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RESUMO

 Desenvolvemos um novo método de inversão de dados de gradiometria 

gravimétrica  para  estimar  uma  distribuição  de  contrastes  de  densidade  3D 

definida em uma malha de prismas retangulares. O método proposto consiste 

em um algoritmo iterativo que não requer a solução de um sistema de equações. 

Ao  contrário,  a  solução  cresce  sistematicamente  em  torno  de  prismas  pre-

especificados  pelo  usuário,  chamados  “sementes”,  cujos  contrastes  de 

densidade são especificados a priori  pelo intérprete. Podemos especificar um 

contraste  de  densidade  diferente  para  cada  semente,  permitindo  assim  a 

interpretação de múltiplas fontes com contrastes de densidade variados e que 

produzem efeitos gravitacionais interferentes. Em situações reais, algumas das 

fontes podem não ser alvos geológicos de interesse à interpretação. Para lidar 

com essa restrição, desenvolvemos um procedimento robusto que não requer 

que o efeito gravitacional produzido pelas fontes geológicas que são alvos de 

interesse na interpretação seja separado em um pré-processamento antes da 

inversão.  Este procedimento também não exige que haja informação a priori 

disponível sobre as fontes geológicas que não são alvos da interpretação. Em 

nosso algoritmo, as fontes estimadas crescem iterativamente através da acreção 

de prismas na periferia da estimativa em curso. Logo, somente as colunas da 

matriz Jacobiana que correspondem aos prismas na periferia da solução atual 

são necessárias para efetuar o cálculo do vetor de resíduos. Desta forma, as 

colunas  individuais  da  Jacobiana  devem  ser  calculadas  somente  quando 
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necessárias  e  descartadas  após  a  acreção  do  respectivo  prisma.  Este 

procedimento, denominado “avaliação preguiçosa” na ciência da computação, 

reduz significantemente  a demanda de memória  do  computador  e tempo de 

processamento.  Testes com dados sintéticos mostram a habilidade de nosso 

método  em  recuperar  corretamente  a  geometria  das  fontes  alvo,  mesmo 

havendo  efeitos  gravitacionais  interferentes  produzidos  por  fontes  geológicas 

que  não  são  alvos  de  interesse.  A inversão  de  dados  de  aerogradiometria 

gravimétrica coletados sobre o Quadrilátero Ferrífero, sudeste do Brasil, estimou 

corpos  alongados  compactos  de  minério  de  ferro  que  estão  de  acordo  com 

informações sobre a geologia local e interpretações anteriores.
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ABSTRACT

We  have  developed  a  new  gravity  gradient  inversion  method  for 

estimating  a  3D density-contrast  distribution  defined  on a  grid  of  rectangular 

prisms. Our method consists in an iterative algorithm that does not require the 

solution  of  a  system of  equations.  Instead,  the  solution  grows systematically 

around  user-specified  prismatic  elements,  called  “seeds”,  with  given  density 

contrasts. Each seed can be assigned a different density-contrast value, allowing 

the interpretation of  multiple  sources with  different  density  contrasts  and that 

produce interfering gravitational effects. In real world scenarios, some sources 

might  not  be  targeted  for  the  interpretation.  Thus,  we  developed  a  robust 

procedure  that  requires  neither  the  isolation  of  the  gravitational  effect  of  the 

targeted  sources  prior  to  the  inversion,  nor  prior  information  about  the  non-

targeted sources. In our iterative algorithm, the estimated sources grow by the 

accretion of prisms in the periphery of the current estimate. As a result, only the  

columns of the Jacobian matrix corresponding to the prisms in the periphery of 

the current estimate are needed for the computations. Therefore, the individual 

columns of  the  Jacobian can be calculated  on demand and deleted  after  an 

accretion takes place, greatly reducing the demand for computer memory and 

processing  time.  Tests  on  synthetic  data  show  the  ability  of  our  method  to 

correctly recover the geometry of the targeted sources, even when interfering 

gravitational effects produced by non-targeted sources are present. By inverting 

the data from an airborne gravity gradiometry survey flown over  the iron ore 
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province of Quadrilátero Ferrífero, southeastern Brazil, we estimate a compact 

iron ore body that agrees with the available geologic information and previous 

interpretations.
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INTRODUCTION

Historically, the vertical component of the gravity anomaly has been widely 

used  in  exploration  geophysics due  to technological  restrictions  and  to the 

simplicity  of  its  measurement  and  interpretation.  This  fact  propelled  the 

development  of  a  large variety  of  gravity  inversion  methods.  Conversely,  the 

technological  difficulties in  the  acquisition  of  accurate  airborne  gravity 

gradiometry  data  resulted  in  a  delay  in  the  development  of  methods  for  the 

inversion of this kind of data. Consequently, before the early 1990s, few papers 

published  in  the  literature  were  devoted  to  the  interpretation  (or  analysis)  of 

gravity gradiometer data. In this respect, two papers deserve the general readers' 

attention. The first is  Vasco (1989) which presents a comparative study of the 

vertical component of gravity and the gravity gradient tensor by analyzing  the 

resolution  and  covariance  matrices  of  the  interpretation  model  parameters 

resulting from the use of each type of data. The second paper is Pedersen and 

Rasmussen (1990) which studied data of gravity and magnetic gradient tensors 

and introduced scalar invariants that indicate the dimensionality of the sources. 

Recent technological developments in designing and assembling moving-

platform  gravity  gradiometers  made  it  feasible  to  accurately  measure  the 

independent  components  of  the  gravity  gradient  tensor.  These  technological 

advances, paired  with the  advent  of  global  positioning  systems (GPS), have 

opened a  new era  in the acquisition of accurate  airborne gravity  gradiometry 

data.  Thus,  airborne gravity gradiometry  became a useful  tool  for  interpreting 
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geologic  bodies  present  in  both  mining  and  hydrocarbon  exploration  areas. 

