming the rows of L, are obtained by computing the 2D DFT of matrix

G, which contains the elements forming the first column of the BCCB matrix C

(equations 3.70 and 3.87).

3.5 Convolutional equivalent-layer processing

3.5.1 Convolutional equivalent layer for gravity data pro-

cessing

In a normal procedure of the fast equivalent layer proposed by SIQUEIRA et al.

(2017), at each iteration a full matrix Ag (equation 2.1 and 3.42) is multiplied by

the estimated mass distribution parameter vector p̃k producing the predicted gravity

data d(p) iteratively. By substituting this matrix-vector product following the steps

from section 3.4.4 we will improve the computational efficiency of the technique.

3.5.2 Computational performance for gravity data process-

ing

The number of flops (floating-point operations) necessary to estimate the N × 1

parameter vector p in the fast equivalent-layer technique (SIQUEIRA et al., 2017)

is

f0 = N it(3N + 2N2) , (3.117)

where N it is the number of iterations. In this equation, the term 2N2 is associated

with the matrix-vector product Agp̃
k (equation 2.17) and accounts for most of

the computational complexity of this method. Our method replace this matrix-

vector product by three operations: one DFT, one Hadamard product and one

IDFT involving 2Q × 2P matrices (left side of equation 3.81). The Hadamard

product requires 24N flops, N = QP , because the entries are complex numbers.

We consider that a DFT/IDFT requires κ 4N log2(4N) flops to be computed via 2D

FFT, where κ is a constant depending on the algorithm. Then, the resultant flops
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count of our method is given by:

f1 = N it [27N + κ 8N log2(4N)] . (3.118)

Figure 3.6 shows the flops counts f0 and f1 (equations 3.117 and 3.118) associated

with the fast equivalent-layer technique (SIQUEIRA et al., 2017) and our method,

respectively, as a function of the number N of observation points. We considered a

fixed number of N it = 50 iterations and κ = 5 (equation 3.118), which is compatible

with a radix-2 FFT (VAN LOAN, 1992, p. 16). As we can see, the number of flops

is drastically decreased in our method.

Figure 3.6: Comparison between the number of flops (equations 3.117 and 3.118)
associated with the fast equivalent-layer technique (SIQUEIRA et al., 2017) and
our method, for N varying from 5, 000 to 1, 000, 000. All values are computed with
N it = 50 iterations and κ = 5.

Another advantage of our method is concerned with the real N ×N matrix Ag

(equations 2.1 and 3.42). In the fast equivalent-layer technique, the full matrix is

computed once and stored during the entire iterative process. On the other hand,

our method computes only one column of Ag and uses it to compute the complex

2Q×2P matrix L (equation 3.116) via 2D FFT, which is stored during all iterations.

Table 3.1 shows the computer memory usage needed to store the full matrix Ag,

a single column of Ag and the full matrix L. These quantities were computed

for different numbers of observations N . Notice that N = 1, 000, 000 observations

require nearly 7.6 Terabytes of computer memory to store the whole matrix Ag.

Figure 3.7 compares the running time of the fast equivalent-layer technique
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(SIQUEIRA et al., 2017) and of our method, considering a constant number of

iterations N it = 50. We used a PC with an Intel Core i7 4790@3.6GHz processor

and 16 GB of computer memory. The computational efficiency of our approach is

significantly superior to that of the fast equivalent-layer technique for a number of

observations N greater than 10, 000. We could not perform this comparison with a

number of observations greater than 22, 500 due to limitations of our PC in storing

the full matrix Ag. Figure 3.8 shows the running time of our method with a num-

ber of observations up to 25 millions. These results shows that, while the running

time of our method is ≈ 30.9 seconds for N = 1, 000, 000, the fast equivalent-layer

technique spends ≈ 46.8 seconds for N = 22, 500.

Figure 3.7: Comparison between the running time of the fast equivalent-layer tech-
nique (SIQUEIRA et al., 2017) and our method. The values were obtained for
N it = 50 iterations.



CHAPTER 3. METHODOLOGY 39

Figure 3.8: Running time of our method for a number of observations N up to 25
millions. The values were obtained for N it = 50 iterations.
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N ×N Full RAM (Mb) BTTB RAM (Mb) BCCB RAM (Mb)
100× 100 0.0763 0.0000763 0.0006104
400× 400 1.22 0.0031 0.0248
2 500× 2 500 48 0.0191 0.1528
10 000× 10 000 763 0.00763 0.6104
40 000× 40 000 12 207 0.305 2.4416
250 000× 250 000 476 837 1.907 15.3
500 000× 500 000 1 907 349 3.815 30.518
1 000 000× 1 000 000 7 629 395 7.629 61.035

Table 3.1: Comparison between the system computer memory usage needed to store
the full matrix, the BTTB single column of the sensitivity matrix and the BCCB
eigenvalues (eight times greater than the BTTB singel column). The quantities were
computed for different numbers of data (N) with the same corresponding number
of equivalent sources (N). This table considers that each element of the matrix is
a double-precision number, which requires 8 bytes of storage, except for the BCCB
complex eigenvalues, which requires 16 bytes per element.

