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, . II. Observatório Nacional/MCTI, Programa de Pós-

graduação em Geof́ısica. III. T́ıtulo.

iii



Agradecimentos
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Resumo da Tese apresentada ao Programa de Pós-graduação em Geof́ısica do

Observatório Nacional/MCTI como parte dos requisitos necessários para a obtenção

do t́ıtulo de Doutor em Ciências (D.Sc.)

MODELAGEM DIRETA E INVERSÃO DE CAMPOS GRAVITACIONAIS EM

COORDENADAS ESFÉRICAS

Leonardo Uieda

Abril/2016

Orientador: Valéria Cristina Ferreira Barbosa

Programa: Geof́ısica

Apresentamos avanços metodológicos na área de modelagem direta e inversão

regional de dados de gravimetria por satélite. Com esse fim, desenvolvemos dois

projetos computacionais de código livre. O primeiro é um conjunto de programas de

linha de comando feitos na linguagem C chamado Tesseroids. Os programas calcu-

lam o potencial, aceleração e tensor gradiente gravitacional de um prisma esférico,

ou tesseroide. Tesseroids implementa e aprimora um algoritmo de discretização

adaptativa para automaticamente garantir a acurácia das computações. Os resul-

tados com testes numéricos mostram que, para obter o mesmo ńıvel de acurácia, a

aceleração gravitacional demanda uma discretização mais fina que o potencial. Por

sua vez, o tensor gradiente gravitacional demanda discretização mais fina ainda que

a aceleração. O segundo projeto computacional é o Fatiando a Terra, uma bib-

lioteca feita na linguagem Python para inversão, modelagem direta, processamento

e visualização de dados. A biblioteca permite que o usuário combine as ferramentas

de modelagem direta e de inversão para implementar novos métodos de inversão.

As ferramentas de modelagem direta incluem uma implementação do algoritmo uti-

lizado no programa Tesseroids. Combinamos os recursos de inversão e modelagem

direta com tesseroides do Fatiando a Terra para desenvolver um método rápido para

a inversão não-linear de dados de gravidade. O método estima a profundidade da

interface crosta-manto (a Moho) baseado em dados de gravidade utilizando uma

aproximação esférica da Terra. Adaptamos o método de Bott, que é computacional-

mente eficiente, para incluir regularização de suavidade e utilizar tesseroides ao invés

v



de prismas retangulares retos. A inversão é controlada por três hiper-parâmetros: o

parâmetro de regularização, o contraste de densidade entre a Terra real e o modelo

de referência (a Terra Normal) e a profundidade da Moho da Terra Normal. Apli-

camos dois tipos de validação cruzada para estimar esses parâmetros de maneira

automática. Testes com dados sintéticos confirmam a capacidade do método pro-

posto de estimar os três hiper-parâmetros e o relevo suave da Moho. Finalmente,

aplicamos o método de inversão desenvolvido para gerar um modelo de profundi-

dade da Moho para a América do Sul. O modelo de profundidade da Moho estimado

ajusta os dados de gravidade observados e as estimativas da profundidade da Moho

provenientes da sismologia nas regiões oceânicas e nas partes central e leste do conti-

nente. Observamos desajustes aos dados na região dos Andes, onde a profundidade

da Moho é a maior do continente. Nas bacias do Amazonas, Solimões e Paraná, o

modelo ajusta os dados de gravidade mas não as estimativas da sismologia. Essas

discrepâncias indicam a presença de anomalias de densidade na crosta ou manto

superior, como sugerido anteriormente na literatura.
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Abstract of Thesis presented to Observatório Nacional/MCTI as a partial fulfillment

of the requirements for the degree of Doctor of Science (D.Sc.)

FORWARD MODELING AND INVERSION OF GRAVITATIONAL FIELDS IN

SPHERICAL COORDINATES

Leonardo Uieda

April/2016

Advisor: Valéria Cristina Ferreira Barbosa

Department: Geophysics

We present methodological improvements to forward modeling and regional in-

version of satellite gravity data. For this purpose, we developed two open-source

software projects. The first is a C language suite of command-line programs called

Tesseroids. The programs calculate the gravitational potential, acceleration, and

gradient tensor of a spherical prism, or tesseroid. Tesseroids implements and ex-

tends an adaptive discretization algorithm to automatically ensure the accuracy of

the computations. Our numerical experiments show that, to achieve the same level

of accuracy, the gravitational acceleration components require finner discretization

than the potential. In turn, the gradient tensor requires finner discretization still

than the acceleration. The second open-source project is Fatiando a Terra, a Python

language library for inversion, forward modeling, data processing, and visualization.

The library allows the user to combine the forward modeling and inversion tools

to implement new inversion methods. The gravity forward modeling tools include

an implementation of the algorithm used in the Tesseroids software. We combined

the inversion and tesseroid forward modeling utilities of Fatiando a Terra to de-

velop a new method for fast non-linear gravity inversion. The method estimates

the depth of the crust-mantle interface (the Moho) based on observed gravity data

using a spherical Earth approximation. We extended the computationally efficient

Bott’s method to include smoothness regularization and use tesseroids instead right

rectangular prisms. The inversion is controlled by three hyper-parameters: the reg-

ularization parameter, the density-contrast between the real Earth and the reference

model (the Normal Earth), and the depth of the Moho of the Normal Earth. We
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employ two cross-validation procedures to automatically estimate these parameters.

Tests on synthetic data confirm the capability of the proposed method to estimate

smoothly varying Moho depths and the three hyper-parameters. Finally, we ap-

plied the inversion method developed to produce a Moho depth model for South

America. The estimated Moho depth model fits the gravity data and seismological

Moho depth estimates in the oceanic areas and the central and eastern portions of

the continent. We observe large misfits in the Andes region, where Moho depth

is largest. In Amazon, Solimões, and Paraná Basins, the model fits the observed

gravity but disagrees with seismological estimates. These discrepancies suggest the

existence of density-anomalies in the crust or upper mantle, as has been suggested

in the literature.
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Chapter 1

Introduction

Gravity measurements are one of the instruments that geophysicists use to inves-

tigate the subsurface of the Earth. Gravity data can be acquired on the ground,

airborne, shipborne or through artificial satellites. Ground, airborne, and ship-

borne data are routinely used in local or regional studies, with applications ranging

from archaeological studies (e.g., PANISOVA et al., 2013) to mapping the depth

of sedimentary basins (e.g., GORDON et al., 2013). Satellite gravity data make

continental and global scale studies possible (e.g., BOUMAN et al., 2013b; BRAIT-

ENBERG, 2015; REGUZZONI et al., 2013; VAN DER MEIJDE et al., 2013, 2015).

This is particularly important in regions where data acquisition by other means

is lacking or difficult to perform, such as South America, Africa, and Antarctica.

Another advantage of satellite gravity measurements is the almost homogeneous

spacial coverage. Satellite data also enable investigation of temporal variations of

the Earth’s gravity field through the GRACE mission. Applications using the time

series data from GRACE include mapping ice-mass variation in the Arctic (CHEN

et al., 2011) and Antarctic regions (RAMILLIEN et al., 2006), quantifying defor-

mation following large earthquakes (MIKHAILOV et al., 2014), and groundwater

monitoring (HUMPHREY et al., 2016).

Deriving geophysical Earth models from observed gravity data is an ill-posed in-

verse problem (BACKUS e GILBERT, 1967, 1968). Designing a method for solving

these inverse problems presents many challenges. The first challenge is to establish

a functional mapping between the model parameters and the data. This is known

as the forward problem and it must be solved in a stable and accurate way for the

inversion to succeed. The second challenge is to choose and implement an optimiza-

tion algorithm to estimate the model parameters that best fit the observed data.

There are several well established optimization methods to choose from the liter-

ature, for example, gradient-descent methods like the Gauss-Newton method and

Steepest Descent or stochastic methods like the Genetic Algorithm (e.g., ASTER

et al., 2012; KELLEY, 1987; MENKE, 1984). Finally, there is the challenge of
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stabilizing the ill-posed inverse problem, usually through Tikhonov regularization

(TIKHONOV e ARSENIN, 1977). Different regularizing functions favor different

model attributes, such as smoothness or compactness (e.g., SILVA et al., 2001).

Choosing an appropriate regularizing function is an indirect way to include prior

geological or geophysical information in the inverse problem.

When developing a new inversion methodology, one must implement in a soft-

ware application three modules: the forward problem, an optimization algorithm,

and a regularizing function. Fortunately, these modules can usually be uncoupled.

For example, the implementation of the forward problem does not depend on the

choice of optimization method or regularizing function. Likewise, the software im-

plementation of an optimization algorithm requires only a knowledge of a function to

be optimized (and possibly its derivatives), no matter what is the forward problem

or regularizing function. Furthermore, changing the regularizing function used, in

principle, does not require changes to the implementations of the forward problem

and the optimization method. Thus, the ideal software design is to have indepen-

dent and reusable routines for forward modeling, optimization, and regularization.

These three modules can be combined in different ways to produce new inversion

software.

Here, we develop two software projects and apply their reusable modules to de-

velop a 3D gravity inversion method in spherical coordinates. Chapter 2 describes

the open-source software Tesseroids. This C language program calculates the grav-

itational potential and its first and second derivatives of a tesseroid (or spherical

prism). The software also improves upon existing algorithms for the forward model-

ing calculations. Chapter 3 describes the Python language library Fatiando a Terra.

The library contains a collection of functions and classes for inverse problems, for-

ward modeling, data and model visualization, and data processing. The inverse

problems tools implement optimization and regularization classes that are uncou-

pled from specific forward problems. These tools can be reused and combined in

different ways to implement new inversion methods. Fatiando a Terra also imple-

ments the tesseroid forward modeling algorithm described in Chapter 2. Finally, in

Chapter 4 we build upon the foundation of Chapters 2 and 3 to develop a novel grav-

ity inversion method. The method estimates the depth of the crust-mantle interface

(the Moho) from observed gravity data using a spherical Earth approximation. The

software implementation of the inversion combines and extends the optimization,

regularization, and forward modeling available in Fatiando a Terra. We apply our

method to estimate the depth of the Moho for the South American continent.
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Chapter 2

Tesseroids: forward modeling

gravitational fields in spherical

coordinates

This chapter has been submitted for publication in the “Geophysical Software and

Algorithms” section of the journal GEOPHYSICS.

2.1 Abstract

We present the open-source software Tesseroids, a set of command-line programs

to perform the forward modeling of gravitational fields in spherical coordinates.

The software is implemented in the C programming language and uses tesseroids

(spherical prisms) for the discretization of the subsurface mass distribution. The

gravitational fields of tesseroids are calculated numerically using the Gauss-Legendre

Quadrature (GLQ). We have improved upon an adaptive discretization algorithm

to guarantee the accuracy of the GLQ integration. Our implementation of adaptive

discretization uses a “stack” based algorithm instead of recursion to achieve more

control over execution errors and corner cases. The algorithm is controlled by a

scalar value called the distance-size ratio (D) that determines the accuracy of the

integration as well as the computation time. We determined optimal values of D for

the gravitational potential, gravitational acceleration, and gravity gradient tensor

by comparing the computed tesseroids effects with those of a homogeneous spherical

shell. The values required for a maximum relative error of 0.1% of the shell effects

are D = 1 for the gravitational potential, D = 1.5 for the gravitational acceleration,

and D = 8 for the gravity gradients. Contrary to previous assumptions, our results

show that the potential and its first and second derivatives require different values

of D to achieve the same accuracy. These values were incorporated as defaults in
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the software.

2.2 Introduction

Satellite missions dedicated to measuring the Earth’s gravity field (like CHAMP,

GRACE, and GOCE) have provided geophysicists with almost uniform and global

data coverage. These new data have enabled interpretations on regional and global

scales (e.g. BRAITENBERG, 2015; REGUZZONI et al., 2013). Modeling at such

scales requires taking into account the curvature of the Earth and calculating gravity

gradients as well as the traditional gravitational acceleration. A common approach

to achieve this is to discretize the Earth into tesseroids (Figure 2.1) instead of

rectangular prisms. An analytical solution exists when the computation point is

along the polar axis and the tesseroid is extended into a spherical cap (GROMBEIN

et al., 2013; LAFEHR, 1991; MIKUŠKA et al., 2006). For more general cases, the

integral formula for the gravitational effects of a tesseroid must be solved numer-

ically. Approaches to this numerical integration include Taylor series expansion

(GROMBEIN et al., 2013; HECK e SEITZ, 2007) and the Gauss-Legendre Quadra-

ture (ASGHARZADEH et al., 2007). Taylor series expansion produces accurate

results at low latitudes but presents a decrease in accuracy towards the polar re-

gions. This is attributed to tesseroids degenerating into an approximately triangular

shape at the poles. The Gauss-Legendre Quadrature (GLQ) integration consists in

approximating the volume integral by a weighted sum of the effect of point masses.

