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Neste trabalho foi desenvolvida uma eficiente e rapida técnica de camada equivalente
para o processamento de dados de campos potenciais usando um método de con-
volugao discreta que modifica o calculo do problema direto dos métodos iterativos
baseado em um vinculo de excesso de massa para o caso gravimétrico e o algoritmo do
gradiente conjugado por minimos quadrados para o caso magnético. Aproveitando
as estruturas block-Toeplitz Toeplitz-block (BTTB) da matriz de sensibilidade, que
surge quando grids de observagoes e de fontes equivalentes (pontos de massa ou dipo-
los) s@o regulares, desenvolvemos um algoritmo que reduz drasticamente o niimero
de célculos de pontos flutuantes (flops) e de meméria RAM necesséria para estimar
a distribuicao de propriedade fisica 2D sobre a camada equivalente. A estrutura da
matriz BTTB pode ser escrita usando somente a primeira coluna da matriz de sen-
sibilidade, que pode ser transformada em uma matriz block-circulant circulant-block
(BCCB). Similarmente, somente a primeira coluna da matriz BCCB ¢ necessaria
para reconstrui-la. Usando a primeira coluna da BCCB também é possivel calcular
seus auto-valores por uma transformada de Fourier 2D (2D FFT), que pode ser
usada para calcular rapidamente o problema direto da camada equivalente. Como
resultado, este método pode ser usado para processar grandes conjuntos de dados
de forma eficiente. Testes com dados sintéticos mostram que o método estima as
fontes equivalentes de forma satisfatoria para técnicas de processamento, como por
exemplo, a continuacao para cima de dados gravimétricos e magnéticos. Os resul-
tados mostram efeitos de borda e de ruido muito reduzidos comparados ao método
tradicional no dominio de Fourier. Para o caso gravimétrico, os testes sintéticos
mostram que para processar N = 1000000 de observacoes, este método precisou
de =~ 30,9 segundos, enquanto que o método iterativo com vinculo de massa levou

~ 46, 8 segundos com apenas N = 22500. Um teste com o dado real da Provincia de



Carajas, Brasil, mostra o baixo custo computacional deste método para processar
grandes volumes de dados, usando N = 250000 observagoes. Testes sintéticos com
dados magnéticos mostram uma diminuicao da ordem de ~ 10* em flops e ~ 25
vezes em tempo computacional com um g¢rid de tamanho médio de 100 x 50 se
comparado o método classico da solucao de sistemas lineares das equagoes normais
por minimos quadrados usando o método da decomposicao de Cholesky. Resulta-
dos ainda melhores sao obtidos usando milhoes de dados, mostrando um decréscimo
exponencial no uso de memoria RAM e de custo computacional, permitindo o uso
deste método em computadores pessoais. Os resultados mostram, comparado ao
método de Fourier, que o processamento magnético requer tempo computacional
similar, mas produz menores efeitos de borda sem usar nenhum tipo de padding e
também se mostrando muito mais robusta para lidar com dados irregulares ou su-
perficies onduladas. Um teste com N = 1310000 dados irregularmente espagados
da Provincia de Carajas, Brasil, confirma com sucesso este método levando =~ 385, 56
segundos para estimar a distribuicao de propriedade fisica e ~ 2,64 segundos para

calcular a continuacao para cima.



Abstract of the Thesis presented to the National Observatory’s Graduate Program
in Geophysics as a partial fulfillment of the requirements for the degree of Doctor

in Geophysics.

CONVOLUTIONAL EQUIVALENT LAYER FOR POTENTIAL DATA
PROCESSING

Diego Takahashi Tomazella

September /2021

We have developed an efficient and very fast equivalent-layer technique for grav-
ity and magnetic data processing by modifying the forward problem calculation of
an iterative method grounded on excess mass constraint that does not require the
solution of linear systems and of the conjugate gradient least squares algorithm,
respectively, using a discrete convolutional method. Taking advantage of the Block-
Toeplitz Toeplitz-block (BTTB) structure of the sensitivity matrix, that raises when
regular grids of observation points and equivalent sources (point masses or dipoles)
are used to set up a fictitious equivalent layer, we have developed an algorithm which
greatly reduces the number of floating-point operations (flops) and computer mem-
ory necessary to estimate a 2D physical property distribution over the equivalent
layer. The structure of the BT'TB matrix can be written by using only the elements
of the first column of the sensitivity matrix, which in turn can be transformed into
a block-circulant circulant-block (BCCB) matrix. Likewise, only the first column
of the BCCB matrix is needed to reconstruct the full sensitivity matrix completely.
Also, from the first column of BCCB matrix, its eigenvalues can be calculated using
the 2D Fast Fourier Transform (2D FFT), which can be used to readily compute the
matrix-vector product of the forward modeling in the fast equivalent-layer technique.
As a result, our method is efficient to process very large datasets. Tests with syn-
thetic data demonstrate the ability of our method to satisfactorily use the estimated
equivalent sources for data processing, for example, upward-continuing the gravity
and magnetic data. Our results show very small border effects and noise amplifica-
tion compared to those produced by the classical approach in the Fourier domain.
For the gravity case, our synthetic results show that while the running time of our
method is &~ 30.9 seconds for processing N = 1,000, 000 observations, the iterative

method grounded on excess mass constrain spent ~ 46.8 seconds with N = 22, 500.



A test with field data from Carajas Province, Brazil, illustrates the low compu-
tational cost of our method to process a large data set composed of N = 250,000
observations. Synthetic tests for magnetic data with a mid-size 100 x 50 grid of total-
field anomaly data show a decrease of ~ 10 in floating-point operations and ~ 25x
in computation runtime of our method compared to the classical approach of solving
the least-squares normal equations via Cholesky decomposition. Faster results are
obtained for millions of data, showing drastic decreases in computer memory usage
and runtime, allowing to perform magnetic data processing of large data sets on
regular desktop computers. Our results also show that, compared to the classical
Fourier approach, the magnetic data processing with our method requires similar
computation time, but produces significantly smaller border effects without using
any padding scheme and also is more robust to deal with data on irregularly spaced
points or on undulating observation surfaces. A test with 1,310,000 irregularly
spaced field data over the Carajas Province, Brazil, confirms the efficiency of our
method by taking ~ 385.56 seconds to estimate the physical-property distribution

over the equivalent layer and ~ 2.64 seconds to compute the upward-continuation.
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Chapter 1
Introduction

The equivalent layer is a well-known technique for processing potential-field data in
applied geophysics since the 60’s (BOTT, 1967; DAMPNEY, 1969; DANES, 1961).
It comes from potential theory as a mathematical solution of the Laplace’s equa-
tion, in the region above the sources, by using the Dirichlet boundary condition
(KELLOGG, 1929). This theory states that any potential-field data produced by
an arbitrary 3D physical-property distribution can be exactly reproduced by a fic-
titious layer located at any depth and having a continuous 2D physical-property
distribution. In practical situations, the layer is approximated by a finite set of
sources (e.g., point masses or dipoles) and their physical properties are estimated
by solving a linear system of equations that yields an acceptable potential-field data
fit. These fictitious sources are called equivalent sources.

Many previous works have used the equivalent layer to perform different potential-
field data transformations such as gridding (e.g., CORDELL, 1992; DAMPNEY,
1969; MENDONCA and SILVA, 1994), upward- and downward-continuation (e.g.,
EMILIA, 1973; HANSEN and MIYAZAKI, 1984; LI and OLDENBURG, 2010), re-
duction to the pole (e.g., GUSPI and NOVARA, 2009; LEAO and SILVA, 1989; LI
et al., 2014; OLIVEIRA JR. et al., 2013; SILVA, 1986), combining multiple data sets
(e.g., BOGGS and DRANSFIELD, 2004), gradient data processing (e.g., BARNES
and LUMLEY,, 2011) first and second vertical derivatives fields (EMILIA, 1973) and
total magnetic induction vector components calculation (SUN et al., 2019).

Although the use of the equivalent-layer technique increased over the last decades,
one of the biggest problems is still its high computational cost for processing large-
data sets. This problem propelled several studies to improve the computational
efficiency of the equivalent layer technique. LEAO and SILVA (1989) developed a
fast method for processing a regular grid of potential-field data. The method con-
sists in estimating an equivalent layer which exactly reproduces the potential-field
data within a small data window. The data window is shifted over the whole gridded

data in a procedure similar to a discrete convolution. The equivalent layer extends
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beyond the moving-data window and is located at a depth between two and six
times the grid spacing of the observations. For each data window, the equivalent
layer is estimated by solving an underdetermined linear system. After estimating an
equivalent layer, the transformed-potential field is computed only at the center of
the moving-data window. The use of a small moving-data window greatly reduces
the total number of floating-point operations (flops) and computer memory storage.
The computational efficiency of this method relies on the strategy of constructing
the equivalent layer by successively solving small linear systems instead of solv-
ing just one large linear system for the entire equivalent layer. MENDONCA and
SILVA (1994) also followed the strategy of solving successive small linear systems
for constructing an equivalent layer. Their method is based on the equivalent-data
concept, which consists in determining a subset of all potential-field data (named
equivalent-data set), such that the interpolating surface that fits the chosen subset
also automatically fits all remaining data. The equivalent-data set is obtained by
iteratively introducing the potential-field observation with the greatest residual in
the preceding iteration. By applying to the interpolation problem, the method is
optimized by approximating dot products by the discrete form of an analytic integra-
tion that can be evaluated with less computational effort. According to the authors,
the equivalent-data set is usually smaller than the total number of potential-field
observations, leading to computational savings. The authors also pointed out that
the computational efficiency of the method depends on the number of equivalent
data. If the potential-field anomaly is nonsmooth, the number of equivalent data
can be large and the method will be less efficient than the classical approach.

By following a different strategy, LI and OLDENBURG (2010) developed a rapid
method that transforms the dense sensitivity matrix associated with the linear sys-
tem into a sparse one by using a wavelet technique. After obtaining a sparse rep-
resentation of the sensitivity matrix, those authors estimate the physical-property
distribution within the equivalent layer by using an overdetermined formulation.
Those authors pointed out that, given the sparse representation, their method re-
duces the computational time required for solving the linear system by as many as
two orders of magnitude if compared with the same formulation using a dense ma-
trix. BARNES and LUMLEY (2011) followed a similar strategy and transformed
the dense sensitivity matrix into a sparse one. However, differently from LI and
OLDENBURG (2010), their method operates in the space domain by grouping
equivalent sources far from an observation point into blocks with average physi-
cal property. This procedure aims at reducing the memory storage and achieving
computational efficiency by solving the transformed linear system with a weighted-
least-squares conjugate-gradient algorithm. Notice that, instead of constructing the

equivalent layer by solving successive small linear systems, these last two methods
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first transform the large linear system into a sparse one and then take advantage of
this sparseness.

OLIVEIRA JR. et al. (2013) developed a fast method based on the reparame-
terization of the physical-property distribution within the equivalent layer. Those
authors divided the equivalent layer into a regular grid of equivalent-source windows
inside which the physical-property distribution is described by bivariate polynomial
functions. By using this polynomial representation, the inverse problem for esti-
mating the equivalent layer is posed in the space of the total number of polynomial
coefficients within all equivalent-source windows instead of in the space of the to-
tal number of equivalent sources. According to OLIVEIRA JR. et al. (2013), the
computational efficiency of their method relies on the fact that the total number of
polynomial coefficients needed to describe the physical-property distribution within
the equivalent layer is generally much smaller than the number of equivalent sources,
leading to a very smaller linear system to be solved. Those authors could verify that
the total number of flops needed for building and solving the linear inverse prob-
lem of estimating the total number of polynomial coefficients can be reduced by
as many as three and four orders of magnitude, respectively, if compared with the
same inverse problem of estimating the physical property of each equivalent source
via Cholesky decomposition.

There is another class of methods that iteratively estimates the physical-property
distribution within the equivalent layer without solving linear systems. The method
presented by CORDELL (1992), and later generalized by GUSPI and NOVARA
(2009), updates the physical property of the sources, which are located below each
potential-field data, using a procedure that removes the maximum residual between
the observed and predicted data. XIA and SPROWL (1991) and XIA et al. (1993)
developed fast iterative schemes for updating the physical-property distribution
within the equivalent layer in the wavenumber and space domains, respectively.
Grounded on excess mass constraint, SIQUEIRA et al. (2017) developed an iter-
ative scheme starting with a mass distribution within the equivalent layer that is
proportional to observed gravity data. Then, their method iteratively adds mass
corrections that are proportional to the gravity residuals. The total number of flops
required by these iterative methods for estimating the physical-property distribution
within the equivalent layer depends on the total number of iterations, however this
number is generally much smaller than the total number of flops required to solve a
large-scaled linear system. Generally, the most computational expensive step in each
iteration of these methods is the forward problem of calculating the potential-field
data produced by the equivalent layer.