3.5.3 Convolutional equivalent layer for magnetic data pro-

cessing

Note that the standard CGLS solution (Algorithm 1) requires neither inverse matrix

nor matrix-matrix product. Instead, it only requires: one matrix-vector product out

of the loop and two matrix-vector products per iteration (in steps 3 and 6). These

products can be efficiently computed by using the 2D FFT, as a discrete convolu-

tion; This modified approach in which the standard CGLS method is modified to

efficiently compute the matrix-vector products will be referenced throughout this

work as the convolutional equivalent layer method.

3.5.4 Computational performance for magnetic data pro-

cessing

In this section we compare the efficiency of the classical (equation 2.13), standard

CGLS (Algorithm 1) and the convolutional equivalent layer method (Algorithm 1

with matrix-vector products computed according to 3.4.5). To do this, we compute

the total number of flops associated to them (GOLUB and LOAN, 2013, p. 12).

For the classical method, we have 1
2
N3 flops to compute the lower triangle of

Am
⊤Am; 1

3
N3 flops to compute the Cholesky factor G of Am

⊤Am (GOLUB and

LOAN, 2013, p. 164); 2N2 flops to compute the matrix-vector product Am
⊤do;

and 2N2 flops to solve the triangular systems given by equation 2.13 (GOLUB and
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LOAN, 2013, p. 106). The resultant flop count for the classical method is

fclassical =
5

6
N3 + 4N2 . (3.119)

For the standard CGLS method (Algorithm 1) we have 2N2 to compute the

matrix-vector product Am
⊤s(it) out of the loop; 4N in step 1; 2N in step 2; 2N2+

2N in step 3; 2N in step 4; 2N in step 5; and 2N2 in step 6. The resultant flop

count is given by:

fcgls = 2N2 + it (4N2 + 12N) . (3.120)

To compute the flops count of our method, we need only to replace the flops as-

sociated with matrix-vector products in the standard CGLS method by those asso-

ciated with 2D convolution defined in section 3.4.2, which consists of κ 4N log2(4N)

flops to compute the 2D FFT for each matrix Lαβ (equation 3.95); κ 4N log2(4N)

flops to compute F2QVF2P via 2D FFT; 24N flops to compute the Hadamard

product L ◦ (F2Q VF2P ); and κ 4N log2(4N) flops to compute the IDFT (inverse

discrete Fourier transform) in equation 3.97. We use κ = 5 for the radix-2 algorithm

(VAN LOAN, 1992, p. 15). By replacing these flops into Algorithm 1, we obtain

the complete number of flops

fconv = κ 16N log2(4N) + 24N + it (κ 16N log2(4N) + 60N) . (3.121)

Figure 3.9 shows a comparison between fclassical (equation 3.119), fcgls (equation

3.120) and fconv (equation 3.121) for different numbers of observation points up to

1, 000, 000. As we can see, the total flops count associated with our method is 7

orders of magnitude smaller than that associated with the classical method and 3

orders of magnitude smaller than that associated with the standard CGLS method

by using a maximum number of iterations N it = 50.

Figure 3.10 shows the time necessary to build matrix Am (equation 3.20) and

solve the linear system for N varying up to 10, 000. With N = 10, 000, the classical

method takes more than sixty-three seconds, the standard CGLS more than twelve

seconds, while our method takes only half a second. The CPU used for this test was

a Intel Core i7-7700HQ@2.8GHz.

Table 3.2 shows a comparison between the computer memory storage associated

with each method. The classical and standard CGLS methods have to store the

whole matrix Am (equation 3.20). For example, a dataset with N = 10, 000 obser-

vation points has an associated sensitivity matrix Am formed by N2 = 100, 000, 000

elements and takes approximately 763 Megabytes of memory (8 bytes per element).

Using the same number of observation points N = 10, 000, our method requires only

1.831 Megabytes to store the first columns of the BCCB matrices Cαβ (equation
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Figure 3.9: Number of flops associated with classical method (equation 3.119), the
standard CGLS method (equation 3.120) and our method (equation 3.121), all of
them with N it = 50. The number of observation points N varies from 5, 000 to
1, 000, 000.

Figure 3.10: Comparison between the runtime of the equivalent-layer technique
using the classical method, standard CGLS method and our method. The values
for the standard CGLS and our method use N it = 50 iterations.
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3.87) and 0.6104 Megabytes to store the complex matrix L (equation 3.99) (16 bytes

per element). For a bigger dataset with N = 1, 000, 000, the amount of necessary

computer memory goes to 7, 629, 395, 183.096 and 61.035 Megabytes, respectively.

N Matrix Am All six first columns of BCCB matrices Matrix L
100 0.0763 0.0183 0.00610
400 1.22 0.0744 0.0248
2, 500 48 0.458 0.1528
10, 000 763 1.831 0.6104
40, 000 12,207 7.32 2.4416
250, 000 476,837 45.768 15.3
500, 000 1,907,349 91.56 30.518
1, 000, 000 7,629,395 183.096 61.035

Table 3.2: This table shows the computer memory usage (in Megabytes) for storing
the whole N×N matrixAm (equation 3.20), the first columns of the BCCB matrices
Cαβ (equation 3.87) (both need 8 bytes per element) and the matrix L (equation
3.99) (16 bytes per element).
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Application to synthetic data

4.1 Synthetic data applied to gravimetric process-

ing

We have simulated three sources whose horizontal projections are shown in Fig-

ure 4.1 as black lines. These sources are a sphere with density contrast −1.25 g/cm3

and two rectangular prisms with density contrasts 1.00 g/cm3 (upper-left prism) and

1.30 g/cm3 (upper-right prism). Figure 4.1 shows the gravity disturbance (vertical

component of gravitational attraction) produced by these sources. The synthetic

data are contaminated with additive pseudorandom Gaussian noise with zero mean

and standard deviation of 0.1mGal. The data are computed at N = 10, 000 obser-

vation points that are regularly spaced on a 100 × 100 grid, at z1 = −100 m. We

have set a grid of equivalent sources, each one directly beneath each observation

point, at z0 = 300 m.