An advantage of the GLQ approach is that it can be controlled by the number of

point masses used. The larger the number of point masses, the better the accuracy of

GLQ integration. A disadvantage is the increased computation time as the number

of point masses increases. Thus, there is a trade-off between accuracy and compu-

tation time. This is a common theme in numerical methods. WILD-PFEIFFER

(2008) investigated the use of different mass elements, including tesseroids, to com-

pute the gravitational effects of topographic masses. The author concludes that

using tesseroids with GLQ integration gives the best results for near-zone computa-

tions. However, the question of how to determine the optimal parameters for GLQ

integration remained open.

Previous work by KU (1977) investigated the use of the GLQ in gravity for-

ward modeling. KU (1977) numerically integrated the vertical component of the

gravitational acceleration of right rectangular prisms. The author suggested that

the accuracy of the GLQ integration depends on the ratio between distance to the

computation point and the distance between adjacent point masses. Based on this,

KU (1977) proposed an empirical criterion that the distance between point masses

should be greater than the distance to the computation point. ASGHARZADEH
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et al. (2007) used this criterion for the GLQ integration of the gravity gradient ten-

sor of tesseroids. To our knowledge, an analysis of how well this ad hoc criteria of

KU (1977) works for gravity gradient components or for tesseroids has never been

done before. There has also been no attempt to quantify the error committed in the

GLQ integration when applying the criteria of KU (1977).

LI et al. (2011) devised an algorithm to automatically enforce the criteria of KU

(1977). Their algorithm divides the tesseroid into smaller ones instead of increasing

the number of point masses per tesseroid. A tesseroid is divided if the minimum dis-

tance to the computation point is smaller than the largest dimension of the tesseroid.

This division is repeated recursively until all tesseroids obey the criterion. Then,

GLQ integration is performed for each of the smaller tesseroids using the specified

number of point masses. The advantage of this adaptive discretization over increas-

ing the number of points masses is that the total distribution of point masses will be

greater only close to the computation point. This makes the adaptive discretization

more computationally efficient.

GROMBEIN et al. (2013) developed optimized formula for the gravitational

fields of tesseroids using Cartesian integral kernels. These formulas are faster to

compute and do not have singularities at the poles like their spherical counterparts.

The Cartesian formulae are numerically integrated using a Taylor series expansion

as per HECK e SEITZ (2007). GROMBEIN et al. (2013) use a near-zone separation

to mitigate the increased error at high latitudes. In the so called “near-zone” of the

computation point they use a finer discretization composed by smaller tesseroids.

This is accomplished by dividing the tesseroids along their horizontal dimensions.

However, the determination of an optimal size of the near-zone remains an open

question (GROMBEIN et al., 2013).

We have implemented a modified version of the adaptive discretion of LI et al.

(2011) into the open-source software package Tesseroids. The software uses the

Cartesian formula of GROMBEIN et al. (2013) for improved performance and ro-

bustness. Previous versions of the software have been used by, e.g., ÁLVAREZ et al.

(2012); BOUMAN et al. (2013a,b); BRAITENBERG (2015); BRAITENBERG et al.

(2011); FULLEA et al. (2015); MARIANI et al. (2013).

This article describes the software design and the implementation of our modified

adaptive discretization algorithm. We also present a numerical investigation of the

error committed in the computations. These results allow us to calibrate the adap-

tive discretization algorithm separately for the gravitational potential, gravitational

acceleration, as well as the gravity gradient tensor components.
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Figure 2.1: View of a tesseroid, the integration point Q inside the tesseroid, a
geocentric coordinate system (X, Y, Z), the computation P and it’s local coordinate
system (x, y, z). r, φ, λ are the radius, latitude, and longitude, respectively, of point
P , and ` is the Cartesian distance between P and Q.

2.3 Theory

A tesseroid is a mass element defined in geocentric spherical coordinates (Figure 2.1).

It is bounded by two meridians, two parallels, and two concentric circles. The grav-

itational fields of a tesseroid at a point P = (r, φ, λ) are determined with respect to

the local North-oriented coordinate system at P (x, y, z in Figure 2.1). GROMBEIN

et al. (2013) formulated Cartesian kernels for the volume integrals that define the

tesseroid gravitational potential, gravitational acceleration, and Marussi tensor, re-

spectively,

V (r, φ, λ) = Gρ

λ2∫
λ1

φ2∫
φ1

r2∫
r1

1

`
κ dr′dφ′dλ′, (2.1)

gα(r, φ, λ) = Gρ

λ2∫
λ1

φ2∫
φ1

r2∫
r1

∆α

`3
κ dr′dφ′dλ′, (2.2)

and

gαβ(r, φ, λ) = Gρ

λ2∫
λ1

φ2∫
φ1

r2∫
r1

Iαβ κ dr
′dφ′dλ′, (2.3)

Iαβ =

(
3∆α∆β

`5
− δαβ

`3

)
, (2.4)

where α, β ∈ {x, y, z}, ρ is the density, G = 6.674 × 10−11 m3kg−1s−1 is the gravi-

tational constant, δαβ is Kronecker’s delta (δαβ = 1 if α = β and δαβ = 0 if α 6= β),
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and

∆x = r′(cosφ sinφ′ − sinφ cosφ′ cos(λ′ − λ)), (2.5)

∆y = r′ cosφ′ sin(λ′ − λ), (2.6)

∆z = r′ cosψ − r, (2.7)

κ = r′
2

cosφ′, (2.8)

` =

√
r′2 + r2 − 2r′r cosψ, (2.9)

cosψ = sinφ sinφ′ + cosφ cosφ′ cos(λ′ − λ). (2.10)

We will follow ASGHARZADEH et al. (2007) and perform the numerical inte-

gration using the Gauss-Legendre Quadrature (GLQ). The GLQ consists in approx-

imating the integral by a weighted sum of the integration kernel (HILDEBRAND,

1987),

b∫
a

f(x)dx ≈ b− a
2

N∑
i=1

Wif(xi), (2.11)

in which N is the order of the quadrature, i.e. the number of points used in the

GLQ. The points xi are called the quadrature nodes. They are the roots of the N th

order Legendre polynomial PN(x). For a second order polynomial (P2(x)), the roots

are x = ±0.577350269. Roots for larger order polynomials can be determined by

a root finder algorithm. Roots of Legendre polynomials will be within the range

[−1, 1]. Before being used for GLQ integration, the roots must be scaled to the

integration limits [a, b] using

xscaledi =
b− a

2
xi +

b+ a

2
. (2.12)

The weights of the GLQ are given by (HILDEBRAND, 1987),

Wi =
2

(1− x2
i )(P

′
N(xi))2

. (2.13)

The values of PN(x) and its first derivative P ′N(x) can be calculated with recursive

relations.

The Gauss-Legendre Quadrature for three-dimensional volume integrals, like

equations 2.1-2.3, becomes (ASGHARZADEH et al., 2007)

∫∫∫
Ω

f(r′, λ′, φ′)dΩ ≈ A

Nr∑
i=1

Nφ∑
j=1

Nλ∑
k=1

W r
i W

φ
j W

λ
k f(ri, φj, λk), (2.14)
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where

A =
(λ2 − λ1)(φ2 − φ1)(r2 − r1)

8
. (2.15)

Comparing equation 2.14 with equations 2.1-2.3, we see that f(ri, φj, λk) is the

effect of a point mass located on the quadrature nodes. Thus, it can be said that

the GLQ integration approximates the volume integrals by a weighted sum of point

mass effects.

The accuracy of the integration depends on the number of point masses used

in the summation. KU (1977) showed that it also depends on the ratio between

the distance to the computation point and the distance between adjacent nodes.

Figure 2.2 illustrates this effect on the gxy gravity gradient component. The gxy

component was produced by a 7◦ × 7◦ × 20 km tesseroid with 2.67 g.cm−3 density

and top at z = 0 km. The maps were calculated on a regular grid with 100 × 100

points. Figure 2.2a shows the gxy component calculated at 400 km height using

GLQ with order two (2× 2× 2 = 8 point masses). Figure 2.2b shows gxy computed

with order two GLQ as well but at 150 km height. Notice that the computed

effect is concentrated around each point mass of the GLQ (black dots) and does

not resemble the effect of a tesseroid. KU (1977) determined an ad hoc criterion

that the distance between point masses (quadrature nodes) should be smaller than

the minimum distance to the computation point. Thus, if a computation point

is too close to the tesseroid one would have to decrease the distance between the

point masses in order to obtain an accurate result. One way to accomplish this

would be increase the order of the quadrature N in all three directions. Figure 2.2c

shows the gxy component calculated at 150km height but with a GLQ order of 30

(30 × 30 × 30 = 27, 000 point masses). The computed gxy component more closely

resembles the expect results for a single tesseroid (ASGHARZADEH et al., 2007).

2.3.1 Adaptive discretization

LI et al. (2011) proposed an alternative method for decreasing the distance between

point masses on the quadrature nodes aiming at achieving an accurate integration.

Instead of increasing the GLQ order, they keep it fixed to a given number and divide

the tesseroid into smaller volumes. The sum of the effects of the smaller tesseroids

is equal to the gravitational effect of the larger tesseroid. This division effectively

decreases the distance between nodes because of the smaller size of the tesseroids.

The criterion for dividing a tesseroid is that the distance to the computation point

should be smaller than a constant times the size of the tesseroid. This is analogous

to the criterion proposed by KU (1977) because the size of the tesseroid serves as a

proxy for the distance between point masses. This procedure is repeated recursively
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Figure 2.2: Example of the effect of varying the computation height and the
number of point masses in the Gauss-Legendre Quadrature. Black circles represent
the horizontal location of the point masses. a) gxy calculated at 400 km height using
GLQ order 2 (2 × 2 × 2 = 8 point masses). b) At 150 km height and GLQ order
2, the result resembles that of four point masses instead of a single tesseroid. This
effect was shown by KU (1977). c) At 150 km but with a higher GLQ order of 30.
In (c) the horizontal locations of the point masses were not shown. Notice that the
results shown in (c) are similar to that expected for a single mass source.
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until all tesseroids are within the acceptable ratio of distance and size or a minimum

size is achieved.

The advantage of this adaptive discretization is that the number of point masses

is only increased in parts of the tesseroid that are closer to the computation point.

Notice that the alternative approach of simply increasing the order of the GLQ

would increase the number of point masses evenly throughout the whole tesseroid.

2.4 Implementation

We have implemented the calculation of the tesseroid gravitational fields with adap-

tive discretization in version 1.2 of the open-source package Tesseroids. It is freely

available online (http://tesseroids.leouieda.com or http://dx.doi.org/10.

5281/zenodo.16033) under the BSD 3-clause open-source license. An archived ver-

sion of the source code is also available as part of this article.

Tesseroids consists of command-line programs written in the C programming

language. The package includes programs to calculate the gravitational fields of

tesseroids and rectangular prisms (in both Cartesian and spherical coordinates). All

programs receive input through command-line arguments and the standard input

channel (“STDIN”) and output the results through the standard output channel

(“STDOUT”). For example, the command to generate a regular grid with NLON×
NLAT points, calculate gz and gzz caused by the tesseroids in a file “MODELFILE”,

and save the results to a file called “OUTPUT” is:

tessgrd -rW/E/S/N -bNLON/NLAT -zHEIGHT | \

tessgz MODELFILE | \

tessgzz MODELFILE > OUTPUT

The src folder of the source code archive contains the C files that build the

command-line programs (e.g., tessgz.c). The src/lib folder contains the source files

that implement the numerical computations. We will not describe here the imple-

mentation of the input/output parsing and other miscellanea. Instead, we will focus

on the details of the Gauss-Legendre Quadrature integration of equations 2.1-2.3

and the adaptive discretization of tesseroids.

2.4.1 Numerical integration

The source file src/lib/glq.c contains the code necessary to perform a Gauss-Legendre

Quadrature integration. The first step in the GLQ is to compute the locations of

the discretization points (i.e., the point masses). These points are roots of Leg-

endre polynomials. Precomputed values are available for low order polynomials,
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typically up to order five. For flexibility and to compute higher order roots, we use

the multiple root-finder algorithm of BARRERA-FIGUEROA et al. (2006). The

additional computational load is minimal because the root-finder algorithm must be

run only once per program execution. The root-finder is implemented in functions

glq nodes and glq next root. The computed roots will be in the range [−1, 1] and

must be scaled to the integration limits (the physical boundaries of the tesseroid)

using function glq set limits (see equation 2.12).