In the present work, we show that the sensitivity matrix associated with a pla-

nar equivalent layer of point masses/dipoles has a very well-defined structure called
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Block-Toeplitz Toeplitz-Block (BTTB) for the case in which (i) the observed gravity
or magnetic data is located on a regularly spaced grid at constant height and (ii)
there is one equivalent source directly beneath each observation point. This tech-
nique have been successfully used in potential-field methods for 3D gravity inversion
(ZHANG and WONG, 2015), downward-continuation (ZHANG et al., 2016) and 3D
magnetic modeling (QIANG et al., 2019). More recently in HOGUE et al. (2020)
the authors provided an overview on modeling the gravity and magnetic kernels
using the BTTB structures and RENAUT et al. (2020) used for inversion of both
gravity and magnetic data to recover sparse subsurface structures. By using this
property, we propose an efficient algorithm based on FFT convolution (e.g., VAN
LOAN, 1992, p. 207) for computing the forward problem at each iteration of the
fast equivalent-layer technique proposed by SIQUEIRA et al. (2017) for the gravity
case and also for computing the forward problem at each iteration of the conjugate
gradient least squares algorithm for the magntic case.

In Part I, our method uses the gravitational effect produced by a single point
mass to compute the effect produced by the whole equivalent layer, which results in
a drastic reduction not only in the number of flops, but also in the RAM memory
usage of the fast equivalent-layer technique. Tests with synthetic and field data
illustrate the good performance of our method in processing large gravity data sets.

In Part II, we achieve very fast solutions using a conjugate gradient algorithm
combined with the fast Fourier transform. We present a novel method of exploring
the symmetric structures of the second order derivatives of the inverse of the distance
contained in the magnetic kernel, to keep the memory RAM usage to the minimal by
using only one equivalent source to carry the calculations of the forward problem.
We also show tests of the magnetic convolutional equivalent layer when irregular
grids are used. The convergence of the conjugate gradient maintains an acceptable
level even using irregular grids. Our results show a good performance of our method
in producing fast and robust solutions for processing large amounts of magnetic data

using the equivalent layer technique.



Chapter 2

Fundamentals

2.1 Classical equivalent layer

2.1.1 Classical equivalent layer for gravity data processing

Let d? be the observed gravity data at the point (z;,v;,2:), ¢ = 1,...; N, of a local
Cartesian system with z-axis pointing to north, the y-axis pointing to east and
the z-axis pointing downward from the N x 1 data vectopr d°. Let us consider
an equivalent layer composed by a set of N point masses (equivalent sources) over
a layer located at depth z. (z. > 2z;) and whose z- and y- coordinates of each
point mass coincides with the corresponding coordinates of the observation directly
above. There is a linear relationship that maps the unknown mass distribution onto
the gravity data given by

d(pg) = Agpy , (2.1)

where d(pg) is an N x 1 vector whose ith element is the predicted gravity data at the
ith point (z;,y;,2;), p is the unknown NN x 1 parameter vector whose jth element p; is
the mass of the jth equivalent source (point mass) at the jth Cartesian coordinates
(x,y;,2.) and Ay is an N X N sensitivity matrix whose ijth element is given by

o = ¢g G (2 =~ 2) , (2.2)

(22— 25)2 + (g — )% + (21 — 2)7]

where G is the Newton’s gravitational constant and ¢, = 10° transforms from m/s?
to mGal. Notice that equation 2.2 is the product of these constants with the vertical

derivative of the function inverse of the distance

— - (2.3)
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Also, notice that the sensitivity matrix depends on the ith coordinate of the observa-

tion and the jth coordinate of the equivalent source. For convenience, we designate

these coordinates as matriz coordinates and the indices ¢ and j as matrixz indices.
To estimate the unknown mass distibution pg the Cholesky factorization method

will introduced in section 2.1.3.

2.1.2 Classical equivalent layer for magnetic data processing

Let d° be a N x 1 observed data vector where, d? (z;,v;,2;), @ = 1,..., N, is the
total-field anomaly produced by arbitrarily magnetized sources at the ¢th position,
aranged in a right-handed Cartesian coordinate system with x-, y- and z-axis point-
ing to north, east and down, respectively. We consider that the total-field anomaly
data df represent the discrete values of a harmonic function. Besides, we consider
that the main geomagnetic field direction at the study area can be defined by the

unit vector

F, cos(ly) cos(Dy)
F = F,| = [cos(1p) sin(Dy) | , (2.4)
F, sin(/p)

with constant inclination /j and declination Dy. In this case, d? can be approximated

by the predicted total-field anomaly (BLAKELY, 1996)

M

AT, = Z pia; (2.5)

j=1

which describes the magnetic induction exerted, at the observation point (z;, y;, 2;),
by a discrete layer of M dipoles (equivalent sources) defined on the horizontal plane
z = 2., where p; is the magnetic moment intensity (in Am?) of the jth dipole, that
has unit volume and is located at the point (z;,y;,2.). In equation 2.5, a;; is the

harmonic function

m Mo + ~
aij = Cm E FTHZ‘]‘ u, (26)
the unit vector
Uy cos(I) cos(D)
u= |u,| = |cos(I)sin(D)| , (2.7)
u, sin([/)

defines the magnetization direction of all dipoles, with constant inclination I and
declination D, po = 47 10" H/m is the magnetic constant, c,, = 10° is a factor

that transforms the magnetic induction from Tesla (T) to nanotesla (nT) and H;;
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is a 3 X 3 matrix
xTxT zy xz
Hy, = |h? B nY| (2.8)

Tz Yz zZZ

with elements defined in terms of matrix coordinates and matrix indices according
to
3(ai—ay)® 1 _
pot ) T a7
) o _ 3. )
3(oy oz:’;(ﬁz B5) o ?é B

9

o, B =z, 2, (2.9)
i

which are the second derivatives of the inverse distance function (equation 2.3) with

respect to the coordinates of the observation point (x;, y;, 2;).

Equation 2.5 can be rewritten in matrix notation as follows:

d(pm) = Ampm y (2'10)

where d(p,,) is the N x 1 predicted data vector with ith element defined as the
predicted total-field anomaly AT; (equation 2.5), pm is the M x 1 parameter vector
whose jth element is the magnetic moment intensity p; of the jth dipole and A,,
is the N x M sensitivity matrix with element ¢j defined by the harmonic function

a;; (equation 2.6).

2.1.3 Cholesky factorization

In the classical equivalent-layer technique, the common approach for estimating the
parameter vector from the observed gravity or the total-field anomaly data d° is by

solving the least-squares normal equations
p=(ATA) "ATd". (2.11)
This equation can be rewritten to
ATAp=ATd. (2.12)

Equation 2.12 is usually solved by first computing the Cholesky factor G of matrix
ATA and then using it to solve the linear systems (GOLUB and LOAN, 2013, p.
262):

Gw =A'"d°
aTe , (2.13)
[):Z W
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where w is a temporary variable. This approach to estimating the parameter vector
will be referenced throughout this work as the classical method. The computational
cost associated with the classical method can be very high when dealing with large
datasets. In the following subsections, we will show how to explore the structures
of the sensitivity matrices Ay and A,, to efficiently solve the least-squares normal

equations (equation 2.12).

2.2 Fast equivalent-layer methods

2.2.1 Fast equivalent-layer technique for gravity data pro-

cessing

SIQUEIRA et al. (2017) developed an iterative least-squares method to estimate
the mass distribution over the equivalent layer based on the excess of mass and
the positive correlation between the observed gravity data and the masses on the
equivalent layer. They showed that the fast equivalent-layer technique has a better
computational efficiency than the classical equivalent layer approach (equation 2.11)
if the dataset is greater than at least 200 observation points, even using a large
number of iterations.

Considering one equivalent source (point mass) directly beneath each observation
point, the iteration of the SIQUEIRA et al’s (2017) method starts by an initial

approximation of mass distribution given by
p’=A_"d°, (2.14)

where A;l is an N x N diagonal matrix with elements

As;
~—1 7
a.: = y 215
“ (27 G ey) (2.15)
where As; is the ith element of surface area located at the 7th horizontal coordinates
x; and y; of the ith observation. At the kth iteration, the masses of the equivalent

sources are updated by
prtt =p* + Ap*, (2.16)

where the mass correction is given by

APt = A,

g

L(d° — A,pY). (2.17)

At the kth iteration of SIQUEIRA et al’s (2017) method, the matrix-vector
product A,p* = d(p*) must be calculated to get a new residual d® — A,p*, which
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represents a bottleneck. Considering the limitation of 16 Gb of computer memory
in our system, we could run the SIQUEIRA et al.’s (2017) method only up to
22,500 observation points; Otherwise, it is costly and can be prohibitive in terms of

computer memory to maintain such operation.

2.2.2 Conjugate Gradient Least Squares (CGLS) method

for magnetic data processing

The computational cost associated with the classical method to estimate the param-
eter vector p by solving the linear system 2.12 can be very high or even prohibitive
when dealing with large data sets. In these cases, a well-known alternative is solving
the normal equations (equation 2.12) iteratively by using the standard Conjugate
Gradient Least Squares (CGLS) method:

Algorithm 1 Standard CGLS pseudocode (ASTER et al., 2019, p. 166).
Input: A, and d°.

Output: Estimated parameter vector p.

Set it = 0, Py = 0, cir—1) = 0, By = 0, sary = d° and r(ipy = A ' S(ir)-

L Tfit > 0, f = JTooll2
||r(it—1)H%
2 - ¢ty = Ty + Bar) Clie—1)
3- auy = M
[ A €13

4 - Plitr1) = Par) T Qit) Car)

5 - S(it+1) = S@it) — Q(it) An C(it)
6 - T(it1) = Am ' S(itt1)
T-it=it+1

T tr1) — T

8 - Repeat previous steps until convergence (stops if § = <1073).

Setting a convergence criterion 0 (Algorithm 1) based on the minimum tolerance
of the residuals is a good option to carry out this algorithm efficiently and still
obtaining very good results. Another possibility is to set an invariance limit to the
normalized Euclidean norm of residuals between iterations, which would increase
algorithm runtime, but with smaller residuals. We chose the latter option, as we

could achieve better results.
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Methodology

3.1 Regular grids

3.1.1 x- and y-oriented grids

Consider that the observed data are located on an N, x N, regular grid of points
regularly spaced by Az and Ay along the z- and y-directions, respectively, on a
horizontal plane defined by the constant vertical coordinate zy < z.. As a conse-
quence, a given pair of matrix coordinates (x;,y;), defined by the matrix index i,

i=1,...,N=N,N,, is equivalent to a pair of coordinates (xj,y;) given by:

and
vi=y =y +[I(1) — 1] Ay, (3.2)

where k(i) and [(i) are integer functions of the matrix index i. These equations
can also be used to define the matrix coordinates x; and y; associated with the jth
equivalent source, j = 1,...,N = NyN,. In this case, the integer functions are
evaluated by using the index j instead of 7. For convenience, we designate x; and
y; as grid coordinates and the indices k and [ as grid indices, which are computed
with the integer functions.

The integer functions assume different forms depending on the orientation of the
regular grid of data. Consider the case in which the grid is oriented along the z-axis
(Figure 3.1 left panel). For convenience, we designate these grids as z-oriented grids.

For them, we have the following integer functions:

ik,)=(1U—-1Ny+k | (3.3)

10
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K”:{éj (3.4)

and

k@:i—&%LW+NE, (3.5)
where [-] denotes the ceiling function (GRAHAM et al., 1994, p. 67). These integer
functions are defined in terms of the matrix index 7, but they can be defined in the
same way by using the index j. Figure 3.1 left panel illustrates an x-oriented grid
defined by N, = 3 and IV, = 2. In this example, the matrix coordinates x5 and ys,
defined by the matrix index i = 5 (or j = 5), are equivalent to the grid coordinates
2o and yo, which are defined by the grid indices k = 2 and [ = 2, respectively. These
indices are computed with equations 3.4 and 3.5, by using the matrix index ¢ = 5
(or j =5).

Now, consider the case in which the regular grid of data is oriented along the
y-axis (Figure 3.1 right panel). For convenience, we call them y-oriented grids.
Similarly to z-oriented grids, we have the following integer functions associated
with y-oriented grids:

i(k,l)=(k—1)N,+1 (3.6)

un:{§w (3.7)
and

l@:i—&%L%+NQ. (3.8)

Figure 3.1 right panel illustrates an y-oriented grid defined by N, = 3 and N, = 2.
In this example, the matrix coordinates x5 and ys, defined by the matrix index ¢+ = 5
(or 7 = 5), are equivalent to the grid coordinates z3 and y;, which are defined by
the grid indices k = 3 and [ = 1, respectively. Differently from the example shown
in Figure 3.1 left panel, the grid indices of the present example are computed with
equations 3.7 and 3.8, by using the matrix index i =5 (or j = 5).

Using equations 3.4 or 3.8 and 3.5 or 3.7 it is also possible to define a difference

between the grid indices:

Aly = 1(5) - 1(j) . (3.9)

Aky; = k(i) — k() . (3.10)

In the following sections we will use this grid indices differences to represent the

sensitivity matrices both of gravity and magntic cases.
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x-oriented grid y-oriented grid

3 6 5 6

) ° ° °

2 5 3 4

) ° ° )

1 4 1 2

) ° ° °
> >

Y Y

Figure 3.1: Schematic representation of an N, x N, regular grid of points (black
dots) with N, = 3 and N, = 2, where each point has an associated index. This
index may represent ¢ or j, that are associated with observation points (x;, y;, 20)
and equivalent sources (z;,y;, 2.). Left panel shows an example of z-oriented grid,
with indices varying along z-axis, while right panel shows an example of y-oriented
grid, with indices varying along y-axis.