Figure 4.2a and 4.2b show the data fits obtained, respectively, by the fast

equivalent-layer technique (SIQUEIRA et al., 2017) and by our method. They rep-

resent the differences between the simulated data (Figure 4.1) and the predicted

data produced by both methods (not shown) after N it = 40 iterations. As we can

see, both methods produce virtually the same results. This excellent agreement is

confirmed by Figure 4.2c, which shows the differences between the predicted data

produced by both methods.

4.1.1 Gravimetric data processing

We performed the upward- and downward-continuations of the simulated gravity

data (Figure 4.1) by using the fast equivalent-layer technique (SIQUEIRA et al.,

2017), our method and also the classical approach in the Fourier domain. This

approach consists in performing the upward- or downward-continuation by directly

44
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Figure 4.1: Application to synthetic data. Noise-corrupted gravity data (in
color map) produced by three synthetic sources: a sphere with density contrast
−1.25 g/cm3 and two rectangular prisms with density contrasts 1.00 g/cm3 (upper-
left body) and 1.30 g/cm3 (upper-right body). The black lines represent the hori-
zontal projection of the sources.
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Figure 4.2: Application to synthetic data. Residuals between the simulated data
(Figure 4.1) and predicted data produced by: (a) the fast equivalent-layer technique
(SIQUEIRA et al., 2017) and (b) our method. The mean (−4.493×10−5 mGal) and
standard deviation (0.093 mGal) for residuals shown in a and b are exactly the same.
(c) Difference between a and b. The computation times spent by the fast equivalent-
layer technique and our method were 10.416 and 0.177 seconds, respectively.



CHAPTER 4. APPLICATION TO SYNTHETIC DATA 47

computing the Fourier transform of the gravity data (e.g., BLAKELY, 1996, p.

317). Figure 4.3 shows the upward-continued gravity data obtained by the three

methods. As we can see, the residuals between the true data at z = −300 m (Figure

4.3a) and the upward-continued data obtained by using our method (Figure 4.3b)

and the fast equivalent-layer technique (Figure 4.3c) are very similar to each other.

Notice that the absolute values of the residuals produced by the classical Fourier

approach (Figure 4.3d) are ≈ 10 times greater than those produced by our method

and the fast equivalent-layer technique (Figure 4.3b and 4.3c), with maximum values

concentrated at the border of the simulated area. Differently from the results yield

by our method (Figure 4.3b) and the fast equivalent-layer technique (Figure 4.3c),

that obtained with the classical Fourier approach exhibits a slight noise amplification

(Figure 4.3d).

Figure 4.3: Application to synthetic data. (a) Noise-free gravity data produced by
the synthetic sources at z = −300 m. Residuals between the data shown in a and the
upward-continued data obtained by: (b) our method (not shown), with mean 0.003
mGal and standard deviation 0.034 mGal, (c) the fast equivalent-layer technique
(not shown), with mean 0.003 mGal and standard deviation 0.034 mGal and (d)
the classical Fourier approach (not shown), with mean −0.030 mGal and standard
deviation 0.262 mGal. The computation times spent by the fast equivalent-layer
technique and our method were 8.697 and 0.005 seconds, respectively.
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Figure 4.4 shows the results obtained by using all methods to compute downward-

continuation of gravity data. In this case, the maximum absolute values of the resid-

uals produced by the classical Fourier approach (Figure 4.4d) are ≈ 20 times greater

than those produced by our method and the fast equivalent-layer technique (Figure

4.4b and 4.4c). This noise amplification is a well-known problem of the downward-

continuation produced by the classical Fourier approach (e.g., BLAKELY, 1996, p.

320).

Figure 4.4: Application to synthetic data. (a) Noise-free gravity data produced
by the synthetic sources at z = −50 m. Residuals between the data shown in a
and the downward-continued data obtained by: (b) our method (not shown), with
mean −0.001 mGal and standard deviation 0.038 mGal, (c) the fast equivalent-layer
technique (not shown), with mean −0.001 mGal and standard deviation 0.038 mGal
and (d) the classical Fourier approach (not shown), with mean −0.030 mGal and
standard deviation 0.262 mGal. The computation times spent by the fast equivalent-
layer technique and our method were 8.795 and 0.004 seconds, respectively.