The GLQ weights (equation 2.13) are computed by function glq weights. Both

the computed roots and weights are stored in a data structure (a C struct) called

GLQ. Function glq new handles memory allocation, calculates the roots and weights,

and returns the complete GLQ structure.

The numerical integration of the tesseroid gravitational fields is performed by

the functions in module src/lib/grav tess.c. Functions tess pot, tess gx, tess gy, and

so on, compute the gravitational fields of a single tesseroid on a single computation

point. These functions require three GLQ structures, each containing the roots and

weights for GLQ integration in the three dimensions. The roots must be scaled to

the integration limits [λ1, λ2], [φ1, φ2], [r1, r2] (see equations 2.1-2.3). The integration

consists of three loops that sum the weighted kernel functions evaluated at each GLQ

point mass (the scaled roots).

The biggest bottlenecks for the numerical integration are the number of point

masses used and the evaluation of the trigonometric functions in equations 2.1-2.3

inside the inner loops. Better performance is achieved by pre-computing the sine

and cosine of latitudes and moving some trigonometric function evaluations to the

outer loops.

2.4.2 Implementation of adaptive discretization

Our implementation of the adaptive discretization algorithm differs in a few ways

from the one proposed by LI et al. (2011). In LI et al. (2011), a tesseroid will be

divided when the smallest distance between it and the computation point is smaller

than a constant times the largest dimension of the tesseroid. Instead of the smallest

distance, we use the easier to calculate distance between the computation point

(r, λ, φ) and the geometric center of the tesseroid (rt, λt, φt)

d =
[
r2 + r2

t − 2rrt cosψt
] 1

2 , (2.16)

cosψt = sinφ sinφt + cosφ cosφt cos(λ− λt). (2.17)

Our definition of the dimensions of the tesseroid (the “side lengths” of LI et al.

(2011)) along longitude, latitude, and radius, respectively, are (Figure 2.3a)
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Lλ = r2 arccos(sin2 φt + cos2 φt cos(λ2 − λ1)), (2.18)

Lφ = r2 arccos(sinφ2 sinφ1 + cosφ2 cosφ1), (2.19)

Lr = r2 − r1. (2.20)

Lλ and Lφ are arc-distances measured along the top surface of the tesseroid (Fig-

ure 2.3a). Specifically, Lλ is measured long the middle latitude of the tesseroid

(φt).

To determine if a tesseroid must be divided, we check if

d

Li
≥ D, (2.21)

for each i ∈ (λ, φ, r). D is a positive scalar hereafter referred to as the “distance-size

ratio”. If the inequality holds for all three dimensions, the tesseroid is not divided.

Thus, the distance-size ratio determines how close the computation point can be

before we must divide the tesseroid. The value of D is indirectly responsible for the

accuracy of the solution and the computation time. We will explore the relationship

with the accuracy in the following section.

Figure 2.3 shows examples of the resulting tesseroid models after adaptive dis-

cretization. Figure 2.3a shows the initial tesseroid and computation point P. Fig-

ures 2.3b-d are the result of adaptive discretization using different values of the

distance-size ratio D, respectively, D = 1, D = 2, and D = 6. The number of

tesseroids in the resulting discretization is, respectively, 4, 38, and 936.

Instead of using recursive function calls, as originally proposed by LI et al. (2011),

we use a stack-based implementation of the algorithm. Stacks are array-like data

structures with a particular way of inserting and removing elements from it. In a

stack, one can only insert elements to the top of the stack (the last empty position).

Likewise, one can only remove the last element of the stack (commonly referred to

as “popping” the stack). Because of these restrictions, stacks are also known as

“Last-In-First-Out” (LIFO) data structures.

The discretization algorithm is implemented in function calc tess model adapt of

the file src/lib/grav tess.c. This function calculates the effect of a single tesseroid

on a single computation point. The stack of tesseroids is represented by the stack

variable, an array of TESSEROID structures. We must define a maximum size for

the stack to allocate memory for it. Defining a maximum size allows us to avoid an

infinite loop in case the computation point is on (or sufficiently close to) the surface

of the tesseroid. We use the integer stktop to keep track of the index of the last

element in the stack (the top of the stack).

Below, we describe the algorithm to calculate the effect of a single tesseroid from
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Figure 2.3: Adaptive discretization of the tesseroid shown in (a) for a computation
point P using the distance-size ratio D equal to (b) 1, (c) 2, and (d) 6. Lr, Lφ,
and Lλ are the dimensions of the tesseroid. Note that increasing D results in a fine
division of the tesseroid close the computation point and a coarser division further
away.

the input model on a single computation point. The algorithm starts by creating

an empty stack of tesseroids. Then, the stack is initialized with the single input

tesseroid. The initialization is done by copying the tesseroid into the stack and

setting stktop to zero (the first element). It is important to note that the stack is

not the input tesseroid model. Instead, it is a buffer used to temporarily store each

stage of the discretization algorithm.

Once the stack is initialized, the steps of the algorithm are:

1. “Pop” the stack (i.e., take the last tesseroid from it). This will cause stktop

to be reduced by one. This tesseroid is the one that will be evaluated in the

following steps.

2. Compute the distance d (equation 2.16) between the geometric center of the

tesseroid and the computation point.

3. Compute the dimensions of the tesseroid Lλ, Lφ, and Lr using equations 2.18-

2.20.

4. Check the condition in equation 2.21 for each dimension of the tesseroid.

5. If all dimensions hold the inequality 2.21, the tesseroid is not divided and its

gravitational effect is computed using the Gauss-Legendre Quadrature (equa-
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tions 2.1-2.3 and 2.14). We use a GLQ order of two for all three dimensions

(2 × 2 × 2 = 8 point masses) by default. This value can be changed using a

command-line argument of the modeling programs.

6. If any of the dimensions fail the condition:

(a) Divide the tesseroid in half along each dimension that failed the condition.

(b) Check if there is room in the stack for the new tesseroids (i.e.,the number

of new elements plus stktop is smaller than the maximum stack size). If

there isn’t, warn the user of a “stack overflow” and compute the effect of

the tesseroid, as in step 5. If there is room in the stack, place the smaller

tesseroids into the stack.

7. Repeat the above steps until the stack is empty (stktop is equal to -1).

The algorithm above is repeated for every tesseroid of the input model and the

results are summed. This will yield the gravitational effect of the input tesseroid

model on a single point. Thus, the computations must be repeated for every compu-

tation point. The whole algorithm can be summarized in the following pseudo-code.

Initialize the output array with zeros.

for tesseroid in model:

for point in grid:

Initialize the stack with tesseroid.

stktop = 0

while stktop >= 0:

Perform steps 1-6 of the algorithm.

Sum the calculated value to the output.

This stack-based implementation has some advantages over the original recursive

implementation, namely: (1) It gives the developer more control over the recursion

step. (2) In general, it is faster because it bypasses the overhead of function calls. In

recursive implementations, the developer has no control over the maximum number

of consecutive recursive calls (i.e., the “recursion depth”). This limit may vary with

programming language, compiler, and operating system. Overflowing the maximum

recursion depth may result in program crashes, typically with cryptic or inexistent

error messages. In the stack-based implementation, the developer has complete

control. Overflowing of the stack can be handled gracefully with an error message

or even performing a suitable approximation of the result.
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2.4.3 Code for figures and error analysis

The error analysis and all figures in this article were produced in IPython notebooks

(PÉREZ e GRANGER, 2007). The notebook files combine source code in various

programming languages, program execution, text, equations, and the figures gener-

ated by the code into a single document. We used the following Python language

libraries to perform the error analysis and generate figures: pandas by MCKINNEY

(2010), matplotlib by HUNTER (2007) for 2D figures and maps, and Mayavi by

RAMACHANDRAN e VAROQUAUX (2011) for 3D figures.

The IPython notebooks and the data generated for the error analysis, as well

as instructions for installing the software and running the programs, are also in-

cluded in the source code archive that accompanies this article. Alternatively, all

accompanying material is available in the online repository https://github.com/

pinga-lab/paper-tesseroids.

2.5 Evaluation of the accuracy

The key controlling point of the adaptive discretization algorithm is the distance-

size ratio D (equation 2.21). The specific value chosen for D determines how many

divisions will be made (Figure 2.3). Thus, D indirectly controls both the accuracy

of the integration and the computation time. In this section, we investigate the

relationship between the distance-size ratio and the integration error. We perform

the analysis for the gravitational potential, acceleration, and gradient tensor com-

ponents to evaluate if the same value of D yields compatible error levels for different

fields.

The reference against which we compare the computed tesseroid fields is a ho-

mogeneous spherical shell. The shell has analytical solutions along the polar axis

(GROMBEIN et al., 2013; LAFEHR, 1991; MIKUŠKA et al., 2006) and can be

perfectly discretized into tesseroids. We chose a spherical shell with a thickness of

1 km, density of 2670 kg.m−3, bottom at height 0 km above the reference sphere,

and top at 1 km height. We produced tesseroid models of the shell by discretizing

it along the horizontal dimensions into a regular mesh.

Figure 2.2 shows that the largest errors are spread over on top of the tesseroid.

Thus, calculating the tesseroid fields at a single point might not capture the point of

largest error. Instead, we calculate the effect of the tesseroid model on a regular grid

of 10× 10 points at different geographic locations (see Table 2.1). Fortunately, the

symmetry of the shell allows us to consider the computation point at any geocentric

coordinate. Therefore, the effect of the shell will be same along the entire grid. We

compute the differences between the effects of the shell and the tesseroid model on
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the grid. However, we will consider only the largest error in our analysis.

We placed the grid on top of a particular tesseroid to increase the chances of

capturing the true largest integration error. We calculate the errors for values of

the distance-size ratio D varying from 0 (i.e., no divisions) to 10 in 0.5 intervals.

Furthermore, we repeated the error analysis in four different numerical experiments,

each with computation grids at different locations and different tesseroid model

sizes. Table 2.1 describes the different numerical experiments and the corresponding

parameters of the computation grid and tesseroid model.

Figure 2.4 shows the maximum difference between the shell and tesseroid fields as

a function of D for the four experiments. The differences are given as a percentage of

the shell value. We established a maximum tolerated error of 0.1%, represented by

the horizontal solid lines in Figure 2.4. Only results for the gravitational potential,

gz, and gzz are shown. The results for the other diagonal components of the gravity

gradient tensor are similar to gzz. Figures for these components can be found in the

supplementary material (see section ”Reproducing the analysis and results”).

For the potential V , a distance-size ratio D = 1 guarantees that the curves for

all experiments are below the 0.1% error threshold. For gz, the same is achieved

with D = 1.5. Conversely, gzz requires a value of D = 8 to achieve an error level

of 0.1%. For a computation height of 260 km, the error curve for gzz intercepts the

error threshold line at D = 2.5. This behavior suggests that the error curves for

gzz might depend on the computation height. To test this hypothesis, we computed

the error curves for gzz at heights 2, 10, 50, 150, and 260 km. Figure 2.5 shows the

results for gzz at varying computation heights. Notice that the distance-size ratio

required to achieve 0.1% accuracy decreases as the computation height increases.

For example, computation at 260 km height requires D = 2.5 whereas at 10 km

height a value of D = 5.5 is required to achieve the same accuracy. One can take

advantage of this behavior to reduce the distance-size ratio for computations of the

gravity gradient tensor at high altitudes, saving computation time.

We have implemented the values of the distance-size ratio producing 0.1% accu-

racy determined above as defaults for the software Tesseroids. We chose the conser-

vative value of D = 8 for the gravity gradient components as a fail-safe alternative.

Users can control the value of D used in the computations through command-line

arguments to achieve greater performance at the cost of accuracy.