Gravity gradiometry has the advantage, compared with other gravity methods, of 

being extremely sensitive to localize density contrasts within regional geological 

settings (Zhadanov et al., 2010b). 

Recently, some  gravity gradient  inversion algorithms have been adapted 

to predominantly interpret both: orebodies that are important mineral exploration 

targets (e.g., Li 2001; Zhdanov et al., 2004;  Martinez et al., 2010; Wilson et al., 

2011), and salt bodies  in a sedimentary setting  (e.g., Jorgensen and Kisabeth, 

2000; Routh et al, 2001). All these methods discretize the Earth’s subsurface into 

prismatic cells with homogeneous density contrasts and estimate a 3D density-

contrast  distribution,  thus  retrieving  an  image  of  geologic  bodies.  Usually,  a 

gravity  gradient  data  set  contains  a  huge volume of  observations of  the  five 

linearly independent tensor components. These observations are collected every 

few meters in surveys that may contain hundreds to thousands of line kilometers. 

This massive data set combined with the discretization of the Earth's subsurface 

into  a fine grid of prisms results in a large-scale 3D inversion with hundreds of 

thousands of parameters and tens of thousands of data.

The solution of a large-scale 3D inversion requires overcoming two main 

obstacles. The first  one is  the large amount of  computer memory required to 

store the matrices used in the computations, particularly the  sensitivity matrix. 

The second obstacle is  the CPU time required for matrix-vector multiplications 

and  to  solve  the  resulting  linear  system. One  approach  to  overcome  these 

problems is to use the fast Fourier transform for matrix-vector multiplications by 

exploiting  the  translational  invariance  of  the  kernels  to  reduce  the  linear 
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operators  to  Toeplitz  block  structure  (Pilkington,  1997;  Zhdanov  et  al.,  2004; 

Wilson et al., 2011). However, these approaches are unable to deal with data on 

an irregular grid or on an uneven surface. Furthermore, the observations must lie 

above  the  surface  topography,  so  these  approaches  cannot  be  applied  to 

borehole data. Another strategy for the solution of large-scale 3D inversions uses 

a variety of data compression techniques. Portniaguine and Zhdanov (2002) use 

a compression technique based on cubic interpolation. Li and Oldenburg (2003) 

use  a 3D  wavelet  compression  on  each  row  of  the  sensitivity  matrix.  Most 

recently, an alternative  strategy for the solution of large-scale 3D inversion  has 

been used under the name of “moving footprint” (Cox et al., 2010; Zhdanov et al., 

2010a; Wilson et al.,  2011).  In this approach the full  sensitivity matrix is not  

computed; rather, for each row, only the few elements that lie within the radius of 

the footprint size are calculated. In other words, the j th element of the i th row 

of  sensitivity  matrix  only  needs  to  be  computed  if  its  distance  from the  i th 

observation  is  smaller  than  a pre-specified  footprint  size  (expressed  in 

kilometers). The footprint size is a  threshold value defined by the user  and will 

depend on the natural decay of the Green's function for the gravity field. The 

smaller the footprint size, the larger the number of null elements in the rows of 

the sensitivity matrix; hence the faster the inversion and the greater  the loss of 

accuracy. The user can then either accept the result or increase the footprint size 

and restart the inversion. This procedure leads to a sparse representation of the 

sensitivity  matrix  allowing the solution  of  otherwise intractable  large-scale  3D 

inversions via the conjugate gradient technique. 

Inversion methods for  estimating  a 3D density-contrast  distribution that 
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discretize the Earth’s subsurface into  prismatic cells can produce either  blurred 

images  (e.g.,  Li  and  Oldenburg,  1998)  or  sharp  images  of  the  anomalous 

sources (Portniaguine and Zhdanov, 1999; Zhdanov et al., 2004;  Silva Dias et 

al., 2009 and 2011). Nevertheless, all of the above-mentioned methods require 

the solution of a large linear system, which is, as pointed out before, one of the 

biggest computational hurdles for  large-scale 3D inversions.  Alternatively, there 

is  a  class  of  gravity  inversion  methods that  do  not  solve  linear  systems but 

instead search the space of possible solutions for an optimum one. This class 

can be further divided into methods that use random search and those that use 

systematic search algorithms. Among the methods that use random search, we 

draw attention to the two following methods. Nagihara and Hall (2001) estimate a 

3D density-contrast  distribution  using  the  simulated annealing  algorithm (SA). 

Krahenbuhl  and  Li  (2009)  retrieve  a  salt  body  subject  to  density  contrast 

constraints by developing a hybrid algorithm that combines the genetic algorithm 

(GA) with a modified form of SA as well as a local search technique that is not 

activated  at  every  generation  of  the  GA.  On the  other  hand,  an  example  of 

method that uses a systematic search is the method of Camacho et al. (2000). 

This  method estimates a  3D  density-contrast  distribution  using  a  systematic 

search to iteratively “grow” the solution, one prismatic element at a time, from a 

starting distribution with zero density contrast. At each iteration a new prismatic 

element is added to the estimate with a pre-specified positive or negative density 

contrast. This new prismatic element is chosen by systematically searching  the 

set  of  all  prisms  that  still  have  zero  density  contrast  for the  one  whose 

incorporation into the estimate minimizes a goal function composed of the data-
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misfit function plus the ℓ2-norm of  the weighted 3D density-contrast distribution. 

Also belonging to the class of systematic search methods is René (1986), which 

is able to recover 2D   compact bodies (i.e.,  with no  holes inside) with sharp 

contacts by successively incorporating new prisms around user-specified prisms 

called “seeds” with the same given density contrast. At the first iteration, the new 

prism that will be incorporated is chosen by systematically  searching the set of 

neighboring  prisms  of  the  seeds  for  the  one  that  minimizes  the  data-misfit 

function. From the second iteration on, the search is performed over the set of 

available neighboring prisms of the current estimate. Thus, the solution grows 

through the addition of prisms to its periphery, in a manner mimicking the growth 

of crystals.  In René's (1986) method, the estimated solution can be allowed to 

grow along any combinations of user-specified directions.