We opted for showing all the results (Figures 4.3 and 4.4) produced by all meth-

ods without removing the border effects in order to properly compare them to each

other. We also stress that no padding function to expand the data was used in

applying our method, the fast equivalent-layer technique or the Fourier approach.
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Another important aspect to be pointed out about these results is the computational

times spent by our method and the fast equivalent-layer technique. The total compu-

tational time required by our method to estimate the physical-property distribution

on the equivalent layer and to perform the upward- or downward-continuations is

about two orders of magnitude lower than that spent by the fast equivalent-layer

technique. This significant reduction in computational time was obtained by using

a data set composed of N = 10, 000 observation points. Considerably better results

can be obtained with larger data sets.

Finally, we did not compare the total computational times spent by our method

and the classical Fourier approach, but we can affirm that the second is smaller.

Because the Fourier approach requires only one DFT/IDFT of the data, whereas

our method requires one DFT/IDFT per iteration, it is computationally faster than

our method. However, the considerably smaller noise amplification and practically

nonexistent border effect are the main advantages of our method over the classical

Fourier approach, especially in the downward-continuation.

4.2 Synthetic data applied to magnetic processing

Our convolutional equivalent layer method requires a regular data grid located on

a horizontal and flat observation surface. Here, we evaluate the performance of our

method by applying it to simulated airborne magnetic surveys formed by i) a regular

data grid on a flat surface; ii) irregular data grids on a flat surface; and iii) regular

data grid on undulating surfaces. Note that the simulated surveys in (ii) and (iii)

violate the premises of our method.

4.2.1 Simulated airborne surveys

The first and second rows in Figure 4.5 show, respectively, the simulated flight

patterns and noise-corrupted total-field anomalies of the airborne magnetic surveys

used in our tests. The third row in Figure 4.5 shows the true upward-continued

total-field anomalies at z = −1, 300 m. The fourth row in Figure 4.5 shows the true

reduced to pole total-field anomalies. All magnetic data (second and lower rows

in Figure 4.5) are produced by the same three synthetic bodies: two prisms and

one sphere with constant total-magnetization vector having inclination, declination

and intensity of 35.26◦, 45◦, and 3.4641 A/m, respectively. The simulated main

geomagnetic field has inclination and declination of 35.26◦ and 45◦, respectively.

Figure 4.5a shows the simulated airborne survey on a regular grid of 100 × 50

observation points (totaling N = 5, 000 observation points), with a grid spacing

of ∆x = 101.01 m and ∆y = 163.265 m along the x- and y-axis, respectively.
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The noise-corrupted total-field anomaly (second panel of Figure 4.5a) is calculated

at z = −900 m, with pseudorandom Gaussian noise added having null mean and

standard deviation of 0.2961 nT.

Figures 4.5b and 4.5c show the simulated surveys on irregular grids obtained

by perturbing the horizontal coordinates of the regular grid (upper panel in Figure

4.5a). For the survey shown in Figure 4.5b, the x and y coordinates are perturbed

with sequences of pseudorandom Gaussian noises having null mean and standard

deviations equal to 20% of the corresponding grid spacing, which results in abso-

lute values of 20.2 m and 32.6 m, along the x- and y-directions, respectively. For

the survey shown in Figure 4.5c, the standard deviations are equal to 30% of the

corresponding grid spacing, which results in absolute values of 30.3 m and 49.0 m

along the x- and y-directions, respectively. Their noise-corrupted total-field anoma-

lies (second panels in Figures 4.5b and 4.5c) are calculated on their corresponding

irregular grids, on a flat observation surface at z = −900 m, with pseudorandom

Gaussian noise added having null mean and standard deviation of 0.2961 nT.

Figures 4.5d and 4.5e show the simulated surveys on the same regular grid as

shown in Figure 4.5a (upper panel). The difference is that observation points are

located no longer on a flat, but on undulating surfaces. For the survey shown in

Figure 4.5d, the z coordinates of the undulating surface are defined by a sequence of

pseudorandom Gaussian noise having mean −900 m and standard deviation equal

to 5% of 900 m, which corresponds to 45 m. For the survey shown in Figure 4.5e, the

standard deviation is equal to 10% of 900 m, which corresponds to 90 m. The noise-

corrupted total-field anomalies of these simulated surveys (second panels in Figures

4.5d and 4.5e) are calculated on their corresponding undulating surfaces (upper

panels in Figures 4.5d and 4.5e), on the same regular grid shown in Figure 4.5a,

with pseudorandom Gaussian noise added having null mean and standard deviation

of 0.2961 nT.

4.2.2 Tests with a regular data grid on a flat surface

Figure 4.6 show the difference between the simulated (second row in Figure 4.5)

and predicted data (not shown) obtained by using the classical (the upper row) and

our method (the second row). From now on, we designate this difference as data

residuals. The lower row in Figure 4.6 shows the convergence curve of our method.