2.6 Conclusions

We have presented the open-source software Tesseroids. It consists of command-line

programs, written in the C programming language, to perform the forward modeling

of gravitational fields in spherical coordinates. The fields are calculated from a
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Grid location Grid height Tesseroid size
Experiment 1 (pole) 89N–90N/0E–1E 2 km 1◦ × 1◦

Experiment 2 (equator) 0N–1N/0E–1E 2 km 1◦ × 1◦

Experiment 3 (260 km) 89N–90N/0E–1E 260 km 1◦ × 1◦

Experiment 4 (30◦ size) 60N–90N/0E–30E 2 km 30◦ × 30◦

Table 2.1: Parameters of the numerical experiments to quantify the accuracy of the
numerical integration. All grids had 10 × 10 regularly spaced computation points
at a constant height. Tesseroids used to discretize the spherical shell had 1 km
thickness and the horizontal dimensions shown in the table.
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Figure 2.4: The maximum difference between the computed tesseroid and shell
effects as a function of the distance-size ratio D for (a) the gravitational potential,
(b) gz, and (c) gzz. The difference is given as a percentage of the shell effect.
Curves correspond to the different tesseroid models and computation grids shown
in Table 2.1. The horizontal solid black line marks the established error threshold
of 0.1%. A value of D = 0 means that no divisions are made.
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Figure 2.5: Difference between the computed gzz for the spherical shell and the
tesseroid model at different heights. Curves show the maximum difference as a
percentage of the shell value. The horizontal solid black line marks the established
error threshold of 0.1%. A value of D = 0 means that no divisions are made.

mass model composed of spherical prisms, the so-called tesseroids. The volume

integrals of the gravitational fields of a tesseroid are solved numerically using the

Gauss-Legendre Quadrature (GLQ). The GLQ approximates the volume integrals

by weighted sums of point mass effects. The error of the GLQ integration increases

as the computation point gets closer to the tesseroid. To counter this effect, the

accuracy of the GLQ integration can be increased by using more point masses or by

dividing each tesseroid into smaller ones.

We have implemented and improved upon an adaptive discretization algorithm

to achieve an optimal division of tesseroids. Tesseroids are divided into more parts

closer to the computation point, where more point masses are needed. Our imple-

mentation of the adaptive discretization uses a “stack” data structure in place of

the originally proposed recursive implementation. As a rule of thumb in procedural

languages (like C), stack-base implementations are computationally faster than the

equivalent code using function recursion. Furthermore, the stack-based algorithm

allows more control over errors when too many divisions are necessary. The adap-

tive discretization is controlled by a scalar called the distance-size ratio (D). The

algorithm ensures that all tesseroids will have dimensions smaller than D times the

distance to the computation point. The value of D indirectly controls the accuracy

of the integration as well as the computation time.

We performed an error analysis to determine the optimal value of D required to

achieve a target accuracy. We used a spherical shell as a reference to calculate the

computation error of our algorithm for different values of D. Our results show that
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the values of D required to achieve a maximum error of 0.1% of the shell values

are 1 for the gravitational potential, 1.5 for the gravitational acceleration, and 8

for the gravity gradients. Previous assumptions in the literature were that accurate

results are guaranteed if the distance to the tesseroid is larger than the distance

between point masses. This condition was previously applied indiscriminately to

both the gravitational acceleration and the gravity gradients. That assumption is

equivalent to using D = 1.5 for all fields. Our results show that this is valid for the

gravitational acceleration and results in a 0.1% computation error. This is expected

because the original study that determined the above condition was performed on

the vertical component of gravitational acceleration. However, applying the same

condition to the gravity gradients produces an error of the order of 102%.

For the gravity gradients in particular, the distance-size ratio required for 0.1%

error decreases with height. We believe this is because the decay factor for the

gravity gradient components is d−3, whereas the discretization algorithm uses d/Li.

As the computation point becomes closer to the tesseroid, the field increases more

rapidly than the algorithm increases the amount of discretization. Hence, a higher

value of D (i.e., more discretization) is required.

The values of the distance-size ratio determined above were incorporated as

defaults in the software Tesseroids. We chose the value D = 8 for the gravity

gradients as a conservative default. If the user desires, the value of D used can be

controlled by a command-line argument.

In situations that require many tesseroid divisions, the stack used in the algo-

rithm will overflow and further divisions become impossible. The current imple-

mentation warns the user that the overflow occurred and proceeds with the GLQ

integration without division. Future improvements to the algorithm include a bet-

ter way to handle such situations as they arise. An alternative would be to replace

the tesseroid by an equivalent right rectangular prism and compute its effects in-

stead. This would allow accurate computations at smaller distances. Furthermore,

the computation time increases drastically as the computation point gets closer to

the tesseroid. This effect can be prohibitive for computing the gravity gradients at

relatively low heights (e.g., for terrain corrections of ground or airborne surveys).

Further investigation of different criteria for dividing the tesseroids could yield better

performance through a reduced number of divisions.

2.7 Online repository

The source code, compiled binary files, and user documentation for Tesseroids can

be found at the project website http://tesseroids.leouieda.com. The source

code for version 1.2 of Tesseroids is permanently archived at http://dx.doi.org/
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10.5281/zenodo.16033. The data and source code that produced the results and

figures presented here can be downloaded from https://github.com/pinga-lab/

paper-tesseroids.
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Chapter 3

Modeling the Earth with Fatiando

a Terra

This chapter was published in the Proceedings of the 12th Python in Science Confer-

ence in 2013 (http://conference.scipy.org/proceedings/scipy2013/uieda.

html). It describes the open-source software library Fatiando a Terra and the state

of the project at the time of the conference. Fatiando a Terra was developed by me

as part of my PhD thesis work. The library has grown since 2013 and now contains

more features than described here. For example, the algorithm for gravitational

forward modeling with tesseroids presented in Chapter 2 is also implemented in Fa-

tiando a Terra. Furthermore, the gravity inversion method presented in Chapter 4 is

implemented using functions and classes from Fatiando a Terra and will be included

in a future release of the library. The official website (http://www.fatiando.org)

contains more up-to-date information about the project.

3.1 Abstract

Geophysics is the science of using physical observations of the Earth to infer its inner

structure. Generally, this is done with a variety of numerical modeling techniques

and inverse problems. The development of new algorithms usually involves copy

and pasting of code, which leads to errors and poor code reuse. Fatiando a Terra

is a Python library that aims to automate common tasks and unify the modeling

pipeline inside of the Python language. This allows users to replace the traditional

shell scripting with more versatile and powerful Python scripting. The library can

also be used as an API (Application Programming Interface) for developing stand-

alone programs. Algorithms implemented in Fatiando a Terra can be combined

to build upon existing functionality. This flexibility facilitates prototyping of new

algorithms and quickly building interactive teaching exercises. In the future, we
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plan to continuously implement sample problems to help teach geophysics as well

as classic and state-of-the-art algorithms.

3.2 Introduction

Geophysics studies the physical processes of the Earth. Geophysicists make ob-

servations of physical phenomena and use them to infer the inner structure of the

planet. This task requires the numerical modeling of physical processes. These nu-

merical models can then be used in inverse problems to infer inner Earth structure

from observations. Different geophysical methods use different kinds of observations.

Geothermal methods use the temperature and heat flux of the Earth’s crust. Poten-

tial field methods use gravitational and magnetic field measurements. Seismics and

seismology use the ground motion caused by elastic waves from active (man-made)

and passive (earthquakes) sources, respectively.

The seismic method is among the most widely studied due to the high in-

dustry demand. Thus, a range of well established open-source software have

been developed for seismic processing. These include Seismic Un*x (STOCK-

WELL JR., 1999, http://www.cwp.mines.edu/cwpcodes/), Madagascar (MADA-

GASCAR DEVELOPMENT TEAM, 2013, http://www.ahay.org/), OpendTect

(http://opendtect.org), and GêBR (http://www.gebrproject.com). A note-

worthy open-source project that is not seismic related is the Generic Mapping Tools

(GMT) project (WESSEL e SMITH, 1991, http://gmt.soest.hawaii.edu/). The

GMT are a well established collection of command-line programs for plotting maps

with a variety of different map projections. For geodynamic modeling there is the

Computational Infrastructure for Geodynamics (http://www.geodynamics.org),

which has grouped various well documented software packages. However, even

with this wide range of well maintained software projects, many geophysical mod-

eling software that are provided online still have no open-source license state-

ment, have cryptic I/O files, are hard to integrate into a pipeline, and make code

reuse and remixing challenging. Some of these problems are being worked on

by the Solid Earth Teaching and Research Environment (SEATREE) (MILNER

et al., 2009, http://geosys.usc.edu/projects/seatree/) by providing a com-

mon graphical interface for previously existing software. The numerical computa-

tions are performed by the pre-existing underlying C/Fortran programs. Conversely,

the SEATREE code (written in Python) handles the I/O and user interface. This

makes the use of these tools easier and more approachable to students. However, the

lack of a common Application Programming Interface (API) means that the code

for these programs cannot be easily combined to create new modeling tools.

Fatiando a Terra (http://www.fatiando.org, see Figure 3.1) aims at provid-
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Figure 3.1: Screen capture of the http://www.fatiando.org website (accessed 30
of March 2016).

ing such an API for geophysical modeling. Functions in the fatiando package

use compatible data and mesh formats so that the output of one modeling func-

tion can be used as input for another. Furthermore, routines can be combined

and reused to create new modeling algorithms. Fatiando a Terra also automates

common tasks such as griding, map plotting with Matplotlib (HUNTER, 2007,

http://matplotlib.org), and 3D plotting with Mayavi (RAMACHANDRAN e

VAROQUAUX, 2011, http://code.enthought.com/projects/mayavi). Version

0.11 of Fatiando a Terra is focused on gravity and magnetic methods because this

is the main focus of the developers. However, simple “toy” problems for seismology

and geothermics are available and can be useful for teaching geophysics.

The following sections illustrate the functionality and design of Fatiando a Terra

using various code samples. An IPython (PÉREZ e GRANGER, 2007, http:

//ipython.org/) notebook file with these code samples is provided by UIEDA

et al. (2013a) at http://dx.doi.org/10.6084/m9.figshare.708390.

1 This was the current version in 2013 when this chapter was published in the conference
proceedings. As of April 2016, the latest version is 0.3.
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3.3 Package structure

The modules and packages of Fatiando a Terra are bundled into the fatiando

package. Each type of geophysical method has its own package. As of version 0.1,

the available modules and packages are:

• fatiando.gravmag: gravity and magnetic methods;

• fatiando.seismic: seismic methods and seismology;

• fatiando.geothermal: geothermal modeling;

• fatiando.mesher: geometric elements and meshes;

• fatiando.gridder: grid generation, slicing, interpolation, etc;

• fatiando.io: I/O of models and data sets from web repositories;

• fatiando.utils: miscellaneous utilities;

• fatiando.constants: physical constants;

• fatiando.gui: simple graphical user interfaces;

• fatiando.vis: 2D and 3D plotting;

• fatiando.inversion: inverse problem solvers and regularization;

3.4 Griding and map plotting

Fatiando a Terra handles map data as 1D Numpy arrays, typically x-, y-, z-

coordinates and an extra array with the corresponding data. However, Matplotlib

functions, like contourf and pcolor, require data to be passed as 2D arrays. More-

over, geophysical data sets are often irregularly sampled and require griding before

they can be plotted. Thus, griding and array reshaping are ideal targets for automa-

tion.

The fatiando.vis.mpl module imports all the functions in

matplotlib.pyplot, adds new functions, and overwrites others to automate

repetitive tasks (such as griding). Thus, the basic functionality of the pyplot

interface is maintained while customizations facilitate common tasks. The following

example illustrates the use of the custom fatiando.vis.mpl.contourf function

to automatically grid and plot some irregularly sampled data (Figure 3.2):
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Figure 3.2: Example of 1) generating a random scatter of points (black dots), 2)
using that to make synthetic data, and 3) automatically gridding and plotting the
data using a Fatiando a Terra wrapper for the Matplotlib “contourf“ function.

from fatiando import gridder

from fatiando.vis import mpl

area = [-20, 20, -50, 50]

x, y = gridder.scatter(area, n=100)

data = x**2 + y**2

mpl.figure()

mpl.axis(’scaled’)

mpl.contourf(y, x, data, shape=(50, 50),

levels=30, interp=True)

mpl.colorbar(orientation=’horizontal’)

mpl.plot(y, x, ’.k’)

mpl.xlabel(’y (East-West)’)

mpl.ylabel(’x (North-South)’)

mpl.show()

Notice that, in the calls to mpl.contourf and mpl.plot, the x- and y-axis are

switched. That is because it is common practice in geophysics for x to point North

and y to point East.

Map projections in Matplotlib are handled by the Basemap toolkit (http://

matplotlib.org/basemap). The fatiando.vis.mpl module also provides helper

functions to automate the use of this toolkit. The fatiando.vis.mpl.basemap

function automates the creation of the Basemap objects with common parameters.
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Figure 3.3: Example of map plotting with the Robinson projection using the
Matplotlib Basemap toolkit.