3.1.2 Elements of gravity sensitivity matrix for regular grids

To access the structure of the sensitivity matrix A, (equation 2.1), let us first rewrite

its elements a;; (equation 2.2) by using equations 3.1 and 3.2, i.e.

cg G Az

a4 = . (3.11)
J 2 2 215
where A, = z. — 2o,
Akyy = = = k(i) = k(j) (3.12)
Aly =29 iy —1(j) (3.13)
A,
and ) .
- . (3.14)

T\ J(Aky A%+ (Al A)? 4 A2

Note that the integer functions k(7), k(j), 1(7) and I(j) (equations 3.5-3.8) defining
Ak;; (equation 3.12), Al;; (equation 3.13) and -= (equation 3.14) assume different

forms depending on the grid orientation. Despite of that, it can be shown that

Aki]‘ = —Al{?ji s (315)
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and . |
S (3.17)
Tij Tji

for any grid orientation. Notice that the structure of matrix A (equation 2.1), for

the case in which its elements are given by a;; (equation 3.11), is defined by the

coefficients Ak;; and Al;.

3.1.3 Elements of magnetic sensitivity matrix for regular
grids

To access the structure of the sensitivity matrix A,, (equation 2.10), let us first

rewrite its elements a;; (equation 2.6) in the following way:

o ax zy xz vy Yz 2z
(i = Qg T Qg T Qg+ Qg+ Gy g (3.18)

where

em 22 (FLu hf»ﬁ ., a=
azﬁ = i ( ﬁ) ’ of 5 ) 067/8 =Ty, %z, (319)
CmZ_;(Fauﬁ‘FFﬁua)hij , a# B

are defined by the elements of F (equation 2.4), & (equation 2.7) and H;; (equations

2.8 and 2.9). Then, we can rewrite the sensitivity matrix A, (equation 2.10) as:
Apn=Ax+Ay+AL+A,+Ay, +A,,, (3.20)

where A,g are N x M matrices with elements ij defined by a?‘jﬁ (equation 3.19).

Now we can define the structure of Ay, in terms of its components A g (equation
3.20). To do this, we consider the particular case in which the observed total-field
anomaly is located on an N, x N, regular grid of points spaced by A, and A,
along the x- and y-directions, respectively, on a constant vertical coordinate z.
We also consider that the equivalent layer is formed by one dipole right below each
observation point, at a constant coordinate z.. In this case, the number of equivalent
sources M is equal to the number of data N and, consequently, matrices A,, and
A 3 become square (N x N).

By using equations 3.1-3.8 to define the coordinates x; and y; of the observation

points and x; and y; of the equivalent sources, we can rewrite the elements h%ﬁ



CHAPTER 3. METHODOLOGY 14

(equation 2.9) of matrix H;; (equation 2.8) as follows:

Ak A1
py = 2B A1 (321)

3(AL;A,)° 1

hYY = 3.22
3A2 1
[ 3.23
() ?/_25‘7 7/'7?] Y ( )
o 3(Aky; AL) (Al A)
hi]y = ’ o, e ) (324)
]
o S(Ak; AL A,
it = ; 3 (3.25)
ij
and 3(Aly A,) A
hiy = % . (3.26)

3.2 General structure of sensitivity matrices

For z-oriented grids, the coefficients Ak;; and Al;; are computed by using equations
3.5 and 3.4, respectively. In this case, Ay, A, or Ayg (equations 2.1, 2.10 or 3.20)
are composed of N, x N, blocks, where each block is formed by N, x N, elements.
For y-oriented grids, the coefficients Ak;; and Al;; are computed by using equations
3.7 and 3.8, respectively. In this case, Ay, A, or Ayg (equations 2.1, 2.10 or 3.20)
are composed of N, x IV, blocks, where each block is formed by N, x N, elements. In
all cases, the matrices are Toeplitz blockwise, i.e., the blocks lying at the same block
diagonal are equal to each other and each block are Toeplitz matrices themselves.
Matrices with this well-defined pattern are called Doubly Block Toeplitz (JAIN,
1989, p. 28) or Block-Toeplitz Toeplitz-Block (BTTB), for example. We opted for
using the second term.

This well-defined pattern is better represented by using the block indices q and
p. For z-oriented grids (Figure 3.1 left panel), Q = N,, P = N, and the block

indices ¢ and p are given by:
4 = q(ij) = Al (3.27)

and
p=p(i,J) = Ok, (3.28)

where Ak;; and Al;; (equations 3.15 and 3.16) are defined by integer functions k(i),
k(j), 1(7) and I(j) given by equations 3.5 and 3.4. For y-oriented grids (Figure 3.1
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right panel), @ = N,, P = N, and the block indices ¢ and p are given by:

= q(i,j) = Ak (3.29)

()
I

and
p=p(i,J) = Al , (3.30)

where Ak;; and Al;; (equations 3.12 and 3.13) are defined by integer functions k(i),
k(7), 1(i) and I(j) given by equations 3.7 and 3.8. Equations 3.27-3.30 show that ¢
varies from —Q) + 1 to @ — 1 and p from —P 4+ 1 to P — 1, regardless of the grid
orientation.

Let us consider the small regular grid of N, = 3 and N, = 2 points shown by
Figure 3.1. This grid may represent observation points (x;,v;, z0) with constant
vertical coordinate z, or equivalent sources (z;,y;, z.) with constant vertical coor-
dinate z. > 2p. In both cases, the horizontal coordinates are defined by equations
3.1 and 3.2. Given an index i, associated with an observation point, and an index
J, associated with an equivalent source, we can compute Ak;; (equation 3.12), Al;
(equation 3.13) and % (equation 3.14). The matrices AK and AL having elements
ij defined by Ak;; and Al;;, respectively, assume different forms, depending on the
grid orientation. For x-oriented grids (Figure 3.1 left panel), they are given by:

(0 -1 =2 0 -1 —2]
1 0 -1 1 0 -1
21 0 2 1 0
AK = (3.31)
0 -1 -2 0 —1 -2
1 0 -1 1 0 -1
21 0 2 1 0
and ~ ~
000 -1 —1 —1
000 —1 —1 —1
000 —1 —1 —1
AL = (3.32)
111 0 0 0
111 0 0 0
111 0 0 0
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For y-oriented grids (Figure 3.1 right panel), they are given by:

[0 0 -1 -1 -2 —2]
00 -1 -1 -2 -2
11 0 0 -1 -1

AK = (3.33)
11 0 0 -1 -1
22 1 1
292 1 1

and _ -

0 -1 0 -1 0 —1
1 0 1 0 1 0
0 -1 0 -1 0 —1

AL = (3.34)
1 01 0 1 0
0 -1 0 -1 0 —1
1 01 0 1 0

For example, consider the matrix coordinates x5, ys for the observation point and
x3,Yys for the source in a x-oriented grid, these are defined by the matrix index ¢ = 5
and j = 3. Using equations 3.5 and 3.4 the grid indices k(i) = 2, [(i) = 2 and
k(7) = 3, I(j) = 1 can be calculated. Equations 3.12 and 3.13 define Ak;; = —1
and Al;; = 1, which represents the the value in the fifth row and third column of
matrices AK and AL (equations 3.31 and 3.32), respectively. Using the matrix
coordinates x4 (y4) for the observation point and x5 (y) for the source, lead us to
the same values for Ak;; and Al;; (fourth row and second column of equations 3.31
and 3.32). These examples (equations 3.31-3.34) show that different combinations
of indices ¢ and j result in integer functions Ak;; and Al;; (equations 3.12 and 3.13)
having the same numerical value. In these cases, not only the numerical values of the
corresponding elements af‘jﬁ (equation 3.19), but also their associated block indices
g and p (equations 3.27-3.30) are the same. The contrary is also true: elements

a%’B having different associated block indices ¢ and p also have different numerical

B
Z‘.;,
in terms of its associated block indices ¢ and p is a good approach to investigating

values. Because of that, using the alternative notation agf to define the elements a

the structure of a given matrix component A,g (equation 3.20). This approach
allows identifying elements af‘jﬁ having the same numerical value only by inspecting
their associated block indices.

Note that, for z-oriented grids, matrices AK (equation 3.31) and AL (equation
3.32) define the block indices p (equation 3.28) and ¢ (equation 3.27), respectively.
In this case, they are composed of @) x @) blocks with P x P elements each, where
@ = N, and P = N,. For y-oriented grids, matrices AK (equation 3.33) and AL
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(equation 3.34) define the block indices ¢ (equation 3.29) and p (equation 3.30),
respectively. In this case, they are also composed of () x @ blocks with P x P
elements each, but now ) = N, and P = N,. The examples shown by equations
3.31-3.34 also illustrate that, regardless of grid orientation, (i) the block index ¢ is
constant inside each block; (ii) blocks disposed along the same block diagonal are
equal to each other; (iii) the block index p is constant on each diagonal of a given
block; (iv) elements of a given block located on the same diagonal are also equal
do each other. The results obtained with the small grid shown in Figure 3.1 can
be easily generalized for larger grids. Based on the well-defined structure of block

indices, we can define matrices Ay, A,, or A,g in a general form

AD A1 ... A7Q+1_
Al e :
Ag Am, Agg=A=| " , (3.35)
: . .. A—l
AQ-1 ... Al AD
L 4 NxN
with blocks A, Af, or Al ¢=-Q+1,...,Q — 1, given by
g0 Qg(=1) *** Qq(-P+1)
0 :
AT AT AL =AT= | M o , (3.36)
1 LT Ay
[YaP-1) " gl @0 | pyp
formed by elements af,, ay or a2, p=—P+1,..., P — 1.

3.3 Detailed structure of the sensitivity matrices

3.3.1 Detailed structure of the gravity sensitivity matrix

From equations 3.35 and 3.36 we can define the structure of matrix A, (equa-
tion 2.1). Considering the elements aj; (equation 2.2), defined by the first vertical

derivative of equation 2.3, it is possible to verify from equations 3.15 and 3.17 that

9 _ 9

a;; = aj;. As a consequence

A,= (A", (3.37)

for both z- and y-oriented grids. Using a x-oriented grid (Figure 3.1 left panel), the
block indices ¢ and p are defined by equations 3.27 and 3.28 and af, can be rewritten

as follows CA
af = Rl , (3.38)

T A+ (gA,)? + A2
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where A, = z. — z;.
For y-oriented grids (Figure 3.1 right panel), the block indices g and p are defined
by equations 3.29 and 3.30 thus, af, becomes
cgGA,

al, = T (3.39)
(g 8:)* + (pAy)? + AZ

Equations 3.38 and 3.39 show us that
A=Al (3.40)
which demonstrates the symmetry by blocks of matrix A, and
T
Al = (A1), (3.41)

that demonstrates the symmetry inside the blocks of matrix A,. Therefore, A, has
a strucuture of a symmetric-Block-Toeplitz symmetric-Toeplitz- Block matrix for -
and y-orientation grids. Using the symmetry presented in equations 3.40 and 3.41,

the gravity sensitiviry matrix from equations 3.35 and 3.36 can be rewritten as

[ A0 Al ... AQ-T]
Al e :
Ag=| " , (3.42)
: oAl
AQ-1 ... Al A0
B 4 NxN
with blocks A, ¢=—-Q+1,...,Q — 1, given by
(g0 Qq(1) Gq(P-1)
Aq1
Ag=1 (3.43)
(q(1)
| Gq(P-1) "t dql o0 | pop

Figures 3.2 and 3.3 shows a example of this type of BT'TB matrix structure for

a 3 X 2 x- and y-oriented grids, respectively.
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0.0100
0.0095
0.0090
0.0085
0.0080
0.0075
0.0070

0.0065

Figure 3.2: Example of a symmetric-Block-Toeplitz symmetric-Toeplitz- Block ma-
trix for 3 x 2 z-oriented grid. This matrix represents the structure of the gravity
sensitivity matrix A,.
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I 0.0100
r 0.0095
r 0.0090

0.0085

=

r 0.0080

0.0075

0.0070

0.0065

Figure 3.3: Example of a symmetric-Block-Toeplitz symmetric-Toeplitz- Block ma-
trix for 3 x 2 y-oriented grid. This matrix represents the structure of the gravity
sensitivity matrix A,.