The data residuals using the classical method (equation 2.13) are shown in the

upper panel of Figure 4.6a, with mean 0.4118 nT and standard deviation 0.3780

nT. This process took 17.10 seconds. Using our method, the data residuals (the

middle panel in Figure 4.6a) have mean 0.9972 nT and standard deviation 1.3904

nT. In this case, however, the processing time was only 0.25 seconds. As expected,
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Figure 4.5: Synthetic tests: the simulated airborne magnetic surveys - The first
row shows the grids of observation points and the undulating observation surfaces
that simulate the airborne magnetic surveys. The second row shows the noise-
corrupted total-field anomalies produced by the synthetic sources and calculated
on the simulated airborne magnetic survey shown in the first row. The third row
shows the noise-free total-field anomalies produced by the synthetic sources at z =
−1, 300 m (the true upward-continued total-field anomalies). The fourth row shows
the noise-free total-field anomalies produced by the synthetic sources at inclination
I0 = 90◦ (the true reduced to pole total-field anomalies). The results shown in these
last three rows were obtained by using the simulated airborne magnetic surveys as
follows: (a) A regular grid of 100×50 observation points in the x− and y−directions
and a flat observation surface at z = −900 m. An irregular grid with uncertainties
of (b) 20% and (c) 30% in the x− and y−coordinates and a flat observation surface
at z = −900 m . A regular grid of 100 × 50 observation points in the x− and
y−coordinates and an undulating observation surface with uncertainties of (d) 5%
and (e) 10%. The black lines represent the horizontal projection of the sources .
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the Euclidean norm of the data residuals produced by our method (lower panel in

Figure 4.6a) decreases. The convergence criterion was satisfied close to iteration 50.

Figure 4.6: Synthetic tests: the data residuals and convergence - The first row shows
the data residuals using the classical method. The second and third rows show,
respectively, the data residuals and the convergence curves using the convolutional
equivalent layer (our method). The results shown in these three rows were obtained
by using the simulated airborne magnetic surveys shown in Figure 4.5, i.e.: (a) A
regular grid of 100 × 50 observation points in the x− and y−directions and a flat
observation surface at z = −900 m. An irregular grid with uncertainties of (b) 20%
and (c) 30% in the x− and y−coordinates and a flat observation surface at z = −900
m . A regular grid of 100× 50 observation points in the x− and y−coordinates and
an undulating observation surface with uncertainties of (d) 5% and (e) 10%. The
black lines represent the horizontal projection of the sources .

4.2.3 Tests with irregular data grids on a flat surface

Figure 4.6b shows the results obtained with the irregular data grid perturbed by

using 20% of the regular grid spacing. In this Figure we can see that the data

residuals using the classical method (upper panel) yield a good data fit with mean

0.4084 nT and standard deviation 0.3862 nT. Using our method, the data residuals

(middle panel in Figure 4.6b) also produced an acceptable data fitting with mean

of 1.3125 nT and standard deviation of 1.7187 nT. The Euclidean norm of the data

residuals obtained by our method (lower panel in Figure 4.6b) decreases, as expected,

and converges to a constant value close to iteration 50.

Figure 4.6c shows the results obtained with the irregular data grid perturbed by

using 30% of the regular grid spacing. The data residuals obtained by the classical
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method (upper panel in Figure 4.6c) produced an acceptable data fit, having mean

0.4070 nT and standard deviation 0.3899 nT. Using our method, the data residuals

(middle panel in Figure 4.6c) with mean 1.5129 nT and standard deviation 1.8526

nT also produced a good data fitting. The convergence of our method (lower panel

in Figure 4.6c) shows that, similarly to the previous results, the Euclidean norm of

the residuals decreases; converging to a constant value close to iteration 50. Note

that this good result was obtained by using a very perturbed data grid (upper panel

in Figure 4.5c).

4.2.4 Tests with regular data grid and undulating surfaces

Figure 4.6d shows the results obtained with data on the undulating surface varying

5% of z = 900 m. In this case, the data residuals either using the classical method

(upper panel in Figure 4.6d) or our method (middle panel in Figure 4.6d) reveal

acceptable data fittings. Using the classical method, data residuals have mean

0.4316 nT and standard deviation 0.4762 nT. Using our method, they have mean

2.1069 nT and standard deviation 2.5023 nT. Likewise, the Euclidean norm of the

data residuals produced by our method (lower panel in Figure 4.6d) decreases up

to iteration 50 and reaches the convergence criterion in the subsequent iterations

(mean residulas are less than 0.00015 between iterations).

Figure 4.6e shows the results obtained with data on the undulating surface vary-

ing 10% of z = 900 m. By using the classical approach, the data residuals (upper

panel in Figure 4.6e) yielded a good data fitting, with mean 0.4818 nT and stan-

dard deviation 0.6565 nT. By using our method, the data residuals (middle panel

in Figure 4.6e) yielded a worse data fitting with mean 3.4981 nT and standard de-

viation 3.8153 nT. The convergence curve (lower panel in Figure 4.6e) reveals the

inadequacy of our method in dealing with observations on rugged surfaces, as the

Euclidean norm of the data residuals do not decrease as much as in previous tests.

We stress that, in this test, the undulating surface (upper panel in Figure 4.5e)

varies in a broad range of flight values, from z = −570 m to about z = −1, 230 m.

Thus, this simulated airborne magnetic survey greatly violates the requirement of a

flat observation surface demanded by our method.

Although our method is formulated to deal with magnetic observations measured

on a horizontally regular grid, on a flat surface, the results obtained with synthetic

data show that our method is robust in dealing either with irregular grids in the hor-

izontal directions or with uneven surfaces. However, the robustness of our method

has limitations. High discrepancies in the x-, y, and z-coordinates lead to unaccept-

able data fittings (large data residuals), as shown the middle panels in Figures 4.6c

and 4.6e.
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4.2.5 Magnetic data processing

We performed the upward-continuations of the synthetic total-field anomalies (sec-

ond row in Figure 4.5) by using the classical method, our convolutional equivalent

layer method, and the classical approach in the Fourier domain, which consists in

computing the Fourier transform of the total-field anomaly (e.g., BLAKELY, 1996,

p. 317).