These  inversion  methods  that  do  not  solve  linear  systems have  been 

applied to the vertical component of the gravity field yielding good results. To our 

knowledge, such class of methods has not been previously  applied to interpret 

gravity gradiometry data. Besides, these methods are unable to deal with  the 

presence of  interfering  gravitational effects produced by non-targeted sources, 

henceforth  referred  to  as  geological  noise.  This  is  a  common  scenario 

encountered in complex geological settings where the gravitational effect of non-

targeted sources cannot be completely removed from the data. In the literature, 

few inversion methods have addressed this issue of interpreting only targeted 

sources when in the presence of non-targeted sources in a geologic setting (e.g., 

Silva and Holmann, 1983; Silva and Cutrim, 1989; Silva Dias et al., 2007). The 
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typical  approach  is  to  require  the  interpreter  to  perform  some  sort  of  data 

preprocessing in order to remove the  gravitational effect produced by the non-

targeted  geologic  sources.  This  preprocessing  generally  involves  filtering  the 

observed data based on the assumed spectral content of the targeted sources. 

However,  separating  the  gravitational  effect  of  multiple  sources  is  often 

impractical, if not impossible without further information about the sources. An 

effective way to overcome this problem is to devise an inversion method that 

simultaneously estimates targeted geologic sources and eliminates the undesired 

effects produced by the non-targeted sources by means of a robust data-fitting 

procedure. Silva and Holmann (1983) and Silva and Cutrim (1989), for example, 

minimized, respectively, the  ℓ1-norm and the Cauchy-norm of the residuals  (the 

difference between the observed and  predicted data) to  take into account the 

presence of non-targeted sources. Both data-fitting procedures are more robust 

than  the  typical  least-squares  approach  of  minimizing  the  ℓ2-norm  of  the 

residuals, because they allow the presence of large residual values. 

We present a new gravity gradient inversion for estimating a 3D density-

contrast distribution belonging to the  class of methods that do not solve linear 

systems,  but  instead  implement  a  systematic  search  algorithm.  Like  René 

(1986), we incorporate prior information into the solution using seeds (i.e., user-

specified prismatic elements) around which the solution grows. In contrast with 

René's (1986) method, our approach can be used to interpret multiple geologic 

sources because it allows assigning a different density contrast to each seed. We 

impose compactness on the solution using a modified version of the regularizing 
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function proposed by Silva Dias et al. (2009).  We use as a data-misfit function 

either the ℓ2-norm or the ℓ1-norm of the residuals.  Because the ℓ1-norm tolerates 

large data residuals, it can be used to eliminate the influence of the non-targeted 

sources in the data predicted by the estimate. Therefore, our approach requires 

neither prior information about the non-targeted sources nor a preprocessing of 

the data to isolate the effect of the targeted sources. Finally, we exploit the fact 

that our systematic search is limited to the neighboring prisms of the current 

estimate to implement a lazy evaluation of the sensitivity matrix, thus achieving a 

fast  and memory  efficient  inversion.  Tests  on  synthetic  data  and on airborne 

gravity gradiometry data collected over the Quadrilátero Ferrífero, southeastern 

Brazil, confirmed the potential of our method in producing sharp images of the 

targeted  anomalous density distribution  (iron orebody)  in the presence of  non-

targeted sources.  
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METHODOLOGY

Let  gαβ
 be an  L×1  vector that contains observed values of  the  gαβ  

component of the gravity gradient tensor (Figure 1a and b), where  α  and  β  

belong to  the set  of   x -,  y -,  and  z -  directions of a right-handed Cartesian 

coordinate system (Figure 1c). We assume that gαβ
 is caused by an anomalous 

density contrast distribution contained within a three-dimensional region of the 

subsurface.  This  region  can  be  discretized  into  M  juxtaposed  3D  right 

rectangular prisms composing the assumed interpretation model. Each prism of 

this model  has a homogeneous density contrast  and the resulting piecewise-

constant anomalous density contrast distribution is assumed to be sufficient to 

approximate the true one. It  follows that the  gαβ  produced by the anomalous 

density contrast distribution can be approximated by the sum of the contributions 

of each prism of the interpretation model, i.e.,

dαβ
=∑

j=1

M

p j a j
αβ

.
(1)

This linear relationship can be written in matrix notation as

dαβ
=Aαβ p , (2)

where p  is an M -dimensional vector whose j th element,  p j ,  is the density 

contrast of the j th prism of the interpretation model,  dαβ  is an L -dimensional 

vector of data predicted by p , which presumably approximates gαβ , and Aαβ  is 

the  L×M  Jacobian  (or  sensitivity)  matrix,  whose  j th  column  is  the  L -
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dimensional vector a j
αβ

. The i th element of a j
αβ

 is numerically equal to the gαβ  

component  of  the  gravity  gradient  tensor  caused  by  the  j th  prism  of  the 

interpretation model, with unit density contrast, calculated at the place where the 

i th  observation  was  made.  It  is  then  evident  that  the  j th  column  of  the 

Jacobian matrix represents the influence that p j  has on the predicted data. The 

elements of matrix  Aαβ
  can be calculated using the formulas of Nagy et al. 

(2000).

In  cases  where  more  components  of  the  gravity  gradient  tensor  are 

available, we can concatenate the observed data vectors gαβ
 into a single N×1  

vector g  of all observed data,

g=[ gxx T gxy T gxz T gyy T gyz T gzz T ]
T

,
(3)

where  the  superscript  T  denotes  transposition.  Likewise,  we  can  define  an 

N×M  Jacobian matrix,

A=[
Axx

Axy

Axz

Ayy

Ayz

Azz
] , (4)

and an N -dimensional vector of predicted data,

d= [d xx T d xy T d xz T d yy T d yz T d zz T ]
T

.
(5)

The  predicted  data  vector  d  is  related  to  the  Jacobian  matrix  A  and   the 

density-contrast distribution p  through the linear system,
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d=A p=∑
j=1

M

p j a j , (6)

where  a j  is the  N×1  vector corresponding to the  j th column of matrix  A . 