3.3.2 Detailed structure of matrices Ay, , Ay, and A,,

The direct second derivatives matrices Axx , Ayy and A,, have the same stru-
cuture of the gravity sensitivity matrix. Equations 3.35 and 3.36 also define the
general BTTB structure of all matrix components A,g, but there are some differ-
ences between them. Let us consider the matrix component A, with elements a;t

(equation 3.19) defined by the second derivative h{j (equation 3.21). It can be easily

Tr

verified from equations 3.15 and 3.17 that h{ = hj7. As a consequence, aj = a3/,

which means that

for any grid orientation. Now, let us investigate the elements ag; forming the blocks
Ad . For z-oriented grids (Figure 3.1 left panel), the block indices ¢ and p are

defined by equations 3.27 and 3.28 and ag; can be rewritten as follows:

3(p AI)Q 1

azt = ¢y — (Fruyg) - —, (3.45)
Tw o Tap
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where . |
— = . (3.46)

A+ (gA,) + A2

For y-oriented grids (Figure 3.1 right panel), the block indices ¢ and p are defined

by equations 3.29 and 3.30 and ag; can be rewritten as follows:

Ho
alt = ¢y — (Fpuy,) ——— — — | (3.47)
= O 5o
where . .
— = : (3.48)
T 2 2
v J@A) + (0D, + A
From equations 3.45-3.48, we can easily verify that
AL, = ALY (3.49)
and
Al =(AL) . (3.50)

Note that these symmetries are valid for any grid orientation. From this results
we conclude the matrix component A, is symmetric-Block-Toeplitz symmetric-
Toeplitz-Block for any grid orientation. The same reasoning can be used to show
that matrices Ay, and A, also have this symmetric structure. Figure 3.4 panels
a), d) and f) show examples of this type of BTTB matrices structures when 3 x 2
x-oriented grids are used for Axx, Ayy and A,,, respectively. Figure 3.5 panels
a), d) and f) show examples of this type of BTTB matrices structures when 3 x 2

y-oriented grids are used for Ayx, Ay, and A,,, respectively.
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(C) Az

o
0.00010 0.0004
0.00005 0.0002
0.00000 3 0.0000
-0.00005 -0.0002
~0.00010 ~0.0004

6

o 3 6

(d) Ayy (e) Ayz

0 0
~0.00065
0.0006
~0.00070
0.0004
-0.00075
0.0002
~0.00080
3 3 0.0000
-0.00085
~0.0002
~0.00090
~0.0004
-0.00095
~0.0006
6 ~0.00100 6
0 3 6

0 3 6

~0.00075

~0.00080

~0.00085

~0.00090

~0.00095

-0.00100 6

0 3 6

(f) Az

0 0.0020
0.0019
0.0018

3 0.0017
0.0016
uuuuu
0.0014

6

o 3 6

Figure 3.4: This figure shows examples of all the BT'TB structures possible for A,z
matrix when 3 x 2 z-oriented grids are used. Panel a) Example of a symmetric-
Block-Toeplitz symmetric-Toeplitz-Block structure of the Ay, matrix. Panel b) Ex-
ample of a skew symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block structure
of the Ay, matrix. Panel ¢) Example of a symmetric-Block- Toeplitz skew symmetric-
Toeplitz-Block structure of the Ay, matrix for z-oriented grids. Panel d) Example
of a symmetric-Block-Toeplitz symmetric-Toeplitz-Block structure of the A,y ma-
trix. Panel e) Example of a skew symmetric-Block-Toeplitz symmetric- Toeplitz- Block
structure of the Ay, matrix for z-oriented grids. Panel f) Example of a symmetric-
Block-Toeplitz symmetric-Toeplitz- Block structure of the A,, matrix.
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(b) Ayy

00010
0.00005
0.00000

~0.00005
~0.00010

(d) Ay

. i -
~0.00100

~0.00075

0.0004

~0.00080

~0.00085

0.0000

~0.00090

~0.0002

~0.00095
-0.0004

~0.00100
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0.0004

0.0002

0.0000

~0.0002

-0.0004

~0.0006

0.0020

0.0019

uuuuu

uuuuu

ooooo

Figure 3.5: This figure shows examples of all the BT'TB structures possible for A,z
matrix when 3 x 2 y-oriented grids are used. Panel a) Example of a symmetric-
Block-Toeplitz symmetric-Toeplitz-Block structure of the Ay, matrix. Panel b) Ex-
ample of a skew symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block structure
of the Ay, matrix. Panel ¢) Example of a skew symmetric-Block-Toeplitz symmetric-
Toeplitz-Block structure of the Ay, matrix for y-oriented grids. Panel d) Example
of a symmetric-Block-Toeplitz symmetric-Toeplitz-Block structure of the A,y ma-
trix. Panel e) Example of a symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block
structure of the Ay, matrix for y-oriented grids. Panel f) Example of a symmetric-
Block-Toeplitz symmetric-Toeplitz- Block structure of the A,, matrix.

3.3.3 Detailed structure of matrix Ay,

Let Az, be a matrix component with elements a;; (equation 3.19) defined by the
second derivative h;Y (equation 3.24). It can be easily verified from equations 3.15-

3.17 that hy = hxy. As a consequence, a;/ = aj;, which means that

ﬂ’

Agy = (Agy)' (3.51)
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for any grid orientation. For z-oriented grids (Figure 3.1 left panel), the block indices

Y can be rewritten as follows:

q and p are defined by equations 3.27 and 3.28 and a}

3(PAs) (¢ Ay)

5
Tap

x Mo
agy = Cpm in (Fruy + Fyuy)

, (3.52)
with % defined by equation 3.46. For y-oriented grids (Figure 3.1 right panel), the
block indices ¢ and p are defined by equations 3.29 and 3.30 and ag} can be rewritten

as follows:
3(qA:) (pAy)

5
Tap

x Mo
agy = Cpm in (Fruy + Fyuy)

, (3.53)

with % defined by equation 3.48. From equations 3.46, 3.48, 3.52 and 3.53, we can
show that
AL, =—AlD (3.54)
and
AL, =—(AL)". (3.55)

Note that these symmetries are valid for any grid orientation. From this results
we conclude the matrix component Ay, is skew symmetric-Block-Toeplitz skew
symmetric-Toeplitz-Block for any grid orientation. Figure 3.4 panel b) shows a
example of this type of BTTB matrix structure for 3 x 2 x-oriented grids. Figure
3.5 panel b) shows a example for 3 x 2 y-oriented grids.

3.3.4 Detailed structure of matrices Ay, and Ay,

Let Az, be a matrix component with elements af? (equation 3.19) defined by the
second derivative A7 (equation 3.25). It can be easily verified from equations 3.15-
3.17 that hi? = —hi7. As a consequence, a;7 = —aj;7, which means that

Amz = - (Amz)T (356)

for any grid orientation. For z-oriented grids (Figure 3.1 left panel), the block indices

q and p are defined by equations 3.27 and 3.28 and aj; can be rewritten as follows:

3(pA,) A,

5
Tap

Tz __ Ko

a;l = cy, —
ap A

(Fou, + Fuy) , (3.57)

with TL defined by equation 3.46. In this case, we can see that
qap

Al =AY (3.58)

rz
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and
Al =— (A7) . (3.59)

This structure is called symmetric-Block-Toeplitz skew symmetric-Toeplitz- Block and
is valid only for z-oriented grids. For y-oriented grids (Figure 3.1 right panel), the

block indices ¢ and p are defined by equations 3.29 and 3.30 and ag; can be rewritten

as follows: 3(gA) A
Tz Ho q Qg z
aqp = Cm E (quz + qu$> T s (360)
with % defined by equation 3.48. Now, we conclude that
Al = ALY (3.61)
and
Al =(AL)" . (3.62)

This structure is called skew symmetric-Block-Toeplitz symmetric-Toeplitz- Block and
is valid only for y-oriented grids.

The same reasoning can be followed to show that
Ay = —(Ays) (3.63)
for any grid orientation. Besides, we can also show that
Al =—ALY (3.64)

and
Al = (A" (3.65)

for z-oriented grids (skew symmetric-Block-Toeplitz symmetric- Toeplitz- Block), while
Al =AY (3.66)

and
Al = —(AL)" (3.67)

for y-oriented grids (symmetric-Block-Toeplitz skew symmetric-Toeplitz-Block). Fig-
ure 3.4 panels ¢) and e) show examples of this type of BTTB matrix structure for
3 x 2 z-oriented grids. Figure 3.5 panels c¢) and e) show examples for 3 x 2 y-oriented

grids
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3.4 BTTB matrix-vector product

3.4.1 BTTB matrix-vector product for gravimetric data pro-

cessing

The matrix-vector product A,p* (equation 2.17) required by the fast equivalent-
layer technique (SIQUEIRA et al., 2017) accounts for most of its total computation
time and can cause computer memory shortage when large data sets are used. This
computational load can be drastically reduced by exploring the well-defined struc-
ture of matrix A, (equation 2.1) for the particular case in which its elements a;; are
defined by equation 3.11. In this case, A, is a symmetric BTTB matrix (equations
3.37 and 3.40-3.41) and the predicted data vector d(p) (equation 2.1) can be effi-
ciently computed by using the 2D Discrete Fourier Transform (DFT). To do this,

let us first rewrite d(p) and pg (equation 2.1) as the following partitioned vectors:

do(p)
d(p) = : (3.68)
dg-1(p) Nxl
and
Po
p= : ) (3.69)
Po-1] v

where d,(p) and py, ¢ = 0,...,Q — 1, are P x 1 vectors. Notice that ¢ is the
block index defined by equations 3.27 and 3.29, () defines the number of blocks Al
(equation 3.36) forming A, (equation 2.1) and P defines the number of elements
forming each block A?. Then, by using the partitioned vectors (equations 3.69 and
3.68) and remembering that N = QP, we define the auxiliary linear system

w=Cv, (3.70)
where
Wo
w=| : (3.71)
Wgo-1
02N><1 AN %1

o dq(p)
Wq - lopx1] - ) (372)
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Vo
v=| ° , (3.73)
V-1
02N><1_ ANx1
and )
vV, = Pg : (3.74)
OPx1]yp

with d,(p) and p, defined by equations 3.68 and 3.69, respectively. Finally C
(equation 3.70) is a 4N x 4N symmetric Block Circulant matrix with Circulant
Blocks (BCCB) (DAVIS, 1979, p. 184). Matrix C (equation 3.70) is circulant
blockwise, formed by 2 x 2¢) blocks, where each block C,, ¢ = 0,...,Q — 1, is
a 2P x 2P circulant matrix. Similarly to the BTTB matrix A4 (equation 3.42),
the index ¢ varies from 0 to () — 1. Additionally, the blocks lying above the main
diagonal are equal to those located below.

It is well-known that a circulant matrix can be defined by properly downshifting
its first column (VAN LOAN;, 1992, p. 206). Hence, the BCCB matrix C (equation

3.70) can be obtained from its first column of blocks, which is given by

Clgy=| 0 , (3.75)

Cy
L - AN X2P

where 0 is a 2P x 2P matrix of zeros. Similarly, each block C,, ¢ = 0,...,Q — 1,

can be obtained by downshifting its first column

<=1 o , (3.76)

L - 2Px1

where af (equation 3.39), p = 0,..., P — 1, are the elements forming the block A
(equation 3.43). The downshift can be thought off as permutation that pushes the
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components of a column vector down one notch with wraparound (GOLUB and
LOAN, 2013, p. 20). To illustrate this operation, consider our y-oriented grid
illustrated in the right panel of Figure 3.1. In this case, the resulting BCCB matrix
C (equation 3.70) is given by

Co C; C; C3 0 C3 Cy Cy
C, Gy C1 Cy C3 0 C;5 Gy
Cy C; Cp C; C; C3 0 Cj
C_ Cs Cy C; Gy C; C, C3 O | (3.77)
0 C;3 C; C; Gy Cp Cy G5
Cs3 0 C3 Cy, C; Gy C; Gy
C, C3 0 C3 Cy C; Cy Cy
Ci Cy C3 0 C3 C, C; (G

L d ANx4N

where each block C,, ¢ = 0,1, 2,3, is represented as follows

- -
ay a; ay; 0 ay a
aj ay af
q _q a

ay a; ay a; ay; 0O

C, = (3.78)

q
0 ay aj

q q
ay, 0 ay ay ay ay

q q
o1 a0 ay @ dapxop

in terms of the block elements af (equation 3.39). Similar matrices are obtained for
our z-oriented grid illustrated in Figure 3.1a.

BCCB matrices are diagonalized by the 2D unitary DET (DAVIS, 1979, p. 185).
It means that C (equation 3.70) satisfies

C = (Fag ® Fap) A (Fap @ Fap) | (3.79)

where the symbol “®” denotes the Kronecker product (NEUDECKER, 1969), Faq
and Fop are the 2Q) x 2Q) and 2P x 2P unitary DFT matrices (DAVIS, 1979, p.
31), respectively, the superscritpt “x” denotes the complex conjugate and A is a
4Q P x 4Q) P diagonal matrix containing the eigenvalues of C.