Figure 4.7 shows the continuation residuals defined as the differences between

the true upward-continued total-field anomalies (third row in Figure 4.5) and the

predicted upward-continued total-field anomalies (not shown). We conveniently de-

note these differences as continuation residuals. The continuation residuals obtained

by using the classical method (upper row) and our method (middle row) are similar

to each other in most of the tests. The exceptions are the synthetic test with data

over irregular grid (Figures 4.5c and 4.6c) and over an undulating surface (Figures

4.5e and 4.6e), which greatly violates the requirement of regular grids or a flat obser-

vation surface, demanded by our method. Note that the maximum absolute value

of the continuation residuals produced by using our method (middle panel in Figure

4.7e) are ≈ 2 times greater than those produced by the classical method (upper

panel in Figure 4.7e).

In contrast, the continuation residuals obtained by using the classical Fourier

approach (lower row in Figure 4.7) are, in most of the tests, approximately 2 times

greater than those produced by the classical method (upper row in Figure 4.7) and

1.5 times greater than those produced by our method (middle row in Figure 4.7).

Note that, similar to our method, the maximum absolute values of the continua-

tion residuals obtained by using the classical Fourier approach are located at the

boundaries of the simulated area. However, the values are significantly higher.

Figure 4.8 shows the differences between the true reduced to pole total-field

anomalies (fourth row in Figure 4.5) and the predicted reduced to pole total-field

anomalies (not shown). The true reduced to pole total-field anomalies are generated

by using only induced magnetization, with I0 = 90◦ and D0 = 0◦. Figure 4.8 shows

that the reduced to pole residuals obtained by using the classical method (upper row)

and our method (middle row) have differences when high irregular grids or non flat

surfaces are used (Figures 4.8c and 4.8e). The absolute values of the reduced to pole

residuals are almost ≈ 2 times greater than those of classical method when the 10%

standard deviation was used (upper and middle panels in Figure 4.8e, respectively).

As in the the continuation test, they are generally concentrated at the boundaries

of the study area.

The reduced to pole residuals obtained by using the classical Fourier approach

(lower row in Figure 4.8) are approximately 3.5 times greater than those produced
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Figure 4.7: Synthetic tests: the data residuals of the upward-continued total-field
anomalies (third row in Figure 4.5). The data residuals of the upward-continued
total-field anomalies are defined as the difference between the noise-free total-field
anomaly produced by the synthetic sources at z = −1, 300 m (third row in Figure
4.5) and the predicted total-field anomaly at z = −1, 300 m obtained by using three
methods: the classical method (first row); the convolutional equivalent layer (second
row); and the classic approach in the Fourier domain (third row). The results shown
in these three rows were obtained by using the simulated airborne magnetic surveys
shown in Figure 4.5, i.e.: (a) A regular grid of 100×50 observation points in the x−
and y−directions and a flat observation surface at z = −900 m. An irregular grid
with uncertainties of (b) 20% and (c) 30% in the x− and y−coordinates and a flat
observation surface at z = −900 m . A regular grid of 100×50 observation points in
the x− and y−coordinates and an undulating observation surface with uncertainties
of (d) 5% and (e) 10%. The black lines represent the horizontal projection of the
sources .
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by the classical method (upper row in Figure 4.8) and 3 times greater than those

produced by our method (middle row in Figure 4.7).

Important to note that the reduction to pole, either using the equivalent layer or

the Fourier approach, has the requirement of a previously knowledge of the sources

magnetization directions (equation 2.7) to obtain a correct source parameter es-

timative, otherwise, only non-phase dependent processing can be used (upward-

continuation for example).

We also call attention to the following aspects: In applying the classical method,

our method, or the classical Fourier approach, we do not expand the data by using

a padding scheme. The data residuals (upper and middle rows in Figure 4.6), the

continuation (Figure 4.7) and reduction to pole residuals (Figure 4.8) are shown

without removing edge effects. The computational time required by our method is

much lower than that required by the classical method and has the same order of

magnitude of that required by the classical Fourier approach. However, the classical

Fourier approach shows upward-continued and reduced to pole data with strong

border effects if no padding scheme is applied to expand the data.
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Figure 4.8: Synthetic tests: the data residuals of the reduced to pole total-field
anomalies (fourth row in Figure 4.5). The data residuals of the reduced to pole
total-field anomalies are defined as the difference between the noise-free total-field
anomaly produced by the synthetic sources at the pole (fourth row in Figure 4.5)
and the predicted total-field anomaly obtained by using three methods: the classical
method (first row); the convolutional equivalent layer (second row); and the classic
approach in the Fourier domain (third row). The results shown in these three rows
were obtained by using the simulated airborne magnetic surveys shown in Figure
4.5, i.e.: (a) A regular grid of 100×50 observation points in the x− and y−directions
and a flat observation surface at z = −900 m. An irregular grid with uncertainties
of (b) 20% and (c) 30% in the x− and y−coordinates and a flat observation surface
at z = −900 m . A regular grid of 100 × 50 observation points in the x− and
y−coordinates and an undulating observation surface with uncertainties of (d) 5%
and (e) 10%. The black lines represent the horizontal projection of the sources .
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Field data results