Note that if not all components of the gravity gradient tensor are available, the 

missing components must be left out of matrix A  and of vectors g  and d .

We  formulate  the  inverse  problem as  the  estimation  of  the  parameter 

vector p  that minimizes the data-misfit function ϕ( p) , defined as a norm of the 

N -dimensional residual vector r . The residual vector is the difference between 

the observed and predicted data vectors, g  and d , i.e.,

r=g−d . (7)

For a least-squares fit, ϕ( p)  is defined as the ℓ2-norm of the residual vector, i.e.,

ϕ( p)=∥r∥2=(∑
i=1

N

(gi−d i)
2)

1
2 . (8)

The least-squares fit distributes the residuals assuming that the errors in the data 

follow a  short-tailed  Gaussian  distribution  and thus large  residual  values  are 

highly improbable (Claerbout and Muir, 1973; Silva and Holmann, 1983; Menke, 

1989; Tarantola, 2005). Hence, the  ℓ2-norm is sensitive to outliers in the data, 

which can result  from either gross errors or geological noise (i.e.,  anomalous 

density contrasts which are not of interest to the interpretation). On the other 

hand, if occasional large residuals are desired in the inversion, one can use the 

ℓ1-norm of the residuals vector, i.e.,

ϕ( p)=∥r∥1=∑
i=1

N

∣gi−d i∣ . (9)
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In this case, the errors in the data are assumed to follow a long-tailed Laplace 

distribution and a more robust  fit  is  obtained since the predicted data will  be 

insensitive to outliers.

Regardless of the norm used in the data-misfit function ϕ( p) , the inverse 

problem of  minimizing  ϕ( p)  to  estimate  a  three-dimensional  density-contrast 

distribution is ill-posed and requires additional constraints to be transformed into 

a well-posed problem with a unique and stable solution. The constraints chosen 

for our method are:

1. the solution should be compact (i.e., without any holes inside it).

2. the excess (or deficiency) of mass in the solution should be concentrated 

around  user-specified  prisms  of  the  interpretation  model  with  known 

density contrasts (referred to as “seeds”).

3. the only density-contrast values allowed are zero or the values assigned 

to the seeds.

4. each element of the solution should have the density contrast of the seed 

closest to it.

We formulate the constrained inverse problem as the estimation of the 

parameter vector p  that minimizes the goal function

Γ( p)=ϕ( p)+μθ( p) , (10)

where  θ( p)  is a regularizing function defined in the parameter (model) space 

that imposes physical and/or geological attributes on the solution. The scalar   

is a regularizing parameter that balances the trade-off between the data-misfit  

measure  ϕ( p)  and  the  regularizing  function  θ( p) .  The  regularizing  function 
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θ( p)  is an adaptation of the one used in Silva Dias et al. (2009), which in turn is 

a modified version of the one used by Guillen and Menichetti (1984) and Silva 

and  Barbosa  (2006).  It  enforces  the  compactness  of  the  solution  and  the 

concentration of mass around the seeds (i.e., constraints 1 and 2), being defined 

as 

θ( p)=∑
j=1

M p j

p j+ϵ
l j
β  , (11)

where p j  is the j th element of p , l j  is the distance between the center of the 

j th prism and the center of the closest seed (see subsection Planting algorithm), 

ϵ  is a small positive scalar used to avoid a singularity when p j=0 , and β  is a 

positive integer that influences how compact the solution will be. Typical values 

of  β  range from three to  seven,  depending on how much compactness one 

desires  to  impose.  The  larger  the  value  of  β ,  the  closer  to  the  seeds  the 

estimated anomalous density contrasts will be. In practice, the scalar    is not 

necessary because one can simply add either zero or  l j
β  in the summation of 

equation 11 when evaluating the regularizing function.

The two remaining constraints (3 and 4) are imposed algorithmically. Our 

algorithm, named “planting algorithm”, requires that a set of NS  seeds and their 

associated density-contrast values be specified by the user. We emphasize that 

the density-contrast values of the seeds do not  need to be the same. These 

seeds  should  be  chosen  according  to  prior  information  about  the  targeted 

anomalous density contrasts, such as those provided by the available geologic 

models,  well  logs  and  previous  inversions.  Our  algorithm  searches  for  the 
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minimum value of the data-misfit  function (equations 8 and 9) and the lowest 

possible  value  of  the  goal  function  (equation  10)  that  still  fits  the  data  by 

iteratively  performing  the  accretion  of  prisms  with  non-null  density  contrasts 

around  the  given  set  of  seeds.  These  accreted  prisms  will  have  a  density 

contrast  equal  to  the  one  of  the  seed  suffering  the  accretion,  guaranteeing 

constraint  3.  Furthermore,  only  the neighboring prisms of  the current  solution 

may be used in  the  accretion,  guaranteeing  constraint  4.  This  growth  of  the 

solution through successive accretions is controlled by the values of the data-

misfit  and goal  functions.  In  addition,  the  planting  algorithm does not  require 

calculation of the derivative of the goal function, enabling the use of either the ℓ2- 

or ℓ1- norms of the residual vector (equations 8 and 9) without modification of the 

algorithm.

Planting algorithm

Given a set of N S  seeds (i.e., prisms of the interpretation model and their 

assigned density-contrast values), our algorithm starts with an initial parameter 

vector that includes the density-contrast values assigned to the seeds and has all  

other elements set to zero (Figure 2a). Hence, by combining equations 6 and 7, 

we define the initial residual vector as

r(0)
=g−(∑

s=1

N S

ρs a jS)  , (12)

where ρs  is the density contrast of the s th seed, jS  is the corresponding index 

of  the  s th  seed  in  the  parameter  vector  p ,  and  a jS  is  the  N -dimensional 
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column vector of the Jacobian matrix A   corresponding to the s th seed.