What follows shows a step-by-step description of how we use the auxiliary sys-
tem (equation 3.70) to compute the matrix-vector product A, p* (equation 2.17) in
a computationally efficient way by exploring the structure of matrix C. By sub-

stituting equation 3.79 in the auxiliary system (equation 3.70) and premultiplying
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both sides of the result by (Fag ® Fap) (see the details in section 3.4.2), we obtain
A (Faq @ Fap) v = (Fag @ Fop) w. (3.80)

Now, by applying the vec-operator to both sides of equation 3.80 (see the details

in section 3.4.3), we obtain:
Fio [L o (Faq V Fap)| Fip = W, (3.81)

where “o” denotes the Hadamard product (HORN and JOHNSON, 1991, p. 298)
and L, V and W are 2() x 2P matrices obtained by rearranging, along their rows,
the elements forming the diagonal of matrix A, vector v and vector w, respectively.
The left side of equation 3.81 contains the 2D Inverse Discrete Fourier Transform
(IDFT) of the term in brackets, which in turn represents the Hadamard product of
matrix L (equation 3.112) and the 2D DFT of matrix V (see equations 3.112 and
3.110 in section 3.4.3). Matrix L contains the eigenvalues of A (equation 3.79) and
can be efficiently computed by using only the first column of the BCCB matrix C
(equation 3.70) (see the details in section 3.4.4). Here, we evaluate equation 3.81
and compute matrix L by using the 2D Fast Fourier Transform (2D FFT). This
approach, that have been used in potential-field methods (e.g., QIANG et al., 2019;
ZHANG and WONG, 2015; ZHANG et al., 2016), is actually a fast 2D discrete
convolution (e.g., VAN LOAN;, 1992, p. 213).

At each iteration kth of the fast equivalent-layer technique, (equation 2.17), we
efficiently compute A, p* = d(p*) by following the steps below:

(1) Use equation 3.11 to compute the first column of each block A? (equation
3.43),¢=0,...,Q — 1, forming the BTTB matrix A, (equation 3.42);

(2) Rearrange the first column of A, according to equations 3.75 and 3.76 to
obtain the first column ¢ of the BCCB matrix C (equation 3.70);

(3) Rearrange cg along the rows and use the 2D FFT to compute matrix L (equa-
tion 3.116, section 3.4.3);

(4) Rearrange the parameter vector p* (equation 2.1) in its partitioned form (equa-

tion 3.69) to define the auxiliary vector v (equation 3.73);

(5) Rearrange v to obtain matrix V, use the 2D FFT to compute its DFT and
evaluate the left side of equation 3.113(see section 3.4.3);

(6) Use the 2D FFT to compute the IDFT of the result obtained in step (5) to
obtain the matrix W (equation 3.81);
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(7) Use the vec-operator (equation 3.103, section 3.4.3) and equations 3.71 and
3.72 to rearrange W in order to obtain the predicted data vector d(p*).

3.4.2 BTTB matrix-vector product for magnetic data pro-
cessing
To efficiently compute the product of the sensitivity matrix A,, (equation 2.10) and

a generic vector b for the magnetic equivalent layer let this product be represented
by

t=A.b, (3.82)
where
t =1tpe +toy +tas +tyy +Hty. +1.. (3.83)
and
tag = Afﬁ b. (3.84)
Let us also consider that vectors
0
taﬁ
bap = | (3.85)
Q-1
taﬂ Nx1
and
bO
b= : (3.86)
p@-1
Nx1

are composed of P x 1 vectors ti,@ and b?, respectively, where ¢ is the block index
(equations 3.27 and 3.29). From equation 3.84, we obtain an auxiliary matrix-vector

product given by
Wag = Caﬁ v, (387)

where Cgg is a 4N X 4N block circulant matrix with circulant blocks (BCCB) (e.g.,
DAVIS, 1979, p. 184),

Wag= | : (3.88)

0
2N x1 AN x1

tq
wilg=| , (3.89)
0
Px1]opyi
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\%
v=1 o (3.90)
Oonx1] ,noy
and
vl = [ b ] , (3.91)
0rx1]ypy

with Oy w1 and Opy; being vectors of zeros. As shown in section 3.4.1 the auxiliary
matrix-vector product (equation 3.87) represents a 2D discrete convolution and can
also be efficiently computed by using the 2D Fast Fourier Transform (2D FFT).

The BCCB matrix Cqg (equation 3.87) is formed by 2¢) x 2Q) blocks, where each
block szﬁ is a 2P x 2P circulant matrix. The entire BCCB matrix Cg,g is defined
by properly downshifting its first block column

SESPR
Cos
Q-1

[Caplig) = |O2px2p ; (3.92)
—Q+1
Ca,@

C‘_1

L TaB 1 4Nxop

where 09pop is a matrix of zeros. Similarly, each block anﬁ, g=—-Q+1,...,Q—1,

is obtained by properly downshifting its first column

af
g0

af
q(P-1)
cy=| 0 : (3.93)
af
q(—P+1)

a

a

afB
L Bg(-1) 2Px1

where a;‘“pﬂ, p=—P+1,...,P —1, are the elements of matrix component A,g
described in terms of block indices ¢ and p (equations 3.27-3.30). The BCCB matrix
Cop is diagonalized by Fog @ Fop, where “®” denotes the Kronecker product (e.g.,
HORN and JOHNSON, 1991, p. 242) and Fyq and Fyp are the 2Q) x 2¢) and

2P x 2P unitary DFT matrices (DAVIS, 1979, p. 31). Due to this property, the
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auxiliary matrix-vector product (equation 3.87) can be computed as follows
Fi [Lag o (Faq VF2p) | Fip = Wag, (3.94)

where “o” denotes the Hadamard (element-wise) product (e.g., HORN and JOHN-
SON, 1991, p. 298), “«” denotes the complex conjugate, Wog and V are 2Q) x 2P
matrices obtained by rearranging, respectively, vectors wag (equation 3.88) and v

(equation 3.90) along their rows and Lgog is a 2Q) x 2P matrix given by

Lag = \/4QP Foo GagFop | (3.95)

with

Gag = | Oix2p ) (3.96)

.
~Q+1
(<o)

i (C;,KIB)T 120x2p

defined by the first columns c(qxﬁ (equation 3.93), ¢ = —Q + 1,...,Q — 1, of all
circulant blocks C{,5 (equation 3.92). Hence, the whole BCCB matrix Capg does
not have to be formed, but only its first column. Besides, the symmetries defined by
equations 3.44-3.67 imply that all elements of G4 can be obtained by using only
the first column of A,g. Consequently, the whole matrices A,g do not have to be
formed as well, but only their first columns.

It is important noting that the left side of equation 3.94 represents the 2D Inverse
Discrete Fourier Transform (2D IDFT) of the term in brackets. This term, in turn,
represents the Hadamard product of Lo g (equation 3.95) and the 2D Discrete Fourier
Transform (2D DFT) of V. Similarly, equation 3.95 shows that Lag is obtained by
computing the 2D DFT of matrix Gag (equation 3.96). Hence, equations 3.94 and
3.95 can be efficiently computed by using the 2D FFT. After that, the elements
of vector tog (equation 3.84) can be retrieved from the first quadrant of matrix
Ws (equation 3.94). By combining the results obtained for all components a3,

a,3 =x,y,z, we can show that
F;Q [L 9] (FQQ A\Y ng)] F;P =W y (397)

where
W =W, + Wy + W, + W, + W,. +W,_, (3.98)
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and
L=Lg,+Lyy+L;.+Ly, +L,.+L.., (3.99)

with Log defined by equation 3.95. Then, the elements of t (equation 3.82) are
obtained from the first quadrant of W (equations 3.97 and 3.99).
Finally, it can be shown that the product

t=An'b (3.100)

can be computed by using equation 3.97. The difference is that, in this case, matrices

Gop (equation 3.96) are defined by using the new vectors

af
Qg0

apf
q(—P+1)
anﬁ = 0 . (3.101)

af
q(P-1)

a
a

af
al  dopxi

a,

3.4.3 Computations with the 2D DFT

In the present section, we deduce equations 3.81 and 3.95 by using the row-ordered
vec-operator (here designated simply as vec-operator). This equation can be ef-
ficiently computed by using the 2D fast Fourier Transform. This operator was
implicitly used by JAIN (1989, p. 31) to show the relationship between Kronecker
products and separable transformations. The vec-operator defined here transforms
a matrix into a column vector by stacking its rows.

Let M be an arbitrary N x M matrix given by:

m,
M=|: , (3.102)
mj
where m;, i = 1,..., N, are M x 1 vectors containing the rows of M. The elements

of this matrix can be rearranged into a column vector by using the vec-operator
(JAIN, 1989, p. 31) as follows:

vec(M) = | . (3.103)

m
N NMx1
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This rearrangement is known as lexicographic ordering (JAIN, 1989, p. 150).
Two important properties of the vec-operator (equation 3.103) are necessary to

us. To define the first one, consider an N x M matrix H given by
H=PoQ, (3.104)

where P and Q are arbitrary N x M matrices and “o” represents the Hadamard
product (HORN and JOHNSON;, 1991, p. 298). By applying the vec-operator to
H (equation 3.104), it can be shown that

vec (H) = vec (P) ovec (Q) . (3.105)

To define the second important property of vec-operator, consider an N x M matrix
S defined by the separable transformation JAIN (1989, p. 31):

S=PMQ, (3.106)

where P and Q are arbitrary N x N and M x M matrices, respectively. By implicitly
applying the vec-operator to the S (equation 3.106), JAIN (1989, p. 31) showed
that:

vee(S) = (P®@ Q") vec(M) , (3.107)

where “®” denotes the Kronecker product (NEUDECKER, 1969). It is important
to stress the difference between equation 3.107 and that presented by NEUDECKER
(1969), which is more commonly found in the literature. While that equation uses a
vec-operator that transforms a matrix into a column vector by stacking its columns,
equation 3.107 uses the vec-operator defined by equation 3.103, which transforms a
matrix into a column vector by stacking its rows.

Now, let us deduce equations 3.81 and 3.95 by using the above-defined properties
(equation 3.105 and 3.107). We start calling attention to the right side of equation
3.80. Consider that vector w (equation 3.80) is obtained by applying the vec-
operator (equation 3.103) to a matrix W, whose 2D DFT W is represented by the
following separable transformation (JAIN, 1989, p. 146):

W = Fyq WFyp, (3.108)

where Fy and Fap are the 2Q) x 2Q) and 2P x 2P unitary DFT matrices. Using
equation 3.107 and the symmetry of unitary DFT matrices, we rewrite the right side

of equation 3.80 as follows:

vec (W) = (Fyo ® Fap) vec (W) . (3.109)
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Similarly, consider that v (equation 3.80) is obtained by applying the vec-operator
(equation 3.103) to a matrix V, whose 2D DFT (equation 3.108) is represented by
V. Using equation 3.107 and the symmetry of unitary DFT matrices, we can rewrite

the left side of equation 3.80 as follows:
A vec <\~f> = A (Fyo @ Fop)vec(V) . (3.110)

Note that both sides of equation 3.110 are defined as the product of the diagonal
matrix A (equation 3.79) and a vector. In this case, the matrix-vector product can

be conveniently replaced by
A o vec <V) = Ao (Fyq @ Fyp)vec(V) (3.111)

where A is a 4QP x 1 vector containing the diagonal of A (equation 3.79). Then,
consider that A is obtained by applying the vec-operator (equation 3.103) to a
2@) x 2P matrix L, we can use equations 3.105 and 3.107 to rewrite equation 3.111
as follows:

vec (L o \7) — vec[L o (Fao V Fap)] . (3.112)

Equations 3.108, 3.109 and 3.112 show that equation 3.80 is obtained by applying
the vec-operator to
LO(FQQVFQP) :FQQWFQP. (3113)

Finally, we premultiply both sides of equation 3.113 by F3, and then postmultiply
both sides of the result by F3, to deduce equation 3.81.

3.4.4 The eigenvalues of C

In the present section, we show how to efficiently compute matrix L (equations
3.112, 3.113, 3.81 and 3.95) by using only the first column of the BCCB matrix C
(equations 3.70 and 3.87).

We need first premultiply both sides of equation 3.79 by (Fag ® Fap) to obtain

(Fag ® Fap) C = A (Fao @ Fap) . (3.114)

From equation 3.114, we can easily show that (CHAN and JIN, 2007, p. 77):

L
JiQp "

where ¢g is a 4Q P x 1 vector representing the first column of C (equations 3.70 and
3.87) and A (equation 3.111) is the 4QP x 1 vector that contains the diagonal of
matrix A (equation 3.79) and is obtained by applying the vec-operator (equation

(Faq ® Fap) co = (3.115)
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3.103) to matrix L. Now, let us conveniently consider that ¢ is obtained by applying
the vec-operator to a 2() x 2P matrix G. Using this matrix, the property of the
vec-operator for separable transformations (equation 3.106) and the symmetry of

unitary DFT matrices, equation 3.115 can be rewritten as follows

L g
JiQP

This equation shows that the eigenvalues of the BCCB matrix C (equations 3.70

Fyq GFyp =

(3.116)

and 3.87), forming the rows of L, are obtained by computing the 2D DFT of matrix
G, which contains the elements forming the first column of the BCCB matrix C
(equations 3.70 and 3.87).

3.5 Convolutional equivalent-layer processing

3.5.1 Convolutional equivalent layer for gravity data pro-

cessing

In a normal procedure of the fast equivalent layer proposed by SIQUEIRA et al.
(2017), at each iteration a full matrix A, (equation 2.1 and 3.42) is multiplied by
the estimated mass distribution parameter vector p* producing the predicted gravity
data d(p) iteratively. By substituting this matrix-vector product following the steps

from section 3.4.4 we will improve the computational efficiency of the technique.