5.1 Real field data from Carajás applied to gravi-

metric processing

We applied our method to airborne gravity data from Carajás, north of Brazil,

which were provided by the Geological Survey of Brazil (CPRM). The data were

collected along 131 north-south flight lines separated by 3 km and 29 east-west tie

lines separated by 12 km. This data set was divided in two different areas, collected

in different times, having samples spacing of 7.65 m and 15.21 m along the lines,

totalizing 5, 492, 551 observation points at a fixed height of 900 m (z1 = −900

m). The gravity data were interpolated (Figure 5.1) into a regularly spaced grid

of 500 × 500 observation points (N = 250, 000) with a grid spacing of ≈ 717 m

north-south and ≈ 782 m east-west.

To apply our method, we set an equivalent layer at z0 = 300 m. Figure 5.2a

shows the predicted data obtained with our method after N it = 50 iterations. The

residuals (Figure 5.2b), defined as the difference between the observed (Figure 5.1)

and predicted (Figure 5.2a) data, show a very good data fit with mean close to zero

(0.0003 mGal) and small standard deviation (0.1160 mGal), which corresponds to

approximately 0.1 % of the maximum amplitude of the gravity data. By using the

estimated mass distribution (not shown), we performed an upward-continuation of

the observed gravity data to a horizontal plane located 5, 000 m above. Figure 5.3

shows a very consistent upward-continued gravity data, with a clear attenuation

of the short wavelengths. By using our approach, the processing of the 250, 000

observations took only 0.216 seconds.

58
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Figure 5.1: Application to field data over the Carajás Province, Brazil. Observed
gravity data on a regular grid of 500×500 points, totalingN = 250, 000 observations.
The inset shows the study area (red rectangle) which covers the southeast part of
the state of Pará, north of Brazil.
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Figure 5.2: Application to field data over the Carajás Province, Brazil. (a) Predicted
data produced by our method. (b) Residuals between the observed (Figure 5.1) and
the predicted data (panel a), with mean 0.000292 mGal and standard deviation of
0.105 mGal.
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Figure 5.3: Application to field data over the Carajás Province, Brazil. The upward-
continued gravity data obtained with our method 5, 000 m above the observed data
(Figure 5.1). The total computation time for processing of the 250, 000 observations
was 0.216 seconds.
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5.2 Real field data from Carajás applied to mag-

netic processing

We applied the convolutional equivalent layer method to the aeromagnetic data of

Carajás, northern Brazil. The survey is composed of 131 flight lines along north-

south direction with line spacing of ∆y = 3, 000 m. Data were measured with

average spacing ∆x = 7.65 m along lines, with an average distance to the ground

of 900 m. The total number of observation points is N = 6, 081, 345. Figure 5.4a

shows the observed total-field anomaly data over the study area.

We compare the results obtained with an interpolated regular grid of 10, 000×131

points, by using the nearest neighbor algorithm, and a decimated irregular grid,

also with 10, 000 × 131 points. In both cases the total N = 1, 310, 000 observation

points are in the original undulating surface of the flight lines. The decimated

grid was generated by choosing the nearest observation points in comparison of the

regular grid presented in the interpolation. The mean and standard deviation of

this irregular decimated from the regular interpolated are 6.8386 m and 107.7343

m in the x-direction and 30.8799 m and 28.3849 m in the y-direction, respectively.

Both application were made with an Intel core i7 7700HQ@2.8GHz processor in

single-processing and single-threading modes.

As the study area is very large, the main magnetic field varies with position. For

this application, we set the main field direction as that of a mid location (latitude

−6.5◦ and longitude −50.75◦) where the declination is −19.86◦ and the inclination

is −7.4391◦. Both values were calculated using the magnetic field calculator from

NOAA at 1st January, 2014 (epoch of the survey). We set the equivalent layer

depth at 1200 meters (2100 m below the data). Figure 5.4b shows the residuals

obtained after using our method to fit the interpolated data with mean 0.9089 nT

and the standard deviation 3.6425 nT, revealing an acceptable data fitting. Our

method took ≈ 390.80 seconds to converge at about 200 iterations. Figure 5.4c

shows the residuals obtained after using our method to fit the decimated data with

mean 0.9936 nT and standard deviation 4.0479 nT with a equally acceptable fit

produced by the interpolated data. In this case, our method took ≈ 385.56 seconds

to converge at about 200 iterations (Figure 5.4d). The convergence curve reveals a

good convergence rate obtained with the decimated irregular grid. This result shows

the robustness of our method in processing irregular grids. Notice that we used 200

iterations in our method of the interpolated regular grid and the mean residual still

decreasing up to 2000. This happens because the invariance convergence criterion

was met and the mean residuals are very small, decreasing less than 0.001 at each

iteration

With 1, 310, 000 observation points, it would be necessary 12.49 Terabytes of
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computer memory to store the full sensitivity matrix with the classical method. In

this case, our method uses only 59.97 Megabytes, allowing regular desktop computers

to be able to process this amount of data.