The  solution  to  the  inverse  problem  is  then  built  through  an  iterative 

growth process. An iteration of the growth process consists of attempting to grow, 

one at a time, each of the  NS  seeds by performing the accretion of one of its 

neighboring prisms. We define the accretion of a prism as changing its density-

contrast  value  from zero  to  the  density  contrast  of  the  seed  undergoing  the 

accretion, guaranteeing constraint 3. Thus, a growth iteration is composed of at 

most  N S  accretions, one for each seed. The choice of a neighboring prism for 

the accretion to the s th seed follows two criteria:

1.  The  addition  of  the  neighboring  prism to  the  current  estimate  should 

reduce the data-misfit function ϕ( p)  (equations 8 or 9), as compared to 

the previous accretion. This ensures that the solution grows in a way that 

best  fits  the  observed  data.  To  avoid  an  exaggerated  growth  of  the 

estimated anomalous density contrasts, the algorithm does not perform 

the accretion of neighboring prisms that produce very small changes in 

the data-misfit function. The criterion for how small a change is accepted 

is based on whether the following inequality holds:

∣ϕ
(new)

−ϕ
(old)

∣

ϕ
(old)

≥δ  , (13)

where  ϕ(new )  is  the  data-misfit  function  evaluated  with  the  chosen 

neighboring  prism  included  in  the  estimate,  ϕ
(old )  is  the  data-fitting 

function  evaluated  during  the  previous  accretion, and  δ  is  a  positive 

scalar typically ranging from  10−3
 to  10−6

.  Parameter  δ  controls how 

much the anomalous density contrasts are allowed to grow. The choice of 
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the value of  δ  depends on the size of the prisms of the  interpretation 

model. The smaller the prisms are, the smaller their contribution to ϕ( p)  

will be and thus the smaller δ  should be.

2.  The  addition  of  the  neighboring  prism with  density  contrast  ρs  to  the 

current estimate should produce the smallest value of the goal function 

Γ( p)  (equation 10) out of all other neighboring prisms of the  s th seed 

that obeyed the first criterion. Thus, the accretion of the neighboring prism 

to the current estimate will produce the highest decrease in the data-misfit 

function  while  increasing  the  regularizing  function  θ( p)  as  little  as 

possible. This ensures that constraints 1, 2, and 4 are met. We recall here 

that the term l j  in equation 11 is the distance between the center of the 

j th prism and the center of the  s th seed of which it is a neighboring 

prism.

Once an accretion of a neighboring prism is performed to the s th seed, its 

list  of neighboring prisms is updated to include the neighboring prisms of the 

prism chosen for the accretion (Figure 2b). We also update the residual vector by

r(new)
=r(old)

−p j a j  , (14)

where r(new)  is the updated residual vector,  r(old)  is residual vector evaluated in 

the previous accretion, j  is the index of the neighboring prism chosen for the 

accretion, p j=ρ s , and a j  is the j th column vector of the Jacobian matrix A . In 

the case that none of the neighboring prisms of the  s th seed meet the first 

criterion, the s th seed does not grow during this growth iteration. This ensures 



22

that different seeds can produce anomalous density contrasts that correspond to 

sources of different sizes. The growth process continues while at least one of the 

seeds is able to grow. At the end of the growth process, our planting algorithm 

should yield a solution composed of compact anomalous density contrasts with 

variable sizes (Figure 2c).

Lazy evaluation of the Jacobian matrix

In  our  planting  algorithm  all  elements  of  the  parameter  vector  not 

corresponding to the seeds start with zero density contrast. It is then noticeable 

from equations 6 and 12 that the columns of the Jacobian matrix that do not 

correspond to the seeds are not required for the initial computations. Moreover, 

the  search  for  the  next  element  of  the  parameter  vector  for  the  accretion  is 

restricted to the neighboring prisms of the current solution. This means that the 

j th column vector a j  of the Jacobian matrix only needs to be calculated once 

the  j th prism of the interpretation model  becomes eligible for accretion (i.e.,  

becomes a neighboring prism of the current solution). In addition, our algorithm 

updates the residual vector after each successful accretion through equation 14 

and  consequently,  once  the  j th  prism  is  permanently  incorporated  into  the 

current solution, column vector a j  is no longer needed. Thus, the full Jacobian 

matrix  A  is not needed at any single time during the growth process. Column 

vectors of A  can be calculated on demand and deleted once they are no longer 

required (i.e., after an accretion). This technique is known in computer science as 

a “lazy evaluation”. Since the computation of the full Jacobian matrix is a time- 



23

and memory-consuming process, the implementation of a lazy evaluation of A  

leads  to  small  inversion  times  and  low  memory  usage,  making  viable  the 

inversion  of  large  data  sets  using  interpretation  models  composed  of  large 

numbers  of  prisms  without  needing  supercomputers  or  data  compression 

algorithms (e.g., Portniaguine and Zhdanov, 2002). 

Presence of non-targeted sources

In real world scenarios there are interfering gravitational effects produced 

by  multiple  and  horizontally  separated  sources  (Figure  3a).  Some  of  these 

sources may be of no interest to the interpretation (i.e., non-targeted sources) or 

there may be no available prior information on them, such as their approximate 

location or density contrasts.  Furthermore, in most cases it  is not possible to 

perform a previous separation of the gravitational effects of the targeted and the 

non-targeted sources. It would then be desirable to provide seeds only for the 

targeted sources and that the estimated density-contrast distribution could be 

obtained without being affected by the gravitational effects of the non-targeted 

sources.  For  this  purpose,  one  can  use  the  ℓ1-norm  of  the  residual  vector 

(equation  9)  to  allow  large  residual  values  in  places  where  the  gravitational 

effects of the non-targeted sources are dominant (Figure 3b). In this case, the 

inversion will be able to ignore effectively the gravitational effect yielded by the 

non-targeted sources by treating it as outliers in the data. This robust procedure 

allows one to choose the targets of the interpretation without having to isolate 

their gravitational effect before the performing the inversion. It also eliminates the 

need for prior information about the non-targeted sources. Note that this is only 
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possible because the constraints used in the inversion are imposed in a very 

strict way throughout the planting algorithm.