3.5.2 Computational performance for gravity data process-
ing

The number of flops (floating-point operations) necessary to estimate the N x 1

parameter vector p in the fast equivalent-layer technique (SIQUEIRA et al., 2017)

1S
fo= N"(3N +2N?) | (3.117)

where N is the number of iterations. In this equation, the term 2N? is associated
with the matrix-vector product A,p* (equation 2.17) and accounts for most of
the computational complexity of this method. Our method replace this matrix-
vector product by three operations: one DFT, one Hadamard product and one
IDFT involving 2@ x 2P matrices (left side of equation 3.81). The Hadamard
product requires 24N flops, N = QP, because the entries are complex numbers.
We consider that a DFT/IDFT requires k4N log,(4N) flops to be computed via 2D

FFT, where x is a constant depending on the algorithm. Then, the resultant flops
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count of our method is given by:
fi = N"[2TN + k8N log,(4N)] . (3.118)

Figure 3.6 shows the flops counts fy and f; (equations 3.117 and 3.118) associated
with the fast equivalent-layer technique (SIQUEIRA et al., 2017) and our method,
respectively, as a function of the number N of observation points. We considered a
fixed number of N = 50 iterations and x = 5 (equation 3.118), which is compatible
with a radix-2 FFT (VAN LOAN, 1992, p. 16). As we can see, the number of flops

is drastically decreased in our method.
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Figure 3.6: Comparison between the number of flops (equations 3.117 and 3.118)
associated with the fast equivalent-layer technique (SIQUEIRA et al., 2017) and
our method, for N varying from 5,000 to 1,000,000. All values are computed with
N# = 50 iterations and k = 5.

Another advantage of our method is concerned with the real N x N matrix A,
(equations 2.1 and 3.42). In the fast equivalent-layer technique, the full matrix is
computed once and stored during the entire iterative process. On the other hand,
our method computes only one column of A, and uses it to compute the complex
2Q) x 2P matrix L (equation 3.116) via 2D FFT, which is stored during all iterations.
Table 3.1 shows the computer memory usage needed to store the full matrix Ag,
a single column of A, and the full matrix L. These quantities were computed
for different numbers of observations N. Notice that N = 1,000,000 observations
require nearly 7.6 Terabytes of computer memory to store the whole matrix Ag.

Figure 3.7 compares the running time of the fast equivalent-layer technique
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(SIQUEIRA et al., 2017) and of our method, considering a constant number of
iterations N = 50. We used a PC with an Intel Core i7 4790@3.6GHz processor
and 16 GB of computer memory. The computational efficiency of our approach is
significantly superior to that of the fast equivalent-layer technique for a number of
observations N greater than 10,000. We could not perform this comparison with a
number of observations greater than 22,500 due to limitations of our PC in storing
the full matrix A4. Figure 3.8 shows the running time of our method with a num-
ber of observations up to 25 millions. These results shows that, while the running
time of our method is ~ 30.9 seconds for N = 1,000, 000, the fast equivalent-layer
technique spends ~ 46.8 seconds for N = 22, 500.
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Figure 3.7: Comparison between the running time of the fast equivalent-layer tech-
nique (SIQUEIRA et al., 2017) and our method. The values were obtained for
Nt = 50 iterations.
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Figure 3.8: Running time of our method for a number of observations N up to 25

millions. The values were obtained for N% = 50 iterations.
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N x N Full RAM (Mb) | BTTB RAM (Mb) | BCCB RAM (Mb)
100 x 100 0.0763 0.0000763 0.0006104

400 x 400 1.22 0.0031 0.0248

2500 x 2500 18 0.0191 0.1528

10000 x 10000 763 0.00763 0.6104

40000 x 40000 12207 0.305 24416
250000 x 250 000 476837 1.907 15.3

500 000 x 500 000 1907 349 3.815 30.518
1000000 x 1000000 7629395 7.629 61.035

Table 3.1: Comparison between the system computer memory usage needed to store
the full matrix, the BTTB single column of the sensitivity matrix and the BCCB
eigenvalues (eight times greater than the BTTB singel column). The quantities were
computed for different numbers of data (N) with the same corresponding number
of equivalent sources (N). This table considers that each element of the matrix is
a double-precision number, which requires 8 bytes of storage, except for the BCCB
complex eigenvalues, which requires 16 bytes per element.

3.5.3 Convolutional equivalent layer for magnetic data pro-

cessing

Note that the standard CGLS solution (Algorithm 1) requires neither inverse matrix
nor matrix-matrix product. Instead, it only requires: one matrix-vector product out
of the loop and two matrix-vector products per iteration (in steps 3 and 6). These
products can be efficiently computed by using the 2D FF'T, as a discrete convolu-
tion; This modified approach in which the standard CGLS method is modified to
efficiently compute the matrix-vector products will be referenced throughout this

work as the convolutional equivalent layer method.

3.5.4 Computational performance for magnetic data pro-

cessing

In this section we compare the efficiency of the classical (equation 2.13), standard
CGLS (Algorithm 1) and the convolutional equivalent layer method (Algorithm 1
with matrix-vector products computed according to 3.4.5). To do this, we compute
the total number of flops associated to them (GOLUB and LOAN, 2013, p. 12).
For the classical method, we have %N 3 flops to compute the lower triangle of
AmTAm; %N?’ flops to compute the Cholesky factor G of ALTAL (GOLUB and
LOAN, 2013, p. 164); 2 N? flops to compute the matrix-vector product A, Tde
and 2 N2 flops to solve the triangular systems given by equation 2.13 (GOLUB and
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LOAN, 2013, p. 106). The resultant flop count for the classical method is

5)
fclassical = ENS + 4N2 . (3119)

For the standard CGLS method (Algorithm 1) we have 2 N? to compute the
matrix-vector product Ast(it) out of the loop; 4 N in step 1; 2 N in step 2; 2 N2 +
2N in step 3; 2N in step 4; 2N in step 5; and 2 N2 in step 6. The resultant flop
count is given by:

fegis = 2N? + it (AN? + 12N) . (3.120)

To compute the flops count of our method, we need only to replace the flops as-
sociated with matrix-vector products in the standard CGLS method by those asso-
ciated with 2D convolution defined in section 3.4.2, which consists of k 4N log,(4N)
flops to compute the 2D FFT for each matrix Log (equation 3.95); k4N log,(4N)
flops to compute Foq V Fyp via 2D FFT; 24 N flops to compute the Hadamard
product L o (Fyg V Fyp); and k4N log,(4N) flops to compute the IDFT (inverse
discrete Fourier transform) in equation 3.97. We use k = 5 for the radiz-2 algorithm
(VAN LOAN, 1992, p. 15). By replacing these flops into Algorithm 1, we obtain

the complete number of flops
feonv = K 16N logy(4N) + 24N + it (k 16N logs(4N) + 60N) . (3.121)

Figure 3.9 shows a comparison between fuassicar (€quation 3.119), f.qs (equation
3.120) and f.ony (equation 3.121) for different numbers of observation points up to
1,000,000. As we can see, the total flops count associated with our method is 7
orders of magnitude smaller than that associated with the classical method and 3
orders of magnitude smaller than that associated with the standard CGLS method
by using a maximum number of iterations N = 50.

Figure 3.10 shows the time necessary to build matrix A,, (equation 3.20) and
solve the linear system for N varying up to 10,000. With N = 10,000, the classical
method takes more than sixty-three seconds, the standard CGLS more than twelve
seconds, while our method takes only half a second. The CPU used for this test was
a Intel Core i7-7700HQ@2.8GHz.

Table 3.2 shows a comparison between the computer memory storage associated
with each method. The classical and standard CGLS methods have to store the
whole matrix A, (equation 3.20). For example, a dataset with N = 10,000 obser-
vation points has an associated sensitivity matrix A, formed by N2 = 100, 000, 000
elements and takes approximately 763 Megabytes of memory (8 bytes per element).
Using the same number of observation points N = 10, 000, our method requires only

1.831 Megabytes to store the first columns of the BCCB matrices Cog (equation
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Figure 3.9: Number of flops associated with classical method (equation 3.119), the
standard CGLS method (equation 3.120) and our method (equation 3.121), all of
them with N® = 50. The number of observation points N varies from 5,000 to
1,000, 000.
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Figure 3.10: Comparison between the runtime of the equivalent-layer technique
using the classical method, standard CGLS method and our method. The values
for the standard CGLS and our method use N = 50 iterations.
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3.87) and 0.6104 Megabytes to store the complex matrix L (equation 3.99) (16 bytes
per element). For a bigger dataset with N = 1,000,000, the amount of necessary

computer memory goes to 7,629,395, 183.096 and 61.035 Megabytes, respectively.

N Matrix A,, | All six first columns of BCCB matrices | Matrix L
100 0.0763 0.0183 0.00610
400 1.22 0.0744 0.0248
2,500 48 0.458 0.1528
10,000 763 1.831 0.6104
40, 000 12,207 7.32 2.4416
250, 000 476,837 45.768 15.3
500, 000 1,907,349 91.56 30.518
1,000, 000 7,629,395 183.096 61.035

Table 3.2: This table shows the computer memory usage (in Megabytes) for storing
the whole N x N matrix A, (equation 3.20), the first columns of the BCCB matrices
Cop (equation 3.87) (both need 8 bytes per element) and the matrix L (equation

3.99) (16 bytes per element).




Chapter 4

Application to synthetic data

4.1 Synthetic data applied to gravimetric process-
ing

We have simulated three sources whose horizontal projections are shown in Fig-
ure 4.1 as black lines. These sources are a sphere with density contrast —1.25g/cm?
and two rectangular prisms with density contrasts 1.00 g/cm? (upper-left prism) and
1.30g/cm? (upper-right prism). Figure 4.1 shows the gravity disturbance (vertical
component of gravitational attraction) produced by these sources. The synthetic
data are contaminated with additive pseudorandom Gaussian noise with zero mean
and standard deviation of 0.1 mGal. The data are computed at N = 10,000 obser-
vation points that are regularly spaced on a 100 x 100 grid, at z; = —100 m. We
have set a grid of equivalent sources, each one directly beneath each observation
point, at zp = 300 m.

Figure 4.2a and 4.2b show the data fits obtained, respectively, by the fast
equivalent-layer technique (SIQUEIRA et al., 2017) and by our method. They rep-
resent the differences between the simulated data (Figure 4.1) and the predicted
data produced by both methods (not shown) after N* = 40 iterations. As we can
see, both methods produce virtually the same results. This excellent agreement is
confirmed by Figure 4.2¢, which shows the differences between the predicted data
produced by both methods.

4.1.1 Gravimetric data processing

We performed the upward- and downward-continuations of the simulated gravity
data (Figure 4.1) by using the fast equivalent-layer technique (SIQUEIRA et al.,
2017), our method and also the classical approach in the Fourier domain. This

approach consists in performing the upward- or downward-continuation by directly

44
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Figure 4.1: Application to synthetic data. Noise-corrupted gravity data (in
color map) produced by three synthetic sources: a sphere with density contrast
—1.25g/cm?® and two rectangular prisms with density contrasts 1.00 g/cm? (upper-
left body) and 1.30 g/cm?® (upper-right body). The black lines represent the hori-
zontal projection of the sources.
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Figure 4.2: Application to synthetic data. Residuals between the simulated data
(Figure 4.1) and predicted data produced by: (a) the fast equivalent-layer technique
(SIQUEIRA et al., 2017) and (b) our method. The mean (—4.493 x 107> mGal) and
standard deviation (0.093 mGal) for residuals shown in a and b are exactly the same.
(c) Difference between a and b. The computation times spent by the fast equivalent-
layer technique and our method were 10.416 and 0.177 seconds, respectively.
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computing the Fourier transform of the gravity data (e.g., BLAKELY, 1996, bp.
317). Figure 4.3 shows the upward-continued gravity data obtained by the three
methods. As we can see, the residuals between the true data at z = —300 m (Figure
4.3a) and the upward-continued data obtained by using our method (Figure 4.3b)
and the fast equivalent-layer technique (Figure 4.3c) are very similar to each other.
Notice that the absolute values of the residuals produced by the classical Fourier
approach (Figure 4.3d) are ~ 10 times greater than those produced by our method
and the fast equivalent-layer technique (Figure 4.3b and 4.3c), with maximum values
concentrated at the border of the simulated area. Differently from the results yield
by our method (Figure 4.3b) and the fast equivalent-layer technique (Figure 4.3c),
that obtained with the classical Fourier approach exhibits a slight noise amplification
(Figure 4.3d).
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Figure 4.3: Application to synthetic data. (a) Noise-free gravity data produced by
the synthetic sources at z = —300 m. Residuals between the data shown in a and the
upward-continued data obtained by: (b) our method (not shown), with mean 0.003
mGal and standard deviation 0.034 mGal, (c) the fast equivalent-layer technique
(not shown), with mean 0.003 mGal and standard deviation 0.034 mGal and (d)
the classical Fourier approach (not shown), with mean —0.030 mGal and standard
deviation 0.262 mGal. The computation times spent by the fast equivalent-layer
technique and our method were 8.697 and 0.005 seconds, respectively.
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Figure 4.4 shows the results obtained by using all methods to compute downward-
continuation of gravity data. In this case, the maximum absolute values of the resid-
uals produced by the classical Fourier approach (Figure 4.4d) are & 20 times greater
than those produced by our method and the fast equivalent-layer technique (Figure
4.4b and 4.4c). This noise amplification is a well-known problem of the downward-
continuation produced by the classical Fourier approach (e.g., BLAKELY, 1996, p.
320).
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Figure 4.4: Application to synthetic data. (a) Noise-free gravity data produced
by the synthetic sources at z = —50 m. Residuals between the data shown in a
and the downward-continued data obtained by: (b) our method (not shown), with
mean —0.001 mGal and standard deviation 0.038 mGal, (c) the fast equivalent-layer
technique (not shown), with mean —0.001 mGal and standard deviation 0.038 mGal
and (d) the classical Fourier approach (not shown), with mean —0.030 mGal and
standard deviation 0.262 mGal. The computation times spent by the fast equivalent-
layer technique and our method were 8.795 and 0.004 seconds, respectively.