This object can then be passed to the contourf, contour and pcolor functions

in fatiando.vis.mpl and they will automatically plot using the given projection

(Figure 3.3):

mpl.figure()

bm = mpl.basemap(area, projection=’robin’)

bm.drawmapboundary()

bm.drawcoastlines()

mpl.contourf(x, y, data, shape=(50, 50), levels=30,

interp=True, basemap=bm)

mpl.colorbar(orientation=’horizontal’)

mpl.show()

3.5 Meshes and 3D plotting

The representation of 2D and 3D geometric elements is handled by the classes in

the fatiando.mesher module. Geometric elements in Fatiando a Terra can be

assigned physical property values, like density, magnetization, seismic wave velocity,
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impedance, etc. This is done through a props dictionary whose keys are the name

of the physical property and values are the corresponding values in SI units:

from fatiando import mesher

model = [

mesher.Prism(5, 8, 3, 7, 1, 7,

props={’density’:200}),

mesher.Prism(1, 2, 4, 5, 1, 2,

props={’density’:1000})]

The fatiando.vis.myv module contains functions to automate 3D plotting us-

ing Mayavi (RAMACHANDRAN e VAROQUAUX, 2011). The mayavi.mlab in-

terface requires geometric elements to be formatted as TVTK objects. Thus, plot-

ting functions in fatiando.vis.myv automatically create TVTK representations of

fatiando.mesher objects and plot them using a suitable function of mayavi.mlab.

Also included are utility functions for drawing axes, walls on the figure bounding

box, etc. For example, the fatiando.vis.myv.figure function creates a figure and

rotates it so that the z-axis points down, as is standard in geophysics. The following

example shows how to plot the 3D right rectangular prism model that we created

previously (Figure 3.4):

from fatiando.vis import myv

bounds = [0, 10, 0, 10, 0, 10]

myv.figure()

myv.prisms(model, ’density’)

myv.axes(myv.outline(bounds))

myv.wall_bottom(bounds)

myv.wall_north(bounds)

myv.show()

The fatiando.mesher module also contains classes for collections of ele-

ments (e.g., meshes). A good example is the PrismMesh class that represents

a structured mesh of right rectangular prisms. This class behaves as a list of

fatiando.mesher.Prism objects and can be passed to functions that ask for a

list of prisms, like fatiando.vis.myv.prisms. Physical properties can be assigned

to the mesh using the addprop method (Figure 3.5):

mesh = mesher.PrismMesh(bounds, shape=(3, 3, 3))

mesh.addprop(’density’, range(mesh.size))

myv.figure()

myv.prisms(mesh, ’density’)
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Figure 3.4: Example of plotting a list of right rectangular prisms in Mayavi.

myv.axes(myv.outline(bounds))

myv.show()

Often times the mesh is used to make a detailed model of an irregular region of

the Earth’s surface. In such cases, it is necessary to consider the topography of the

region. The PrismMesh class has a carvetopo method that masks the prisms that

fall above the topography. The example below illustrates this functionality using

synthetic topography (Figure 3.6):

from fatiando import utils

x, y = gridder.regular(bounds[:4], (50, 50))

heights = -5 + 5*utils.gaussian2d(x, y, 10, 5,

x0=10, y0=10)

mesh = mesher.PrismMesh(bounds, (20, 20, 20))

mesh.addprop(’density’, range(mesh.size))

mesh.carvetopo(x, y, heights)

myv.figure()

myv.prisms(mesh, ’density’)

myv.axes(myv.outline(bounds))

myv.wall_north(bounds)

myv.show()

When modeling involves the whole Earth, or a large area of it, the geophysi-

cist needs to take into account the Earth’s curvature. In such cases, rectangular
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Figure 3.5: Example of generating and visualizing a structured prism mesh.

Figure 3.6: Example of generating and visualizing a prism mesh with masked
topography.
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prisms are inadequate for modeling and tesseroids (e.g., spherical prisms) are better

suited. The fatiando.vis.myv module contains auxiliary functions to plot along

with tesseroids: an Earth-sized sphere, meridians and parallels, as well as continental

borders (Figure 3.7):

model = [

mesher.Tesseroid(-60, -55, -30, -27, 500000, 0,

props={’density’:200}),

mesher.Tesseroid(-66, -55, -20, -10, 300000, 0,

props={’density’:-100})]

fig = myv.figure(zdown=False)

myv.tesseroids(model, ’density’)

myv.continents(linewidth=2)

myv.earth(opacity=1)

myv.meridians(range(0, 360, 45), opacity=0.2)

myv.parallels(range(-90, 90, 45), opacity=0.2)

# Rotate the camera to get a good view

scene = fig.scene

scene.camera.position = [21199620.406122234,

-12390254.839673528, -14693312.866768979]

scene.camera.focal_point = [-535799.97230670298,

-774902.33205294283, 826712.82283183688]

scene.camera.view_angle = 19.199999999999996

scene.camera.view_up = [0.33256519487680014,

-0.47008782429014295, 0.81756824095039038]

scene.camera.clipping_range = [7009580.0037488714,

55829873.658824757]

scene.camera.compute_view_plane_normal()

scene.render()

myv.show()

3.6 Forward modeling

In geophysics, the term “forward modeling” is used to describe the process of gen-

erating synthetic data from a given Earth model. Conversely, geophysical inversion

is the process of estimating Earth model parameters from observed data.

The Fatiando a Terra packages have separate modules for forward modeling and

inversion algorithms. The forward modeling functions usually take as arguments

geometric elements from fatiando.mesher with assigned physical properties and
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Figure 3.7: Example of creating a tesseroid (spherical prism) model and visualizing
it in Mayavi.

return the synthetic data. For example, the module fatiando.gravmag.tesseroid

is a Python implementation of the program Tesseroids (http://leouieda.github.

io/tesseroids) and calculates the gravitational fields of tesseroids (e.g., spherical

prisms). The following example shows how to calculate the gravity anomaly of the

tesseroid model generated in the previous section (Figure 3.8):

from fatiando import gravmag

area = [-80, -30, -40, 10]

shape = (50, 50)

lons, lats, heights = gridder.regular(area, shape,

z=2500000)

gz = gravmag.tesseroid.gz(lons, lats, heights, model)

mpl.figure()

bm = mpl.basemap(area, ’ortho’)

bm.drawcoastlines()

bm.drawmapboundary()

bm.bluemarble()

mpl.title(’Gravity anomaly (mGal)’)

mpl.contourf(lons, lats, gz, shape, 30, basemap=bm)

mpl.colorbar()

mpl.show()

The module fatiando.gravmag.polyprism implements the method of PLOUFF

(1976) to forward model the gravity fields of a 3D right polygonal prism. The
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Figure 3.8: Example of forward modeling the gravity anomaly using the tesseroid
model shown in Figure 3.7.

following code sample shows how to interactively generate a polygonal prism model

and calculate its gravity anomaly (Figures 3.9 and 3.10):

# Draw a polygon and make a polygonal prism

bounds = [-1000, 1000, -1000, 1000, 0, 1000]

area = bounds[:4]

mpl.figure()

mpl.axis(’scaled’)

vertices = mpl.draw_polygon(area, mpl.gca(),

xy2ne=True)

model = [mesher.PolygonalPrism(vertices, z1=0,

z2=500, props={’density’:500})]

# Calculate the gravity anomaly

shape = (100, 100)

x, y, z = gridder.scatter(area, 300, z=-1)

gz = gravmag.polyprism.gz(x, y, z, model)

mpl.figure()

mpl.axis(’scaled’)

mpl.title("Gravity anomaly (mGal)")

mpl.contourf(y, x, gz, shape=(50, 50),

levels=30, interp=True)

mpl.colorbar()
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Figure 3.9: Screen-shot of interactively drawing the contour of a 3D polygonal
prism, as viewed from above.

mpl.polygon(model[0], ’.-k’, xy2ne=True)

mpl.set_area(area)

mpl.m2km()

mpl.show()

myv.figure()

myv.polyprisms(model, ’density’)

myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])

myv.wall_north(bounds)

myv.wall_bottom(bounds)

myv.show()

3.7 Gravity and magnetic methods

Geophysics uses anomalies in the gravitational and magnetic fields generated by

density and magnetization contrasts within the Earth to investigate the inner Earth

structure. The Fatiando a Terra 0.1 release has been focused on gravity and mag-

netic methods. Therefore, the fatiando.gravmag package contains more advanced

and state-of-the-art algorithms than the other packages.

The module fatiando.gravmag.imaging implements the imaging methods de-

scribed in FEDI e PILKINGTON (2012). These methods aim to produce an image
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Figure 3.10: Example of forward modeling the gravity anomaly of a 3D polygonal
prism. a) forward modeled gravity anomaly. b) 3D plot of the polygonal prism.
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Figure 3.11: Example of using the ”sandwich model” imaging method to recover a
3D image of a geologic body based on its gravity anomaly. The colored blocks are
a cutoff of the imaged body. The black contours are the true source of the gravity
anomaly.

of the geologic source from the observed gravity or magnetic data. The following

code sample uses the “sandwich model” method (PEDERSEN, 1991) to image the

polygonal prism, produced in the previous section, based on its gravity anomaly

(Figure 3.11):

estimate = gravmag.imaging.sandwich(x, y, z, gz,

shape, zmin=0, zmax=1000, nlayers=20, power=0.2)

body = mesher.vfilter(1.3*10**8, 1.7*10**8,

’density’, estimate)

myv.figure()

myv.prisms(body, ’density’, edges=False)

p = myv.polyprisms(model, ’density’,

style=’wireframe’, linewidth=4)

p.actor.mapper.scalar_visibility = False

p.actor.property.color = (0, 0, 0)

myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])

myv.wall_north(bounds)

myv.wall_bottom(bounds)

myv.show()

Also implemented in Fatiando a Terra are some recent developments in gravity

and magnetic inversion methods. The method of “planting anomalous densities” by
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UIEDA e BARBOSA (2012) is implemented in the fatiando.gravmag.harvester

module. In contrast to imaging methods, this is an inversion method, i.e., it es-

timates a physical property distribution (density in the case of gravity data) that

fits the observed data. This particular method requires the user to specify a “seed”

(Figure 3.12) around which the estimated density distribution grows (Figure 3.13):

# Make a mesh and a seed

mesh = mesher.PrismMesh(bounds, (15, 30, 30))

seeds = gravmag.harvester.sow(

[[200, 300, 100, {’density’:500}]],

mesh)

myv.figure()

myv.prisms([mesh[s.i] for s in seeds])

p = myv.polyprisms(model, ’density’,

style=’wireframe’, linewidth=4)

p.actor.mapper.scalar_visibility = False

p.actor.property.color = (0, 0, 0)

myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])

myv.wall_north(bounds)

myv.wall_bottom(bounds)

myv.show()

# Now perform the inversion

data = [gravmag.harvester.Gz(x, y, z, gz)]

estimate = gravmag.harvester.harvest(data, seeds,

mesh, compactness=0.1, threshold=0.0001)[0]

mesh.addprop(’density’, estimate[’density’])

body = mesher.vremove(0, ’density’, mesh)

myv.figure()

myv.prisms(body, ’density’)

p = myv.polyprisms(model, ’density’,

style=’wireframe’, linewidth=4)

p.actor.mapper.scalar_visibility = False

p.actor.property.color = (0, 0, 0)

myv.axes(myv.outline(bounds),

ranges=[i*0.001 for i in bounds])

myv.wall_north(bounds)

myv.wall_bottom(bounds)

myv.show()
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Figure 3.12: The small blue prism is the seed used by
fatiando.gravmag.harvester to perform the inversion of a gravity anomaly. The
black contours are the true source of the gravity anomaly.