Figure 5.4: (a) Observed total-field anomaly over the Carajás Province, northen
Brazil. The aeromagnetic survey was flown in 131 north-south flight lines at an
average altitude of 900 m, totaling N = 6, 081, 345 observation points. (b) Data
residuals, defined as the difference between the regular interpolated grid data (not
shown) and the predicted data (not shown), with mean of 0.9089 nT and standard
deviation of 3.6425 nT. (c) Data residuals, defined as the difference between the
irregular decimated grid data (not shown) and the predicted data (not shown), with
mean of 0.9936 nT and standard deviation of 4.0479 nT. (d) Convergence curve using
our method to the decimated irregular grid of the real data of Carajás Province,
Brazil.

Finally, Figure 5.5a shows the upward-continued magnetic data to a horizontal

plane located at an altitude of 5, 000 m using the estimated equivalent layer ob-

tained by applying our method to the decimated irregular grid. This process took

≈ 2.64 seconds, showing good results without visible errors or border effects. Figure

5.5b shows the upward-continued magnetic data to a horizontal plane located at an

altitude of 5, 000 m using the classical Fourier filtering method to the decimated ir-

regular grid. This process took ≈ 0.5 seconds. The comparison between the upward

results shows a similar total-field magnetic for both cases with attenuation of the

anomalies. Interestingly, the Fourier method did not present border effects to this

real data. We stress that we did not use a padding scheme to expand the data.
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Figure 5.5: Upward-continuations of real data of Carajás Province, Brazil at altitude
of 5,000 m by using: (a) the convolutional equivalent layer (our method) and (b)
the classical Fourier method.
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Conclusions

We have proposed a fast equivalent-layer technique for processing magnetic data

called convolutional equivalent layer method. We have demonstrated that the sensi-

tivity matrix associated with planar equivalent layers of dipoles has a BTTB struc-

ture for the particular case in which the dipoles are aligned with the horizontal and

regular grid of magnetic data. The product of such matrices and arbitrary vectors

represents a 2D discrete convolution that can be efficiently computed via 2D Fast

Fourier Transform by using only the elements forming the first column of the ma-

trix. By using this property, we have developed a fast and memory efficient iterative

method for estimating the physical-property distribution on the equivalent layer.

Comparisons between the estimated physical-property distribution obtained with

our method and the classical approach that solves the least-squares normal equations

via Cholesky decomposition show similar results. The differences in total number of

floating-point operations (flops), memory usage and computation time, however, are

noticeable. For a mid-size grid of 100× 50 points, the total number of flops is about

four orders of magnitude smaller than that required by the classical method. Besides,

our method uses less than 1% of the computer memory and takes about 3% of the

computation time associated with the classical method in this case. Significantly

better results can be obtained with larger data sets.

Tests with synthetic data show that the computational time required by our

method has the same order of magnitude of that required by the classical approach

in the Fourier domain to perform magnetic data processing. However, the classical

Fourier approach shows considerable larger border effects if no previous padding

scheme is used to expand the data. Besides, although both methods require the

magnetic data be on a planar and regular grid, tests with synthetic data show the

robustness of our method to deal with data either on irregular grids or on undulating

observation surfaces.

While the classical equivalent-layer method would require 12.49 Terabytes of

computer memory to store the full sensitivity matrix associated with the irregular
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grid of 1, 310, 000 observation points over the Carajás Province, northern Brazil,

our method requires only 59.97 Megabytes. When performed on a standard lap-

top computer with an Intel Core i7 7700HQ@2.8GHz processor in single-processing

and single-threading modes, the total times spent by our method to estimate the

physical-property distribution over the equivalent layer and to compute the upward-

continuation of the 1, 310, 000 magnetic observations over the Carajás province was

approximately 385.56 seconds and 2.64 seconds.

Further investigation could usefully explore different preconditioning strategies

to improve the convergence rate of our method. Besides, considerably more work

will need to be done to generalize our convolutional equivalent layer method for

dealing with irregularly spaced data sets on undulating observation surfaces.
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MENDONÇA, C. A., SILVA, J. B. C., 1994, “The equivalent data concept applied

to the interpolation of potential field data”, GEOPHYSICS, v. 59, n. 5,

pp. 722–732. doi: 10.1190/1.1443630.



CHAPTER 6. CONCLUSIONS 69

NEUDECKER, H., 1969, “Some Theorems on Matrix Differentiation with Special

Reference to Kronecker Matrix Products”, Journal of the American Sta-

tistical Association, v. 64, n. 327, pp. 953–963. doi: 10.1080/01621459.

1969.10501027. Dispońıvel em: <https://www.tandfonline.com/doi/

abs/10.1080/01621459.1969.10501027>.

OLIVEIRA JR., V. C., BARBOSA, V. C. F., UIEDA, L., 2013, “Polyno-

mial equivalent layer”, GEOPHYSICS, v. 78, n. 1, pp. G1–G13. doi:

10.1190/geo2012-0196.1.

QIANG, J., ZHANG, W., LU, K., et al., 2019, “A fast forward algorithm for

three-dimensional magnetic anomaly on undulating terrain”, Journal of

Applied Geophysics, v. 166, pp. 33 – 41. ISSN: 0926-9851. doi: https:

//doi.org/10.1016/j.jappgeo.2019.04.009. Dispońıvel em: <http://www.
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