We opted for showing all the results (Figures 4.3 and 4.4) produced by all meth-
ods without removing the border effects in order to properly compare them to each
other. We also stress that no padding function to expand the data was used in

applying our method, the fast equivalent-layer technique or the Fourier approach.
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Another important aspect to be pointed out about these results is the computational
times spent by our method and the fast equivalent-layer technique. The total compu-
tational time required by our method to estimate the physical-property distribution
on the equivalent layer and to perform the upward- or downward-continuations is
about two orders of magnitude lower than that spent by the fast equivalent-layer
technique. This significant reduction in computational time was obtained by using
a data set composed of N = 10,000 observation points. Considerably better results
can be obtained with larger data sets.

Finally, we did not compare the total computational times spent by our method
and the classical Fourier approach, but we can affirm that the second is smaller.
Because the Fourier approach requires only one DFT/IDFT of the data, whereas
our method requires one DFT/IDFT per iteration, it is computationally faster than
our method. However, the considerably smaller noise amplification and practically
nonexistent border effect are the main advantages of our method over the classical

Fourier approach, especially in the downward-continuation.

4.2 Synthetic data applied to magnetic processing

Our convolutional equivalent layer method requires a regular data grid located on
a horizontal and flat observation surface. Here, we evaluate the performance of our
method by applying it to simulated airborne magnetic surveys formed by i) a regular
data grid on a flat surface; ii) irregular data grids on a flat surface; and iii) regular
data grid on undulating surfaces. Note that the simulated surveys in (ii) and (iii)

violate the premises of our method.

4.2.1 Simulated airborne surveys

The first and second rows in Figure 4.5 show, respectively, the simulated flight
patterns and noise-corrupted total-field anomalies of the airborne magnetic surveys
used in our tests. The third row in Figure 4.5 shows the true upward-continued
total-field anomalies at z = —1, 300 m. The fourth row in Figure 4.5 shows the true
reduced to pole total-field anomalies. All magnetic data (second and lower rows
in Figure 4.5) are produced by the same three synthetic bodies: two prisms and
one sphere with constant total-magnetization vector having inclination, declination
and intensity of 35.26°, 45°, and 3.4641 A/m, respectively. The simulated main
geomagnetic field has inclination and declination of 35.26° and 45°, respectively.
Figure 4.5a shows the simulated airborne survey on a regular grid of 100 x 50
observation points (totaling N = 5, 000 observation points), with a grid spacing

of Az = 101.01 m and Ay = 163.265 m along the z- and y-axis, respectively.
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The noise-corrupted total-field anomaly (second panel of Figure 4.5a) is calculated
at z = —900 m, with pseudorandom Gaussian noise added having null mean and
standard deviation of 0.2961 n'T.

Figures 4.5b and 4.5c¢ show the simulated surveys on irregular grids obtained
by perturbing the horizontal coordinates of the regular grid (upper panel in Figure
4.5a). For the survey shown in Figure 4.5b, the x and y coordinates are perturbed
with sequences of pseudorandom Gaussian noises having null mean and standard
deviations equal to 20% of the corresponding grid spacing, which results in abso-
lute values of 20.2 m and 32.6 m, along the z- and y-directions, respectively. For
the survey shown in Figure 4.5¢, the standard deviations are equal to 30% of the
corresponding grid spacing, which results in absolute values of 30.3 m and 49.0 m
along the z- and y-directions, respectively. Their noise-corrupted total-field anoma-
lies (second panels in Figures 4.5b and 4.5¢) are calculated on their corresponding
irregular grids, on a flat observation surface at z = —900 m, with pseudorandom
Gaussian noise added having null mean and standard deviation of 0.2961 n'T.

Figures 4.5d and 4.5e show the simulated surveys on the same regular grid as
shown in Figure 4.5a (upper panel). The difference is that observation points are
located no longer on a flat, but on undulating surfaces. For the survey shown in
Figure 4.5d, the z coordinates of the undulating surface are defined by a sequence of
pseudorandom Gaussian noise having mean —900 m and standard deviation equal
to 5% of 900 m, which corresponds to 45 m. For the survey shown in Figure 4.5¢e, the
standard deviation is equal to 10% of 900 m, which corresponds to 90 m. The noise-
corrupted total-field anomalies of these simulated surveys (second panels in Figures
4.5d and 4.5e) are calculated on their corresponding undulating surfaces (upper
panels in Figures 4.5d and 4.5e), on the same regular grid shown in Figure 4.5a,

with pseudorandom Gaussian noise added having null mean and standard deviation
of 0.2961 nT.

4.2.2 Tests with a regular data grid on a flat surface

Figure 4.6 show the difference between the simulated (second row in Figure 4.5)
and predicted data (not shown) obtained by using the classical (the upper row) and
our method (the second row). From now on, we designate this difference as data
residuals. The lower row in Figure 4.6 shows the convergence curve of our method.

The data residuals using the classical method (equation 2.13) are shown in the
upper panel of Figure 4.6a, with mean 0.4118 nT and standard deviation 0.3780
nT. This process took 17.10 seconds. Using our method, the data residuals (the
middle panel in Figure 4.6a) have mean 0.9972 nT and standard deviation 1.3904

nT. In this case, however, the processing time was only 0.25 seconds. As expected,
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Figure 4.5: Synthetic tests: the simulated airborne magnetic surveys - The first
row shows the grids of observation points and the undulating observation surfaces
that simulate the airborne magnetic surveys. The second row shows the noise-
corrupted total-field anomalies produced by the synthetic sources and calculated
on the simulated airborne magnetic survey shown in the first row. The third row
shows the noise-free total-field anomalies produced by the synthetic sources at z =
—1,300 m (the true upward-continued total-field anomalies). The fourth row shows
the noise-free total-field anomalies produced by the synthetic sources at inclination
Iy = 900 (the true reduced to pole total-field anomalies). The results shown in these
last three rows were obtained by using the simulated airborne magnetic surveys as
follows: (a) A regular grid of 100 x 50 observation points in the x— and y—directions
and a flat observation surface at z = —900 m. An irregular grid with uncertainties
of (b) 20% and (c) 30% in the x— and y—coordinates and a flat observation surface
at z = —900 m . A regular grid of 100 x 50 observation points in the z— and
y—coordinates and an undulating observation surface with uncertainties of (d) 5%
and (e) 10%. The black lines represent the horizontal projection of the sources .
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the Euclidean norm of the data residuals produced by our method (lower panel in

Figure 4.6a) decreases. The convergence criterion was satisfied close to iteration 50.

(a) Noiseless grid (b) X,Y - 20% grid noise (€) X,Y - 30% grid noise (d) Z - 05% undulating surface (e) Z - 10% undulating surface
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Figure 4.6: Synthetic tests: the data residuals and convergence - The first row shows
the data residuals using the classical method. The second and third rows show,
respectively, the data residuals and the convergence curves using the convolutional
equivalent layer (our method). The results shown in these three rows were obtained
by using the simulated airborne magnetic surveys shown in Figure 4.5, i.e.: (a) A
regular grid of 100 x 50 observation points in the x— and y—directions and a flat
observation surface at z = —900 m. An irregular grid with uncertainties of (b) 20%
and (c) 30% in the x— and y—coordinates and a flat observation surface at z = —900
m . A regular grid of 100 x 50 observation points in the z— and y—coordinates and
an undulating observation surface with uncertainties of (d) 5% and (e) 10%. The
black lines represent the horizontal projection of the sources .

4.2.3 Tests with irregular data grids on a flat surface

Figure 4.6b shows the results obtained with the irregular data grid perturbed by
using 20% of the regular grid spacing. In this Figure we can see that the data
residuals using the classical method (upper panel) yield a good data fit with mean
0.4084 n'T and standard deviation 0.3862 nT. Using our method, the data residuals
(middle panel in Figure 4.6b) also produced an acceptable data fitting with mean
of 1.3125 nT and standard deviation of 1.7187 nT. The Euclidean norm of the data
residuals obtained by our method (lower panel in Figure 4.6b) decreases, as expected,
and converges to a constant value close to iteration 50.

Figure 4.6c shows the results obtained with the irregular data grid perturbed by
using 30% of the regular grid spacing. The data residuals obtained by the classical

Residuals ( nT )
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method (upper panel in Figure 4.6¢) produced an acceptable data fit, having mean
0.4070 nT and standard deviation 0.3899 nT. Using our method, the data residuals
(middle panel in Figure 4.6¢) with mean 1.5129 nT and standard deviation 1.8526
nT also produced a good data fitting. The convergence of our method (lower panel
in Figure 4.6¢) shows that, similarly to the previous results, the Euclidean norm of
the residuals decreases; converging to a constant value close to iteration 50. Note
that this good result was obtained by using a very perturbed data grid (upper panel
in Figure 4.5¢).

4.2.4 Tests with regular data grid and undulating surfaces

Figure 4.6d shows the results obtained with data on the undulating surface varying
5% of z =900 m. In this case, the data residuals either using the classical method
(upper panel in Figure 4.6d) or our method (middle panel in Figure 4.6d) reveal
acceptable data fittings. Using the classical method, data residuals have mean
0.4316 nT and standard deviation 0.4762 nT. Using our method, they have mean
2.1069 nT and standard deviation 2.5023 nT. Likewise, the Euclidean norm of the
data residuals produced by our method (lower panel in Figure 4.6d) decreases up
to iteration 50 and reaches the convergence criterion in the subsequent iterations
(mean residulas are less than 0.00015 between iterations).

Figure 4.6e shows the results obtained with data on the undulating surface vary-
ing 10% of z = 900 m. By using the classical approach, the data residuals (upper
panel in Figure 4.6e) yielded a good data fitting, with mean 0.4818 nT and stan-
dard deviation 0.6565 nT. By using our method, the data residuals (middle panel
in Figure 4.6e) yielded a worse data fitting with mean 3.4981 nT and standard de-
viation 3.8153 nT. The convergence curve (lower panel in Figure 4.6e) reveals the
inadequacy of our method in dealing with observations on rugged surfaces, as the
Euclidean norm of the data residuals do not decrease as much as in previous tests.
We stress that, in this test, the undulating surface (upper panel in Figure 4.5¢)
varies in a broad range of flight values, from z = —570 m to about z = —1, 230 m.
Thus, this simulated airborne magnetic survey greatly violates the requirement of a
flat observation surface demanded by our method.

Although our method is formulated to deal with magnetic observations measured
on a horizontally regular grid, on a flat surface, the results obtained with synthetic
data show that our method is robust in dealing either with irregular grids in the hor-
izontal directions or with uneven surfaces. However, the robustness of our method
has limitations. High discrepancies in the x-, y, and z-coordinates lead to unaccept-
able data fittings (large data residuals), as shown the middle panels in Figures 4.6¢
and 4.6e.
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4.2.5 Magnetic data processing

We performed the upward-continuations of the synthetic total-field anomalies (sec-
ond row in Figure 4.5) by using the classical method, our convolutional equivalent
layer method, and the classical approach in the Fourier domain, which consists in
computing the Fourier transform of the total-field anomaly (e.g., BLAKELY, 1996,
p. 317).

Figure 4.7 shows the continuation residuals defined as the differences between
the true upward-continued total-field anomalies (third row in Figure 4.5) and the
predicted upward-continued total-field anomalies (not shown). We conveniently de-
note these differences as continuation residuals. The continuation residuals obtained
by using the classical method (upper row) and our method (middle row) are similar
to each other in most of the tests. The exceptions are the synthetic test with data
over irregular grid (Figures 4.5¢ and 4.6¢) and over an undulating surface (Figures
4.5e and 4.6e), which greatly violates the requirement of regular grids or a flat obser-
vation surface, demanded by our method. Note that the maximum absolute value
of the continuation residuals produced by using our method (middle panel in Figure
4.7e) are ~ 2 times greater than those produced by the classical method (upper
panel in Figure 4.7¢).