Figure 1. The observed (a) gyz  and (b) gzz  components of the gravity gradient 

tensor (shaded relief contour maps) produced by an anomalous density 

contrast  distribution.  (c)  Schematic  representation  of  the  interpretation 

model consisting of a grid of  M  juxtaposed 3D right-rectangular prisms. 

The interpretation model is used to parameterize the anomalous density 

contrast distribution shown in gray. 
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Figure  2.  2D  sketch  of  three  stages  of  the  planting  algorithm.  Black  dots 

represent the observed data and the red line represents the predicted data 

produced by the current estimate. The light gray grid of prisms represents 

the  interpretation  model.  (a)  Initial  state  with  the  user-specified  seeds 

included in the estimate with their corresponding density contrasts and all  

other parameters set to zero. (b) End of the first growth iteration where 

two  accretions  took  place,  one  for  each  seed.  The  list  of  neighboring 

prisms  of  each  seed  and  the  predicted  data  are  updated.  (c)  Final 

estimate at the end of the algorithm. The growth process stops when the 

predicted data fits the observed data.
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Figure 3. 2D sketch of the robust procedure. Black dots represent the observed 

data  produced  by  (a)  the  true  sources  with  different  density  contrasts 

(black  and gray  polygons).  The source  with  density  contrast  ρ2  (gray 

polygon) is considered as non-targeted. (b) Inversion result when a seed 

is given for the targeted source only (black polygon) and using the ℓ1-norm 

of the residual vector (equation 9). The dashed line in b represents the 

data  predicted  by  the  inversion  result.  Large  residuals  over  the  non-

targeted source (gray outline) are automatically allowed by the inversion. 

The estimated density-contrast  distribution (black prisms) recovers only 

the shape of the targeted source (black outline).
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APPLICATIONS TO SYNTHETIC DATA

We  present  two  applications  to  synthetic  data  that  simulate  airborne 

gravity  gradiometry  surveys  over  multiple  homogeneous  sources  that  are 

horizontally  closely  located  and  produce  interfering  gravitational  effects.  The 

sources are separated by abrupt contacts and have different density contrasts 

and geometries.

Multiple targeted sources

Figure 4 shows a set of color-scale maps of the synthetic noise-corrupted 

gxx ,  gxy ,  gxz ,  gyy ,  gyz ,  and  gzz  components  of  the  gravity  gradient  tensor 

calculated at 150 meter height. The data were contaminated with pseudorandom 

Gaussian noise with zero mean and 5 Eötvös standard deviation. Each tensor 

component was calculated on a regular grid of 26×26  observation points in the 

x -  and  y -directions,  totaling  a  data  set  of  4,056  observations,  with  a  grid 

spacing of 0.2 km along both directions. The synthetic data simulate the noise-

corrupted data from an airborne gravity gradiometry survey which were produced 

by four closely separated sources (Figure 5a). These sources are rectangular 

parallelepipeds with different sizes and depths and with density contrasts ranging 

from -1 g/cm3 to 1 g/cm3.

In this test, all four sources are considered targets of the interpretation. 

Because  we  did  not  consider  the  presence  of  geologic  noise  (non-targeted 

sources), the inversion was performed using the  ℓ2-norm of the residual vector 
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(equation 8) and specifying a total of 18 seeds (Figure 5b) distributed between 

the four sources as follows: seven for the source with density contrast of 1 g/cm3 

(in red); five for the source with density contrast of -1 g/cm3 (in blue);  four for the 

source with  density  contrast  of  0.7 g/cm3 (in  yellow);  two for  the source with 

density contrast of 0.9 g/cm3 (in orange). We adopted an interpretation model 

consisting of 25,000 juxtaposed right rectangular prisms and set β=7 , μ=1015
, 

and  δ=5×10−4
.  The  inversion  result  in  Figure  5c  shows  that  our  method 

estimates a density-contrast distribution composed of four compact sources (i.e., 

without holes in their interiors) whose shapes very closely resemble the shape of 

the four  true sources shown in  Figure  5a,  regardless  of  their  depth,  size,  or 

density  contrast.  This  estimated density-contrast  distribution  fits  the  observed 

data as shown in Figure 4 in solid black lines. 

Multiple targeted and non-targeted sources

Figure  6a-c  shows  the  synthetic  noise-corrupted  gyy ,  gyz ,  and  gzz  

components of  the gravity gradient tensor (color-scale maps) produced by 11 

rectangular  parallelepipeds (Figure 7a)  with  density  contrasts ranging from -1 

g/cm3 to 1.2 g/cm3. Each component was calculated on a regular grid of 51×51  

observation points in the x - and y -directions, totaling 7,803 observations, with a 

grid spacing of 0.1 km along both directions. We corrupted the synthetic data 

with  pseudorandom  Gaussian  noise  with  zero  mean  and  5  Eötvös  standard 

deviation.

To demonstrate the efficiency of our method in retrieving only the targeted 
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sources even in the presence of non-targeted ones, we chose only the sources 

with density contrast of  1.2 g/cm3 (red blocks in Figure 7a) as targets of  the 

interpretation. Thus, we specified the set of 13 seeds shown in Figure 7b (nine 

for the largest source and four for the smallest one) and used the ℓ1-norm of the 

residual  vector  (equation  9).  In  this  interpretation,  all  sources  with  density  

contrast different from 1.2 g/cm3 (displayed as blue and green blocks in Figure 

7a)  were  considered  as  non-targeted  sources.  The  inversion  was  performed 

using an interpretation model consisting of 37,500 juxtaposed rectangular prisms 

and β=5 , μ=105
, and δ=10−4

. 