Figure 3.13: The blue prisms are the result of a gravity inversion using module
fatiando.gravmag.harvester. The black contours are the true source of the grav-
ity anomaly. Notice how the inversion was able to recover the approximate geometry
of the true source.
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3.8 A toy seismic tomography

The following example uses module fatiando.seismic.srtomo to perform a sim-

plified 2D tomography on synthetic seismic wave travel-time data. To gener-

ate the travel-times we used a seismic wave velocity model constructed from

an image file. The colors of the image are converted to gray-scale and the

intensity is mapped to seismic wave velocity by the img2prop method of the

fatiando.mesher.SquareMesh class. This model (Figure 3.14) is then used to cal-

culate the travel-times between a random set of earthquake locations and seismic

receivers (seismometers):

import urllib

from fatiando import mesher, utils, seismic

from fatiando.vis import mpl

area = (0, 500000, 0, 500000)

shape = (30, 30)

model = mesher.SquareMesh(area, shape)

link = ’/’.join(["http://fatiando.readthedocs.org",

"en/Version0.1/_static/logo.png"])

urllib.urlretrieve(link, ’model.png’)

model.img2prop(’model.png’, 4000, 10000, ’vp’)

quake_locations = utils.random_points(area, 40)

receiver_locations = utils.circular_points(area, 20,

random=True)

quakes, receivers = utils.connect_points(

quake_locations, receiver_locations)

traveltimes = seismic.ttime2d.straight(model, ’vp’,

quakes, receivers)

noisy = utils.contaminate(traveltimes, 0.001,

percent=True)

Now the noise-corrupted synthetic travel-times can be used in our simplified

tomography:

mesh = mesher.SquareMesh(area, shape)

slowness, residuals = seismic.srtomo.run(noisy,

quakes, receivers, mesh, smooth=10**6)

velocity = seismic.srtomo.slowness2vel(slowness)

mesh.addprop(’vp’, velocity)

# Make the plots

mpl.figure(figsize=(9, 7))
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mpl.subplots_adjust(top=0.95, bottom=0.05,

left=0.05, right=0.95)

mpl.subplot(2, 2, 1)

mpl.title(’Velocity model (m/s)’)

mpl.axis(’scaled’)

mpl.squaremesh(model, prop=’vp’, cmap=mpl.cm.seismic)

mpl.colorbar(pad=0.01)

mpl.points(quakes, ’*y’, label="Sources")

mpl.points(receivers, ’^g’, label="Receivers")

mpl.m2km()

mpl.subplot(2, 2, 2)

mpl.title(’Ray paths’)

mpl.axis(’scaled’)

mpl.squaremesh(model, prop=’vp’, cmap=mpl.cm.seismic)

mpl.colorbar(pad=0.01)

mpl.paths(quakes, receivers)

mpl.points(quakes, ’*y’, label="Sources")

mpl.points(receivers, ’^g’, label="Receivers")

mpl.m2km()

mpl.subplot(2, 2, 3)

mpl.title(’Estimated velocity (m/s)’)

mpl.axis(’scaled’)

mpl.squaremesh(mesh, prop=’vp’, cmap=mpl.cm.seismic,

vmin=4000, vmax=10000)

mpl.colorbar(pad=0.01)

mpl.m2km()

mpl.subplot(2, 2, 4)

mpl.title(’Residuals (s)’)

mpl.hist(residuals, bins=10)

mpl.show()

Even though the implementation in fatiando.seismic.srtomo is greatly simpli-

fied and not usable in real tomography problems, the result in Figure 3.14 illustrates

interesting inverse problem concepts. Notice how the estimated velocity is blurred

in the corners where no rays pass through. This is because the data (travel-times)

provide no information about the velocity in those areas. Areas like those constitute

the null space of the inverse problem (MENKE, 1984), where any velocity value esti-

mated will provide an equal fit to the data. Thus, the tomography problem requires

the use of prior information in the form of regularization. Most commonly used in

tomography problems is the Tikhonov first-order regularization, e.g., a smoothness

39



Figure 3.14: Example run of a simplified 2D tomography. The top-left panel shows
the true velocity model with the locations of earthquakes (yellow stars) and receivers
(green triangles). The top-right panel shows the ray-paths between earthquakes and
receivers. The bottom-left panel is the velocity estimated by the tomography. The
bottom-right panel is a histogram of the travel-time residuals of the tomography.
Notice how the majority of residuals are close to 0 s, indicating a good fit to the
data.

constraint (MENKE, 1984). The amount of smoothness imposed on the solution

is controlled by the smooth argument of function fatiando.seismic.srtomo.run.

That is how we are able to estimate a unique and stable solution and why the result

is specially smoothed where there are no rays.

3.9 Conclusion

The Fatiando a Terra package provides an API to develop modeling algorithms for

a variety of geophysical methods. The current version (0.1)2 has a few state-of-

the-art gravity and magnetic modeling and inversion algorithms. There are also

toy problems in gravity, seismics and seismology that are useful for teaching basic

concepts of geophysics, modeling, and inverse problems.

2 As of April 2016, the latest version is 0.3.
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Fatiando a Terra enables quick prototyping of new algorithms because of the

collection of fast forward modeling routines and the simple syntax and high level

of the Python language. After prototyping, the performance bottlenecks of these

algorithms can be easily diagnosed using the advanced profiling tools available in

the Python language. Optimization of only small components of code can be done

without loss of flexibility using the Cython language (BEHNEL et al., 2011).

The project was started as part of my PhD thesis work but grew beyond this

context. The development is on-going and recently new collaborators from outside

of Brazil have started contributing code to the project. The biggest challenge that

Fatiando a Terra faces in the near future is the development of a strong user and,

consequently, a developer community. This is a key part for the survival of any

open-source project.
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Chapter 4

Fast non-linear gravity inversion

in spherical coordinates with

application to the South American

Moho

This chapter has been submitted for publication in the Geophysical Journal Inter-

national.

4.1 Abstract

Estimating the relief of the Moho from gravity data is a computationally intensive

non-linear inverse problem. What is more, the modeling must take the Earths cur-

vature into account when the study area is of regional scale or greater. We present a

regularized non-linear gravity inversion method that has a low computational foot-

print and employs a spherical Earth approximation. To achieve this, we combine the

highly efficient Bott’s method with smoothness regularization and a discretization

of the anomalous Moho into tesseroids (spherical prisms). The computational effi-

ciency of our method is attained by harnessing the fact that all matrices involved are

sparse. The inversion results are controlled by three hyper-parameters: the regular-

ization parameter, the anomalous Moho density-contrast, and the reference Moho

depth. We estimate the regularization parameter using the method of hold-out

cross-validation. Additionally, we estimate the density-contrast and the reference

depth using knowledge of the Moho depth at certain points. We apply the proposed

method to estimate the Moho depth for the South American continent using satellite

gravity data and seismological data. The final Moho model is in accordance with

previous gravity-derived models and seismological data. The misfit to the gravity
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and seismological data is worse in the Andes and best in oceanic areas, central Brazil

and Patagonia, and along the Atlantic coast. Similarly to previous results, the model

suggests a thinner crust of 30-35 km under the Andean foreland basins. Discrep-

ancies with the seismological data are greatest in the Guyana Shield, the central

Solimões and Amazonas Basins, the Paraná Basin, and the Borborema province.

These differences suggest the existence of crustal or mantle density anomalies that

were unaccounted for during gravity data processing.

4.2 Introduction

The Mohorovičić discontinuity (or Moho) that marks the transition from the crust to

the mantle, is studied almost exclusively through indirect geophysical methods. The

two main geophysical methods used to estimate the depth of the Moho are seismol-

ogy, with both natural and controlled sources, and gravimetry. With the advent of

satellite gravimetry missions like GRACE and GOCE, gravity-derived crustal mod-

els can be produced in regional or global scales (e.g. REGUZZONI et al., 2013; VAN

DER MEIJDE et al., 2013, 2015). New spherical harmonic gravity models that use

these satellite observation, like GOCO5S (MAYER-GUERR et al., 2015), provide

almost homogeneous data coverage in difficult to access regions traditionally poor

in terrestrial data. An example is South America, where seismologic and terrestrial

gravity data are traditionally concentrated around urban centers and coastal areas,

resulting in large areas (e.g., forests and mountains) devoid of data.

Estimating Moho depth from gravity data is a non-linear inverse problem. One

can generalize this problem of estimating the depths of an interface separating two

media, such as the sediment-basement interface of a sedimentary basin or the crust-

mantle interface (Moho). Several methods have been developed over the years to

solve this inverse problem, for example BARBOSA et al. (1999a,b); BARNES e

BARRAUD (2012); BOTT (1960); LEÃO et al. (1996); MARTINS et al. (2010,

2011); OLDENBURG (1974); REGUZZONI et al. (2013); SANTOS et al. (2015);

SILVA et al. (2006, 2014), to name a few. Solving the inverse problem is computa-

tionally demanding because it requires the construction of large dense matrices and

the solution of large linear systems. As a result, some authors search for ways to

increase the computational efficiency of this class of inverse problem. BOTT (1960)

proposed a method based on iteratively applying corrections to a starting estimate

based on the inversion residuals. The algorithm is fast because it bypasses the con-

struction and solution of linear systems and only involves forward modeling. OLD-

ENBURG (1974) showed that the fast FFT-based forward modeling of PARKER

(1973) could be rearranged to estimate the relief. BARNES e BARRAUD (2012)

use a form of adaptive discretization to compute the Jacobian, or sensitivity, matrix.
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For each data point, the discretization will be progressively coarser the further way

from the point. This reduces the matrix and, consequently, the linear systems to a

sparse form that can be solved efficiently. Recently, SILVA et al. (2014) extended

and generalized the original method of BOTT (1960) and SANTOS et al. (2015)

used this extension to estimate a basement relief with sharp boundaries.

A spherical Earth approximation is preferred when estimating the Moho

depth from gravity data in continental and global scale studies. WIECZOREK

e PHILLIPS (1998) developed a spherical harmonic equivalent of the Parker-

Oldenburg FFT algorithm and applied it to estimate the crustal structure of the

Moon. REGUZZONI et al. (2013) use a spherical Earth approximation to estimate

the global Moho relief using data from the GOCE satellite mission. Another ap-

proach is to use non-spectral (space domain) gravity inversion methods. Many such

methods were developed for estimating the basement relief of a sedimentary basin

(e.g., BARBOSA et al., 1999a,b; MARTINS et al., 2010, 2011; SUN e LI, 2014).

These methods approximate the sedimentary pack by a set of juxtaposed right-

rectangular prisms. The top of the prisms coincide with the Earth’s surface and the

prisms’ thicknesses represent the depths to the basement and are the parameters

to be estimated in the inversion. The use of rectangular prisms implies a planar

Earth approximation and may not be adequate for depth-to-Moho estimates in a

continental-scale study. A straightforward way to circumvent this hindrance is to

adapt one of the methods developed for rectangular prisms to use tesseroids (spher-

ical prisms). One of the difficulties of this approach is that the forward problem for

a tesseroid must be solved numerically. Two alternatives proposed in the literature

to the numerical solution are Taylor series expansion (GROMBEIN et al., 2013;

HECK e SEITZ, 2007) and the Gauss-Legendre Quadrature (ASGHARZADEH

et al., 2007). Numerical experiments by WILD-PFEIFFER (2008) suggest that the

Gauss-Legendre Quadrature (GLQ) offers superior results. However, the GLQ suf-

fers from numerical instability when the computation point is close to the tesseroid

(ASGHARZADEH et al., 2007). To overcome the numerical instability, LI et al.

(2011) proposed an adaptive discretization algorithm which was later improved upon

by UIEDA et al. (2016).

In any gravity inversion for estimating the relief of an interface, two hyper-

parameters control the inversion results: the density-contrast between the two media

and the reference level around which the interface undulates. The reference level is

the constant depth of the Normal Earth Moho in the case of the anomalous Moho.

For regularized inversions, an additional hyper-parameter is the regularization pa-

rameter that balances the relative importance between the data-misfit measure and

the regularizing function. The two most commonly used methods for estimating

the regularization parameter are the L-curve criterion and Generalized Cross Val-
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idation (GCV). FARQUHARSON e OLDENBURG (2004) provide for a thorough

comparison of both methods. Estimating the density-contrast in a sedimentary

basin context has been tackled by SILVA et al. (2006) and MARTINS et al. (2010)

when the basement depth is known at a few points. To the authors’ knowledge no

attempt has been made to estimate the reference level.

We present a non-linear gravity inversion to estimate the Moho depth in a spher-

ical Earth approximation. Our method is based on the SILVA et al. (2014) Gauss-

Newton formulation of the method of BOTT (1960). We use tesseroids to discretize

the anomalous Moho and the adaptive discretization algorithm of UIEDA et al.

(2016) for the forward modeling. The stability of the inversion is achieved through

smoothness regularization. In order to maintain the computational efficiency of

Bott’s method, we exploit the sparse nature of all matrices involved in the computa-

tions. We employ a variant of GCV known as hold-out cross-validation (KIM, 2009)

to estimate the regularization parameter. Additionally, we estimate the density-

contrast and reference level simultaneously in a second cross-validation. Similarly

to SILVA et al. (2006) and MARTINS et al. (2010), this cross-validation procedure

uses knowledge of the Moho depths at certain points. Finally, we apply the pro-

posed method to estimate the Moho depth for South America using gravity data

from the GOCO5S model (MAYER-GUERR et al., 2015) and the seismological data

of ASSUMPÇÃO et al. (2013).

4.3 Methodology

In potential field methods, we must isolate the target anomalous density distribution

before modeling and inversion. In our case, the target is the relief of the real Moho

undulating around a reference Moho. We do this by removing all other effects from

the gravity observations. The first correction is to remove the scalar gravity of an

ellipsoidal reference Earth (the Normal Earth), hereafter denoted as γ. This effect is

calculated on the same point P where the gravity observation was made (Fig 4.1a-b).