In contrast, the continuation residuals obtained by using the classical Fourier
approach (lower row in Figure 4.7) are, in most of the tests, approximately 2 times
greater than those produced by the classical method (upper row in Figure 4.7) and
1.5 times greater than those produced by our method (middle row in Figure 4.7).
Note that, similar to our method, the maximum absolute values of the continua-
tion residuals obtained by using the classical Fourier approach are located at the
boundaries of the simulated area. However, the values are significantly higher.

Figure 4.8 shows the differences between the true reduced to pole total-field
anomalies (fourth row in Figure 4.5) and the predicted reduced to pole total-field
anomalies (not shown). The true reduced to pole total-field anomalies are generated
by using only induced magnetization, with Iy = 90° and Dy = 0°. Figure 4.8 shows
that the reduced to pole residuals obtained by using the classical method (upper row)
and our method (middle row) have differences when high irregular grids or non flat
surfaces are used (Figures 4.8c and 4.8e). The absolute values of the reduced to pole
residuals are almost ~ 2 times greater than those of classical method when the 10%
standard deviation was used (upper and middle panels in Figure 4.8e, respectively).
As in the the continuation test, they are generally concentrated at the boundaries
of the study area.

The reduced to pole residuals obtained by using the classical Fourier approach

(lower row in Figure 4.8) are approximately 3.5 times greater than those produced
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Figure 4.7: Synthetic tests: the data residuals of the upward-continued total-field
anomalies (third row in Figure 4.5). The data residuals of the upward-continued
total-field anomalies are defined as the difference between the noise-free total-field
anomaly produced by the synthetic sources at z = —1,300 m (third row in Figure
4.5) and the predicted total-field anomaly at z = —1, 300 m obtained by using three
methods: the classical method (first row); the convolutional equivalent layer (second
row); and the classic approach in the Fourier domain (third row). The results shown
in these three rows were obtained by using the simulated airborne magnetic surveys
shown in Figure 4.5, i.e.: (a) A regular grid of 100 x 50 observation points in the z—
and y—directions and a flat observation surface at z = —900 m. An irregular grid
with uncertainties of (b) 20% and (c) 30% in the x— and y—coordinates and a flat
observation surface at z = —900 m . A regular grid of 100 x 50 observation points in
the x— and y—coordinates and an undulating observation surface with uncertainties
of (d) 5% and (e) 10%. The black lines represent the horizontal projection of the
sources .
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by the classical method (upper row in Figure 4.8) and 3 times greater than those
produced by our method (middle row in Figure 4.7).

Important to note that the reduction to pole, either using the equivalent layer or
the Fourier approach, has the requirement of a previously knowledge of the sources
magnetization directions (equation 2.7) to obtain a correct source parameter es-
timative, otherwise, only non-phase dependent processing can be used (upward-
continuation for example).

We also call attention to the following aspects: In applying the classical method,
our method, or the classical Fourier approach, we do not expand the data by using
a padding scheme. The data residuals (upper and middle rows in Figure 4.6), the
continuation (Figure 4.7) and reduction to pole residuals (Figure 4.8) are shown
without removing edge effects. The computational time required by our method is
much lower than that required by the classical method and has the same order of
magnitude of that required by the classical Fourier approach. However, the classical
Fourier approach shows upward-continued and reduced to pole data with strong

border effects if no padding scheme is applied to expand the data.
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(a) Noiseless grid (b) X,Y - 20% grid noise (c) X,Y - 30% grid noise (d) Z - 05% undulating surface (e) Z - 10% undulating surface
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Figure 4.8: Synthetic tests: the data residuals of the reduced to pole total-field
anomalies (fourth row in Figure 4.5). The data residuals of the reduced to pole
total-field anomalies are defined as the difference between the noise-free total-field
anomaly produced by the synthetic sources at the pole (fourth row in Figure 4.5)
and the predicted total-field anomaly obtained by using three methods: the classical
method (first row); the convolutional equivalent layer (second row); and the classic
approach in the Fourier domain (third row). The results shown in these three rows
were obtained by using the simulated airborne magnetic surveys shown in Figure
4.5,1.e.: (a) A regular grid of 100 x 50 observation points in the z— and y—directions
and a flat observation surface at z = —900 m. An irregular grid with uncertainties
of (b) 20% and (c¢) 30% in the z— and y—coordinates and a flat observation surface
at z = —900 m . A regular grid of 100 x 50 observation points in the z— and
y—coordinates and an undulating observation surface with uncertainties of (d) 5%
and (e) 10%. The black lines represent the horizontal projection of the sources .
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Chapter 5

Field data results

5.1 Real field data from Carajas applied to gravi-

metric processing

We applied our method to airborne gravity data from Carajas, north of Brazil,
which were provided by the Geological Survey of Brazil (CPRM). The data were
collected along 131 north-south flight lines separated by 3 km and 29 east-west tie
lines separated by 12 km. This data set was divided in two different areas, collected
in different times, having samples spacing of 7.65 m and 15.21 m along the lines,
totalizing 5,492,551 observation points at a fixed height of 900 m (z; = —900
m). The gravity data were interpolated (Figure 5.1) into a regularly spaced grid
of 500 x 500 observation points (N = 250,000) with a grid spacing of ~ 717 m
north-south and ~ 782 m east-west.

To apply our method, we set an equivalent layer at 2y, = 300 m. Figure 5.2a
shows the predicted data obtained with our method after N* = 50 iterations. The
residuals (Figure 5.2b), defined as the difference between the observed (Figure 5.1)
and predicted (Figure 5.2a) data, show a very good data fit with mean close to zero
(0.0003 mGal) and small standard deviation (0.1160 mGal), which corresponds to
approximately 0.1 % of the maximum amplitude of the gravity data. By using the
estimated mass distribution (not shown), we performed an upward-continuation of
the observed gravity data to a horizontal plane located 5,000 m above. Figure 5.3
shows a very consistent upward-continued gravity data, with a clear attenuation
of the short wavelengths. By using our approach, the processing of the 250,000

observations took only 0.216 seconds.

o8
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Figure 5.1: Application to field data over the Carajas Province, Brazil. Observed
gravity data on a regular grid of 500 x 500 points, totaling N = 250, 000 observations.
The inset shows the study area (red rectangle) which covers the southeast part of
the state of Para, north of Brazil.
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Figure 5.2: Application to field data over the Carajas Province, Brazil. (a) Predicted
data produced by our method. (b) Residuals between the observed (Figure 5.1) and

the predicted data (panel a), with mean 0.000292 mGal and standard deviation of
0.105 mGal.
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Figure 5.3: Application to field data over the Carajas Province, Brazil. The upward-
continued gravity data obtained with our method 5,000 m above the observed data
(Figure 5.1). The total computation time for processing of the 250,000 observations
was 0.216 seconds.
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5.2 Real field data from Carajas applied to mag-

netic processing

We applied the convolutional equivalent layer method to the aeromagnetic data of
Carajas, northern Brazil. The survey is composed of 131 flight lines along north-
south direction with line spacing of Ay = 3,000 m. Data were measured with
average spacing Az = 7.65 m along lines, with an average distance to the ground
of 900 m. The total number of observation points is N = 6,081, 345. Figure 5.4a
shows the observed total-field anomaly data over the study area.

We compare the results obtained with an interpolated regular grid of 10, 000 x 131
points, by using the nearest neighbor algorithm, and a decimated irregular grid,
also with 10,000 x 131 points. In both cases the total N = 1,310,000 observation
points are in the original undulating surface of the flight lines. The decimated
grid was generated by choosing the nearest observation points in comparison of the
regular grid presented in the interpolation. The mean and standard deviation of
this irregular decimated from the regular interpolated are 6.8386 m and 107.7343
m in the z-direction and 30.8799 m and 28.3849 m in the y-direction, respectively.
Both application were made with an Intel core i7 7700HQ@2.8GHz processor in
single-processing and single-threading modes.

As the study area is very large, the main magnetic field varies with position. For
this application, we set the main field direction as that of a mid location (latitude
—6.5° and longitude —50.75°) where the declination is —19.86° and the inclination
is —7.4391°. Both values were calculated using the magnetic field calculator from
NOAA at 1st January, 2014 (epoch of the survey). We set the equivalent layer
depth at 1200 meters (2100 m below the data). Figure 5.4b shows the residuals
obtained after using our method to fit the interpolated data with mean 0.9089 n'T
and the standard deviation 3.6425 n'T, revealing an acceptable data fitting. Our
method took ~ 390.80 seconds to converge at about 200 iterations. Figure 5.4c
shows the residuals obtained after using our method to fit the decimated data with
mean 0.9936 nT and standard deviation 4.0479 nT with a equally acceptable fit
produced by the interpolated data. In this case, our method took ~ 385.56 seconds
to converge at about 200 iterations (Figure 5.4d). The convergence curve reveals a
good convergence rate obtained with the decimated irregular grid. This result shows
the robustness of our method in processing irregular grids. Notice that we used 200
iterations in our method of the interpolated regular grid and the mean residual still
decreasing up to 2000. This happens because the invariance convergence criterion
was met and the mean residuals are very small, decreasing less than 0.001 at each
iteration

With 1,310,000 observation points, it would be necessary 12.49 Terabytes of
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computer memory to store the full sensitivity matrix with the classical method. In
this case, our method uses only 59.97 Megabytes, allowing regular desktop computers

to be able to process this amount of data.
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Figure 5.4: (a) Observed total-field anomaly over the Carajds Province, northen
Brazil. The aeromagnetic survey was flown in 131 north-south flight lines at an
average altitude of 900 m, totaling N = 6,081, 345 observation points. (b) Data
residuals, defined as the difference between the regular interpolated grid data (not
shown) and the predicted data (not shown), with mean of 0.9089 nT and standard
deviation of 3.6425 nT. (c) Data residuals, defined as the difference between the
irregular decimated grid data (not shown) and the predicted data (not shown), with
mean of 0.9936 nT and standard deviation of 4.0479 nT. (d) Convergence curve using
our method to the decimated irregular grid of the real data of Carajas Province,
Brazil.

Finally, Figure 5.5a shows the upward-continued magnetic data to a horizontal
plane located at an altitude of 5, 000 m using the estimated equivalent layer ob-
tained by applying our method to the decimated irregular grid. This process took
~ 2.64 seconds, showing good results without visible errors or border effects. Figure
5.5b shows the upward-continued magnetic data to a horizontal plane located at an
altitude of 5, 000 m using the classical Fourier filtering method to the decimated ir-
regular grid. This process took ~ 0.5 seconds. The comparison between the upward
results shows a similar total-field magnetic for both cases with attenuation of the
anomalies. Interestingly, the Fourier method did not present border effects to this

real data. We stress that we did not use a padding scheme to expand the data.
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Figure 5.5: Upward-continuations of real data of Carajas Province, Brazil at altitude
of 5,000 m by using: (a) the convolutional equivalent layer (our method) and (b)

the classical Fourier method.



Chapter 6
Conclusions

We have proposed a fast equivalent-layer technique for processing magnetic data
called convolutional equivalent layer method. We have demonstrated that the sensi-
tivity matrix associated with planar equivalent layers of dipoles has a BTTB struc-
ture for the particular case in which the dipoles are aligned with the horizontal and
regular grid of magnetic data. The product of such matrices and arbitrary vectors
represents a 2D discrete convolution that can be efficiently computed via 2D Fast
Fourier Transform by using only the elements forming the first column of the ma-
trix. By using this property, we have developed a fast and memory efficient iterative
method for estimating the physical-property distribution on the equivalent layer.

Comparisons between the estimated physical-property distribution obtained with
our method and the classical approach that solves the least-squares normal equations
via Cholesky decomposition show similar results. The differences in total number of
floating-point operations (flops), memory usage and computation time, however, are
noticeable. For a mid-size grid of 100 x 50 points, the total number of flops is about
four orders of magnitude smaller than that required by the classical method. Besides,
our method uses less than 1% of the computer memory and takes about 3% of the
computation time associated with the classical method in this case. Significantly
better results can be obtained with larger data sets.

Tests with synthetic data show that the computational time required by our
method has the same order of magnitude of that required by the classical approach
in the Fourier domain to perform magnetic data processing. However, the classical
Fourier approach shows considerable larger border effects if no previous padding
scheme is used to expand the data. Besides, although both methods require the
magnetic data be on a planar and regular grid, tests with synthetic data show the
robustness of our method to deal with data either on irregular grids or on undulating
observation surfaces.

While the classical equivalent-layer method would require 12.49 Terabytes of

computer memory to store the full sensitivity matrix associated with the irregular
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grid of 1,310,000 observation points over the Carajas Province, northern Brazil,
our method requires only 59.97 Megabytes. When performed on a standard lap-
top computer with an Intel Core i7 7700HQ@2.8GHz processor in single-processing
and single-threading modes, the total times spent by our method to estimate the
physical-property distribution over the equivalent layer and to compute the upward-
continuation of the 1,310,000 magnetic observations over the Carajds province was
approximately 385.56 seconds and 2.64 seconds.

Further investigation could usefully explore different preconditioning strategies
to improve the convergence rate of our method. Besides, considerably more work
will need to be done to generalize our convolutional equivalent layer method for

dealing with irregularly spaced data sets on undulating observation surfaces.
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