Figure 6a-c shows the predicted data (black contour lines) produced by 

the estimated density-contrast distribution shown in Figure 7c. By comparing the 

density contrast estimates (Figure 7c) with the true targeted sources (red blocks 

in  Figure  7a),  we  verify  the  good  performance  of  our  method  in  recovering 

targeted sources in the presence of non-targeted sources (blue and green blocks 

in Figure 7a) yielding interfering gravitational effects. The most striking feature of 

this  inversion  result  is  that  neither  prior  information  about  the  non-targeted 

sources nor a gravitational effect separation to isolate the effect of the targeted 

sources were required. For comparison, Figure 6d-f shows, in colored-contour 

maps, the gyy , gyz , and gzz  components of the gravity gradient tensor produced 

by  only  the  targeted  sources  (red  blocks  in  Figure  7a)  plotted  against  the 

predicted data (black contour lines in Figure 6a-f)  produced by the estimated 

density-contrast distribution (Figure 7c). Notice that the inversion performed on 

the full synthetic data set (color-scale maps in Figure 6a-c) was able to fit the 



30

isolated  gravitational  effects  produced  by  the  targeted  sources  as  shown  in 

Figure 6d-f. These results confirm the ability of our method to effectively ignore 

the  interfering  gravitational  effect  of  non-targeted  sources  and  successfully 

recover the targets of the interpretation. 

Figure  4.  Test  with  synthetic  data  produced  by  multiple  targeted  sources. 

Synthetic noise-corrupted data (color-scale maps) and data predicted by 

the inversion result (black contour lines) of the (a) gxx , (b) gxy , (c) gxz , (d) 

gyy , (e)  gyz , and (f)  gzz  components of the gravity gradient tensor. The 

synthetic data are produced by the four prisms shown in Figure 5a. The 

predicted  are  produced  by  the  estimated  density-contrast  distribution 

shown in Figure 5c.
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Figure 5.  Test  with  synthetic data produced by multiple targeted sources.  (a) 

Perspective  view  of  the  four  targeted  sources  used  to  generate  the 

synthetic data.  (b)  Seeds used in the inversion and outline of the true 

targeted sources.  (c)  Inversion  result  using  the  ℓ2-norm of  the  residual 

vector. Prisms of the interpretation model with zero density contrast are 

not shown. Black lines represent the outline of the true targeted sources. 
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Figure 6. Test with synthetic data produced by multiple targeted and non-targeted 

sources.  Synthetic  noise-corrupted  data  (color-scale  maps)  and  data 

predicted by the inversion result (black contour lines) of the (a)  gyy , (b) 

gyz , and (c)  gzz components of the gravity gradient tensor. The synthetic 

data were produced by the 11 sources shown in Figure 7a. The predicted 

data is produced by the inversion result shown in Figure 7c. The (d) gyy , 

(e)  gyz ,  and (f)  gzz components of the gravity gradient tensor produced 

only by the targeted sources are shown in color-scale maps and black 

contour  lines  show the  same data  predicted  by  the  inversion  result  in 

Figure 7.
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Figure 7. Test with synthetic data produced by multiple targeted and non-targeted 

sources. (a) Perspective view of the synthetic model used to generate the 

synthetic data. Only sources with density contrast 0.6 g/cm3 (green) are 

outcropping.  The  sources  with  density  contrast  1.2  g/cm3 (red)  were 

considered  as  the  targets  of  the  interpretation.  (b)  Seeds  used  in  the 

inversion  and  outline  of  the  true  targeted  sources.  (c)  Inversion  result 

obtained by using the ℓ1-norm of the residual vector (equation 9). Prisms of 

the interpretation model with zero density contrast are not shown. Black 

lines represent the outline of the true targeted sources. 
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APPLICATION TO REAL DATA

One of  the  most  important  iron  provinces  in  Brazil  is  the  Quadrilátero 

Ferrífero (QF), located in the São Francisco Craton, southeastern Brazil. Most of 

the iron ore bodies in the QF are hosted in the oxided,  metamorphosed and 

heterogeneously deformed Banded Iron Formation (BIF) of the Cauê Formation, 

the so-called itabirites. The itabirites are associated with the Minas Supergroup 

and contain iron ore oxide facies, such as hematites, magnetites and martites. 

We applied our  method to  estimate  the  geometry  and extent  of  the iron ore 

deposits  of  the  Cauê  Formation  using  the  data  from  an  airborne  gravity 

gradiometry survey performed in this area (color-scale maps in Figure 8a-c). The 

gravitational effects associated with the iron ore bodies (targeted sources) are 

more prominent in the  gyy ,  gyz , and  gzz  components of the measured gravity 

gradient  tensor (elongated SW-NE feature in Figure 8a-c).  This data set also 

shows interfering gravitational  effects  caused by other  sources,  which will  be 

considered non-targeted sources in our interpretation.

The inversion was performed on 4,582 measurements of each of the gyy , 

gyz ,  and  gzz  components of the gravity gradient tensor resulting in a total  of 

13,746 measurements.  We applied  our  robust  procedure  to  recover  only  the 

targeted sources (iron ore bodies) in the presence of the non-targeted sources. 

Thus, we used the ℓ1-norm of the residual vector (equation 9) and provided a set 

of 46 seeds (black stars in Figure 8) for the targeted iron ore bodies of the Cauê 

Formation.  The  horizontal  locations  of  the  seeds  were  chosen  based on  the 



35

peaks of the elongated SW-NE positive feature in the color-scale map of the gzz  

component (Figure 8c). The depths of the seeds were chosen based on borehole 

information  and  previous  geologic  interpretations  of  the  area  (D.  U.  Carlos,  

personal  communication,  2010).  We assigned a  density-contrast  value  of  1.0 

g/cm3 for the seeds because the data were terrain corrected using a density of 

2.67 g/cm3 and the assumed density of the iron ore deposits is 3.67 g/cm3. The 

interpretation model consists of a mesh composed of 164,892 prisms and follows 

the  topography  of  the  area  (Figure  9a).  The  inversion  was  performed  using 

parameters β=7 , μ=1015
, and δ=5×10−5

.