γ(P ) is calculated using the closed-form solution presented by LI e GÖTZE (2001).

The difference between the observed gravity at point P (g(P )) and Normal gravity

at the same point is known as the gravity disturbance,

δ(P ) = g(P )− γ(P ). (4.1)

The disturbance contains only the gravitational effects of density distributions

that are anomalous with respect to the Normal Earth (see Fig. 4.1c). This includes

all masses above the surface of the ellipsoid (the topography), the mass deficiency of

the oceans, the mass deficiency of sedimentary basins, crustal sources (e.g., igneous
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intrusions, lateral density changes, etc), heterogeneities below the upper mantle,

and the effect of the difference between the real Moho topography and the Moho of

the Normal Earth.

To estimate the anomalous Moho relief from gravity data, we must first isolate its

gravitational attraction. Thus, all other gravitational effects must be either removed

or assumed negligible. Here, we will remove the gravitational effect produced by

the known topography and ocean masses to obtain the full Bouguer disturbance

(Fig 4.1d),

δbg(P ) = δ(P )− gtopo(P ). (4.2)

We will also remove the gravitational effect of know sedimentary basins but as-

sume that the effects of other crustal and mantle sources are negligible. Thus, the

only effect left will be that of the anomalous Moho relief (Fig 4.1e). The gravita-

tional attraction of the topography, oceans, and basins are calculated in a spherical

Earth approximation by forward modeling using tesseroids (Fig. 4.2). The tesseroid

effects are calculated numerically using Gauss-Legendre Quadrature (GLQ) inte-

gration (ASGHARZADEH et al., 2007). The accuracy of the GLQ integration is

improved by the adaptive discretization scheme of UIEDA et al. (2016).

4.3.1 Parametrization and the forward problem

We parameterize the forward problem by discretizing the anomalous Moho into a

grid of Mlon ×Mlat = M juxtaposed tesseroids (Fig 4.1f). The true (real Earth)

Moho varies in depth with respect to the Moho of the Normal Earth. Hereafter we

will refer to the depth of the Normal Earth Moho as zref (see Fig. 4.1b). If the true

Moho is above zref , the top of the kth tesseroid is the Moho depth zk, the bottom

is zref , and the density-contrast (∆ρ) is positive (red tesseroids in Fig 4.1f). If the

Moho is below zref , the top of the tesseroid is zref , the bottom is zk, and ∆ρ is

negative (grey tesseroids in Fig 4.1f).

Considering that the absolute value of the density-contrasts of the tesseroids is a

fixed parameter, the predicted gravity anomaly of the Moho is a non-linear function

of the parameters zk, k = 1, . . . ,M ,

di = fi(p), (4.3)

in which di is the ith element of the N -dimensional predicted data vector d, p is

the M -dimensional parameter vector containing the M Moho depths (zk), and fi is

the ith non-linear function that maps the parameters onto the data. The functions

fi are the radial component of the gravitational attraction of the tesseroid Moho
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Figure 4.1: Sketch of the stages in gravity data correction and the discretization of
the anomalous Moho relief using tesseroids. (a) The Earth and the measured grav-
ity at point P (g(P )). (b) The Normal Earth and the calculated normal gravity at
point P (γ(P )). zref is the depth of the Normal Earth Moho. (c) The gravity distur-
bance (δ(P )) and the corresponding density anomalies after removal of the normal
gravity: topography, oceans, crustal and mantle heterogeneities, and the anomalous
Moho. (d) The Bouguer disturbance (δbg(P )) after topographic correction and the
remaining density anomalies. (e) All density anomalies save the anomalous Moho
are assumed to have been removed before inversion. (f) The discretization of the
anomalous Moho in tesseroids. Grey tesseroids will have a negative density contrast
while red tesseroids will have a positive one.
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Figure 4.2: Sketch of a tesseroid (spherical prism) in a geocentric coordinate system
(X, Y, Z). Observations are made at point P with respect to it’s local North-oriented
coordinate system (x, y, z). After UIEDA (2015).

model.

4.3.2 Inverse problem

We wish to estimate the parameter vector p from a set of observed gravity data do.

The least-squares estimate is the one that minimizes the data-misfit function

φ(p) = [do − d(p)]T [do − d(p)]. (4.4)

Function φ(p) is non-linear with respect to p. Thus, we can determine its min-

imum using gradient-based iterative optimization methods like Gauss-Newton or

Steepest Descent. Such methods start from an initial approximation to the model

parameter vector p0 and estimate a parameter perturbation vector ∆p0. The per-

turbation vector is used to update p0 to p1 = p0 +∆p0. This procedure is repeated

until a minimum of function φ(p) (Eq. 4.4) is reached.

For the Gauss-Newton method, the parameter perturbation vector at the kth

iteration ∆pk is obtained by solving the linear system

Hk∆pk = −∇φk, (4.5)

in which ∇φk and Hk are, respectively, the gradient vector and the Hessian matrix
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of φ(p).

The gradient vector and the Gauss-Newton approximation of the Hessian matrix

of φ(p) are, respectively,

∇φk = −2AkT [do − d(pk)], (4.6)

and

Hk ≈ 2AkTAk, (4.7)

in which Ak is the N ×M Jacobian or sensitivity matrix whose elements are

Akij =
∂fi
∂pj

(pk). (4.8)

4.3.3 Regularization

Non-linear gravity inversions for estimating the relief of an interface separating two

media (like the Moho) are ill-posed and require additional constraints in the form

of regularization (SILVA et al., 2001). A common approach is to use the first-order

Tikhonov regularization (TIKHONOV e ARSENIN, 1977) to impose smoothness on

the solution. The cost function for smoothness regularization is given by

θ(p) = pTRTRp, (4.9)

where R is an L ×M finite-difference matrix representing L first-order differences

between adjacent tesseroids.

To transform the ill-posed inverse problem into a well-posed one via Tikhonov

regularization, we adopted the well-established procedure of formulating a con-

strained inverse problem that is solved by minimizing an unconstrained goal function

Γ(p) = φ(p) + µθ(p), (4.10)

in which µ is the regularization parameter that controls the balance between fitting

the observed data and obeying the smoothness constraint imposed by the regular-

izing function θ(p) (Eq. 4.9).

The goal function Γ(p) is also non-linear with respect to p and can be minimized

using the Gauss-Newton method. The gradient vector and Hessian matrix of the

goal function are, respectively,

∇Γk = −2AkT [do − d(pk)] + 2µRTRpk, (4.11)

and
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Hk = 2AkTAk + 2µRTR. (4.12)

At the kth iteration, the parameter perturbation vector ∆pk is obtained by

solving the linear equation system

[
AkTAk + µRTR

]
∆pk = AkT [do − d(pk)]− µRTRpk. (4.13)

Estimating the Moho depths using the above equations is computationally costly

because of two main factors: (1) the evaluation and storage of the dense N ×M

Jacobian matrix Ak and (2) the solution of the resulting M ×M equation system

(not required for Steepest Descent). In practice, the derivatives in the Jacobian

(Eq. 4.8) are often calculated through a first-order finite-difference approximation.

Thus, evaluating Ak requires 2 × M × N forward modeling operations for each

iteration of the gradient descent algorithm. These computations are performed for

each iteration of the optimization of the goal function Γ(p).

4.3.4 Bott’s method

BOTT (1960) developed an efficient method to determined the depth of the base-

ment of a sedimentary basin from gravity observations. The method requires data

on a regular grid of Nx × Ny = N observations. The basement relief is then dis-

cretized into an equal grid of Mx×My = M elements with Mx = Nx and My = Ny.

Bott’s iterative method starts with an initial approximation of the basement depths

p0 equal to the null vector. The method updates the approximation by calculating

a parameter perturbation vector ∆pk using the formula

∆pk =
do − d(pk)

2πG∆ρ
, (4.14)

in which G is the gravitational constant and ∆ρ is the contrast between the density

of the sediments and the reference density. The iterative process stops when the

inversion residuals rk = do − d(pk) fall below the assumed noise level of the data.

SILVA et al. (2014) showed that Bott’s method can be formulated as a special

case of the Gauss-Newton method (Eq. 4.5) by setting the Jacobian matrix (Eq. 4.8)

to

A = 2πG∆ρI, (4.15)

where I is the identity matrix. In this framework, Bott’s method uses a Bouguer

plate approximation of the gravitational effect of the relief, di = 2πG∆ρzi. The

derivative of di with respect to the parameter zi is 2πG∆ρ, thus linearizing the Ja-
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cobian matrix. However, the non-linearity of the predicted data d(pk) is preserved.

One of the advantages of Bott’s method over the traditional Gauss-Newton or

Steepest Descent is the elimination of the computation and storage of the dense

Jacobian matrix Ak. Furthermore, Bott’s method also does not require the solution

of equation systems. However, a disadvantage of Bott’s method is that it suffers

from instability (SILVA et al., 2014). A common approach to counter this issue is

to apply a smoothing filter after the inversion to the unstable estimate, as in SILVA

et al. (2014).

4.3.5 Regularized Bott’s method in spherical coordinates

We propose a regularized version of Bott’s method to invert gravity data for esti-

mating the depth of the Moho in spherical coordinates. To adapt Bott’s method

to spherical coordinates, we replace the right-rectangular prisms in the forward

modeling (d(pk) in Eq. 4.14) with tesseroids. The tesseroid forward modeling uses

the adaptive discretization algorithm of UIEDA et al. (2016) to achieve accurate

results. Furthermore, our formulation maintains the regularized solution for the

Gauss-Newton method (Eq. 4.13) but replaces the full Jacobian matrix with the

Bouguer plate approximation (Eq. 4.15). Here, the Jacobian matrix is a diagonal

matrix whose elements are invariant along successive iterations. Using this approxi-

mation eliminates the cost of computing and storing the full Jacobian matrix Ak at

each iteration (Eq. 4.8). Matrix arithmetic operations can be performed efficiently

by taking advantage of the sparse nature of matrices A and R (respectively, Eq. 4.15

and 4.9). The same is true for solving the equation system in the Gauss-Newton

method (Eq. 4.13). However, the computational cost of forward modeling is still

present. Particularly, forward modeling using tesseroids is more computationally

intensive than using right-rectangular prisms because of the numerical integration

and adaptive discretization (UIEDA et al., 2016). We show later in this article

that sparse matrix multiplications and solving the sparse linear system in Eq. 4.13

account for less than 0.1% of the computation time required for a single inversion.

Hence, by employing the use of sparse matrices, our formulation retains the effi-

ciency of Bott’s method while stabilizing the solution through the well established

formalism of Tikhonov regularization.

4.3.6 Estimating the inversion hyper-parameters

Parameters that influence the inversion result but are not estimated directly in the

inversion are known as hyper-parameters. In the case of our regularized Moho depth

inversion, the hyper-parameters are the regularization parameter µ (Eq. 4.10), the

Moho density-contrast ∆ρ (Eq. 4.15), and the depth of the Normal Earth Moho, or
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Figure 4.3: Sketch of a data grid separated into the training (open circles) and
testing (black dots) data sets. The training data set is still displayed on a regular
grid but with twice the grid spacing of the original data grid.

reference level, zref (Fig. 4.1b).

We estimate these hyper-parameters in two steps. First, we assume fixed val-

ues for zref and ∆ρ and perform a cross-validation procedure (HANSEN, 1992) to

estimate an optimal value for µ. Our investigations suggest that the optimal value

of µ does not depend on the particular values of zref and ∆ρ used. Second, we

use the estimated µ to perform a second cross-validation procedure to estimate zref

and ∆ρ. The outcome of both cross-validations is not only the values of the three

hyper-parameters but the final estimated Moho depths.

Estimating the regularization parameter

The regularization parameter µ controls how much smoothness is applied to the

inversion result. An optimal value of µ will stabilize and smooth the solution while

not compromising the fit to the observed data. Two widely used methods to estimate

an optimal µ are the L-curve criterion and cross-validation (HANSEN, 1992). Here,

we will adopt the hold-out method of cross-validation (KIM, 2009). The hold-out

method consists of splitting the observed data set into two independent parts: a

training set doinv and a testing set dotest. The training set is used in the inversion

while the testing set is kept back and used to judge the quality of the chosen value

of µ. For a value of the regularization parameter µn, the training set is inverted

using µn to obtain an estimate p̂n. This estimate is used to calculate predicted data
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on the same points as the testing set via forward modeling

dntest = f(p̂n). (4.16)

The metric chosen to evaluate µn is the mean square error (MSE) of the misfit

between the observed and predicted testing data sets,

MSEn =
‖dotest − dntest‖2

Ntest

, (4.17)

in which Ntest is the number of data in the testing set. The optimal value of µ will

be the one that minimizes the MSE, i.e. the one that best predicts the testing data.