The estimated density-contrast distribution corresponding to the iron ore 

bodies  is  shown in  red  in  Figure  9.  Cross-sections  of  the  estimated  density 

contrast  distribution  (Figure  10)  show that  the  estimated  iron  ore  bodies  are 

compact and have non-outcropping parts. Figure 8d-f shows the predicted data 

caused by the estimated density-contrast distribution shown in Figure 9. For all 

three  components,  the  inversion  is  able  to  fit  the  elongated  SW-NE feature 

associated with the iron ore deposits (targeted sources) and successfully ignore 

the other gravitational effects produced by the non-targeted sources (Figure 8).  

These results show the ability of our method to provide a compact estimate of the 

iron  ore  deposits.  We  emphasize  that  this  was  possible  without  any  prior 

information about the non-targeted sources and without isolating the gravitational 

effects produced by the targeted sources. Meeting both of these requirements 

would have been impractical in this highly complex geological setting. Our results 

are in close agreement with previous interpretations by Martinez et al. (2010). 

Furthermore,  when  performed on  a  standard  laptop  computer  with  an  Intel® 



36

CoreTM 2 Duo P7350 2.0 GHz processor,  the total  time for the inversion was 

approximately 14 minutes.

Figure 8. Application to real data from an airborne gravity gradiometry survey 

over  a  region  of  the  Quadrilátero  Ferrífero,  southeastern  Brazil.  The 

observed (a-c) and predicted (d-f)  gyy ,  gyz ,  and  gzz components of the 

gravity gradient tensor. The latter were produced by the estimated density-

contrast  distribution  shown  in  Figure  9.  Black  stars  represent  the 

horizontal coordinates of the seeds used in the inversion.
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Figure  9.  Results  from  the  application  to  real  data  from  the  Quadrilátero 

Ferrífero, southeastern Brazil. The vertical axis refers to height above the 

ellipsoid. Dashed lines show the location of the cross-sections in Figure 

10. (a-e) Perspective views of the estimated density-contrast distribution, 

where prisms with zero density contrast are shown in solid or transparent 

light gray and prisms with density contrast of 1.0 g/cm3 are shown in solid 

or transparent red. The seeds used in the inversion are shown as black 

prisms. The estimated density-contrast distribution corresponding to the 

iron orebody of the Cauê itabirite are the red prisms with 1.0 g/cm3 density 

contrast. 
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Figure  10.  Results  from  the  application  to  real  data  from  the  Quadrilátero 

Ferrífero, southeastern Brazil. The vertical axis refers to height above the 

ellipsoid.  Cross-sections  of  the  inversion  result  shown in  Figure  9   at 

horizontal coordinate x equal to (a) 1.00 km, (b) 1.35 km, and (c) 5.55 km. 

Prisms with zero density contrast are shown in light gray and prisms with 

density  contrast  of  1.0  g/cm3,  corresponding  to  the  iron  orebody,  are 

shown in red. 
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CONCLUSIONS

We have presented a new method for the 3D inversion of gravity gradient 

data  that  uses  a  systematic  search  algorithm.  We  parametrized  the  Earth's 

subsurface as a grid of juxtaposed right rectangular prisms with homogeneous 

density contrasts. The estimated density-contrast distribution is then iteratively 

built  through the successive accretion of new elements around user-specified 

prisms  called  “seeds”.  The  choice  of  seeds  is  used  to  incorporate  into  the 

solution prior information about the density-contrast values and the approximate 

location  of  the  sources.  Our  method is  able  to  retrieve  multiple  sources with 

different locations, geometries, and density contrasts by allowing each seed to 

have a different density contrast. Furthermore, we devised a robust procedure 

that recovers only targeted sources in the presence of non-targeted sources that 

yield  interfering  gravitational  effects.  Thus,  prior  information  about  the  non-

targeted  sources  is  not  required  and  the  gravitational  effect  of  the  targeted 

sources does not need to be previously isolated to perform the inversion. In real 

world scenarios, meeting both of the previously stated requirements would have 

been highly impractical, or even impossible.

The developed inversion method requires small processing time and low 

computer memory usage since there are neither matrix multiplications nor linear  

systems  to  be  solved.  Further  computational  efficiency  is  achieved  by 

implementing  a  “lazy  evaluation”  of  the  Jacobian matrix.  These optimizations 

make  feasible  the  inversion  of  the  large  data  sets  brought  forth  by  airborne 

gravity gradiometry surveys when using an interpretation model composed of a 
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large number of prisms. Tests on synthetic data and real data from an airborne 

gravity  gradiometry survey show that  our  method is  able to  recover  compact 

bodies  with  different  density  contrasts  despite  the  presence  of  interfering 

gravitational effects produced by non-targeted sources. 

Despite the advantages of this new inversion method, its use is restricted 

to  areas  where  there  is  sufficient  geologic  information  about  the  targeted 

sources.  Estimating  a  correct  density-contrast  distribution  requires  adequate 

placement  of  the  seeds  and  correct  density-contrast  values.  Horizontal 

coordinates for the seeds can be easily obtained from the analysis of the  gzz  

component  of  the  gravity  gradient  tensor.  Approximate  depths  and  density-

contrast  values  for  the  seeds  can  be  obtained  from  well  data  or  previous 

interpretations of  other geophysical  data sets,  like seismic or  electromagnetic 

surveys.  Therefore,  given  well  constrained  geologic  information  about  the 

sources,  our  method  is  well  suited  for  estimating  the  extent  of  structures  of  

interest  to  mineral  and  hydrocarbon  exploration,  like  salt  domes  and  ore 

deposits.
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