We emphasize that the inversion is performed on the training data set only.

The algorithm for the hold-out cross-validation is summarized as follows:

1. Divide the observed data into the training (doinv) and testing (dotest) sets.

2. For each µn ∈ [µ1, µ2, . . . , µNµ ]:

(a) Estimate p̂n by inverting the training set doinv.

(b) Use p̂n to calculate the predicted testing set dntest using Eq. 4.16.

(c) Calculate the mean square error MSEn using Eq. 4.17.

3. The final solution is the p̂n corresponding to the smallest MSEn.

The separation of the training and testing data sets is commonly done by taking

random samples from the full data set. However, we cannot perform the separation

in this way because Bott’s method requires data on a regular grid as well as having

model elements directly below each data point. Thus, we take as our training set

the points from the observed data grid that fall on a similar grid but with twice the

grid spacing (open circles in Fig. 4.3). All other points from the original data grid

make up the testing data set (black dots in Fig. 4.3). This separation will lead to a

testing data set with more points than the training data set. A way to balance this

loss of data in the inversion is to generate a data grid with half of the desired grid

spacing, either through interpolation or from a spherical harmonic model.

Estimating zref and ∆ρ

The depth of the Normal Earth Moho (zref ) and the density-contrast of the anoma-

lous Moho (∆ρ) are other hyper-parameters of the inversion. That is, their value

influences the final solution but they are not estimated during the inversion. Both

hyper-parameters cannot be determined from the gravity data alone. Estimating

zref and ∆ρ requires information that is independent of the gravity data, such as
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knowledge of the parameters at certain points. This information can be used in

a manner similar to the cross-validation described in the previous section. In this

study, we use point estimates of the Moho depth to determine the optimal values of

zref and ∆ρ. These points will generally come from seismologic studies, like receiver

functions, surface wave dispersion, and deep refraction experiments.

Let zos be a vector of Ns known Moho depths. We use the mean square error

(MSE) as a measure of how well a given inversion output p̂l,m fits the know depths.

The optimal values of zref and ∆ρ are the ones that best fit the independent known

Moho depths (i.e., produce the smallest MSE). However, the points do not necessar-

ily coincide with the model elements of the inversion. Before computing the MSE,

we interpolate p̂l,m on the known points to obtain the predicted depths zl,ms . The

MSE is defined as

MSE =
‖zos − zl,ms ‖2

Ns

. (4.18)

The algorithm for estimating zref and ∆ρ is:

1. For every combination of zref,l ∈ [zref,1, zref,2, . . . , zref,Nz ] and ∆ρm ∈
[∆ρ1,∆ρ2, . . . ,∆ρNρ ]:

(a) Perform the inversion on the training data set doinv using zref,l, ∆ρm, and

the previously estimated value of µ. The inversion output is the vector

p̂l,m.

(b) Interpolate p̂l,m on the known points to obtain the predicted depths zl,ms .

(c) Calculate the MSE between zos and zl,ms using Eq. 4.18.

2. The final solution is the p̂l,m corresponding to the smallest MSE.

A similar approach was used by SILVA et al. (2006) and MARTINS et al. (2010)

to estimate the parameters defining the density-contrast variation with depth of a

sedimentary basin. VAN DER MEIJDE et al. (2013) also had a similar methodology

for dealing with the hyper-parameters, though in a less formalized way.

4.3.7 Software implementation

The inversion method proposed here is implemented in the Python programming

language. The software is freely available under the terms of the BSD 3-clause open-

source software license. Our implementation relies on the open-source libraries scipy

and numpy (JONES et al., 2001, http://scipy.org) for array-based computations,

matplotlib (HUNTER, 2007, http://matplotlib.org) and seaborn (WASKOM

et al., 2015, http://stanford.edu/~mwaskom/software/seaborn) for plots and
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maps, and Fatiando a Terra (UIEDA et al., 2013b, http://www.fatiando.org) for

geophysics specific tasks, particularly for forward modeling using tesseroids. We use

the scipy.sparse package for sparse matrix arithmetic and linear algebra. The sparse

linear system in Eq. 4.13 is solved using the conjugate gradient method implemented

in scipy.sparse.

The computational experiments (e.g., data processing, synthetic tests, real data

application) were performed in Jupyter (formerly IPython) notebooks (PÉREZ e

GRANGER, 2007, http://jupyter.org/). The notebook files combine the source

code used to run the experiments, the results and figures generated by the code, and

rich text to explain and document the analysis.

All source code, Jupyter notebooks, data, and results can be

found at the online repository https://github.com/pinga-lab/

paper-moho-inversion-tesseroids. The repository also contains instruc-

tions for replicating all results presented here. An archived version of this

repository is also available at http://dx.doi.org/... (Note to reviewers: the

archived version will be uploaded upon publication).

4.4 Application to synthetic data

We test and illustrate the proposed inversion method by applying it to two noise-

corrupted synthetic data sets. The first one is generated by a simple Moho model

simulating the transition from a thicker continental crust to a thinner oceanic crust.

This application uses cross-validation to estimate the regularizing parameter (µ)

while assuming that the anomalous Moho density-contrast (∆ρ) and the Normal

Earth Moho depth (zref ) are known quantities. This first test is simplified in order

to investigate solely the efficiency of the inversion and the cross-validation procedure

to estimate µ. The second data set is generated by a more complex model derived

from the South American portion of the global CRUST1.0 model (LASKE et al.,

2013). This application uses cross-validation to estimate all three hyper-parameters:

µ, ∆ρ, and zref . The model and corresponding synthetic data are meant to simulate

with more fidelity the real data application.

4.4.1 Simple model

We simulate the transition from a continental-type Moho to an oceanic-type Moho

using a model composed of Mlat × Mlon = 40 × 50 grid of juxtaposed tesseroids

(a total of M = 2000 model elements). The anomalous Moho density-contrast is

∆ρ = 400 kg/m3 and the Normal Earth Moho depth is zref = 30 km. Fig. 4.4a

shows the model Moho depths where we can clearly see an eastward crustal thinning.
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Figure 4.4: A simple Moho model made of tesseroids for synthetic data application.
(a) The Moho depth of the model in kilometers. The model transitions from a deep
Moho in the right to a shallow Moho in left, simulating the transition between a
continental and an oceanic Moho. Each pixel in the pseudo-color image corresponds
to a tesseroid of the model. (b) Noise-corrupted synthetic gravity data generated
from the model shown in (a).
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Figure 4.5: Results from the inversion of the simple synthetic data. (a) The
estimated Moho depth. (b) The Moho depth residuals (difference between the true
and estimated Moho depths). (c) The gravity residuals (difference between the
observed and predicted gravity data). (d) Histogram of the gravity residuals shown
in c, with the calculated mean and standard deviation (std) of the residuals in mGal.
(e) Cross-validation curve used to determine the optimal regularization parameter
(Eq. 4.10). Both axis are in logarithmic scale. The minimum Mean Square Error
(Eq. 4.17) is found at µ = 0.00046 (red triangle). (f) Goal function value (Eq. 4.10)
per Gauss-Newton iteration showing the convergence of the gradient descent. The
y-axis is in logarithmic scale.

57



In Fig. 4.4a, each pixel in the pseudo-color image corresponds to a tesseroid of the

model.

The synthetic data were forward modeled on a regular grid ofNlat×Nlon = 79×99

points (a total of N = 7821 observations) at a constant height of 50 km. The data

were contaminated with pseudo-random noise sampled from a normal distribution

with zero mean and 5 mGal standard deviation. Fig. 4.4b shows the noise-corrupted

full synthetic data set exhibiting an eastward increase due to the simulated eastward

crustal thinning shown in Fig. 4.4a. The data grid spacing is half the grid spacing

of the tesseroid model so that, when separating the training and testing data sets

(Fig. 4.3), the training data set points will fall directly above each model element.

We separated the synthetic data into training and testing data sets following

Fig. 4.3. The training data set is a regular grid of Nlat×Nlon = 40×50 points (a total

of Ntrain = 2000). The testing data set is composed of Ntest = 5821 observations.

We used cross-validation to estimate an optimal regularization parameter (µ) from

a set of Nµ = 16 values equally spaced on a logarithmic scale between 10−6 and

10−1. We ran our regularized inversion on the training data set for each value of

µ, obtaining 16 Moho depth estimates. For all inversions, the initial Moho depth

estimate used to start the Gauss-Newton optimization was set to 60 km depth

for all inversion parameters. Furthermore, zref and ∆ρ are set to their respective

true values. Finally, we computed the mean square error (MSE, Eq. 4.17) for each

estimate and chose as the final estimated Moho model the one that minimizes the

MSE.

Fig. 4.5a shows the final estimated Moho depth after cross-validation. The recov-

ered model is smooth, indicating that the cross-validation procedure was effective in

estimating an optimal regularization parameter. Fig. 4.5b shows difference between

the true Moho depth (Fig. 4.4a) and the estimated Moho depth. The differences

appear to be semi-randomly distributed with a maximum coinciding with a short-

wavelength feature in the true model. The maximum and minimum differences are

approximately 2.19 and -2.13 km, respectively. Fig. 4.5c shows inversion residuals,

defined as the difference between the observed and predicted data (in mGal). The

largest residual (in absolute value) coincides with the largest difference between the

true model and the estimate. The inversion residuals are normally distributed, as

shown in Fig. 4.5d, with 0.02 mGal mean and a standard deviation of 3.63 mGal.

The cross-validation curve in Fig. 4.5e shows a clear minimum MSE at µ = 0.00046

(indicated by the red triangle). Fig. 4.5f shows the convergence of the Gauss-Newton

optimization in eight iterations.

We also investigated the computation time spent in each section of the inversion

process using a source code profiler. The profiler measures how much time is spent

inside each function during the execution of a program. We ran the profiler on a
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Table 4.1: Time spent on each function during a single inversion of simple synthetic
data. The inversion was performed on a laptop computer with a Intel(R) Core(TM)
i7-3612QM CPU @ 2.10GHz processor. The total time for the inversion was 42.133
seconds.

Function description Time (s) Percentage of total time (%)
Sparse conjugate gradient 0.021 0.050
Sparse dot product 0.007 0.017
Tesseroid forward modeling 42.059 99.824

Figure 4.6: Synthetic data of a model derived from CRUST1.0. The model is made
of tesseroids with an constant density-contrast of ∆ρ = 350 kg/m3 and assuming
a reference level of zref = 30 km. (a) The Moho depth of the model in kilometers.
Each pixel in the pseudo-color image corresponds to a tesseroid of the model. (b)
Noise-corrupted synthetic gravity data generated from the model. (c) Simulated
points where the Moho depths are known from seismological estimates (color dots).
Here, these point were obtained by interpolating the Moho depth in (a).

single inversion of the training data set using the estimated regularization parameter.

We tracked the total time spent inside each of the three functions that represent

the largest computational bottlenecks of the inversion: solving the linear system in

Eq. 4.13 using the conjugate gradient method, performing the dot products required

to compute the Hessian matrix (Eq. 4.12) and the gradient vector (Eq. 4.11), and

forward modeling to calculate the predicted data (Eq. 4.3). The profiling results

presented in Table 4.1 show that the time spent on forward modeling accounts for

approximately 99.8% of the total computation time.

4.4.2 Model based on CRUST1.0

In this test, we simulate the anomalous Moho of South America using Moho depth

information extracted from the CRUST1.0 model (LASKE et al., 2013). We con-
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Figure 4.7: Inversion results from the CRUST1.0 synthetic data. (a) Cross-
validation curve used to determine the regularization parameter (Eq. 4.10). The
minimum Mean Square Error (Eq. 4.17) is found at µ = 0.0001 (red triangle). (b)
Cross-validation results used to determine the reference level (zref ) and the density-
contrast (∆ρ). The colored contours represent the Mean Square Error (Eq. 4.18) in
km2. The minimum (red triangle) is found at zref = 30 km and ∆ρ = 350 kg/m3.
(c) The estimated Moho depth. (d) Difference between the CRUST1.0 model depths
(Fig. 4.6a) and the estimated depths. (e) Histogram of the inversion residuals (ob-
served minus predicted data). (f) Histogram of the differences between the synthetic
seismic observations (Fig. 4.6c) and the estimated depths. (g) The inversion resid-
uals. (h) Difference between the seismic and the estimated depths.
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struct a tesseroid model with Mlat × Mlon = 80 × 60 juxtaposed elements, 4800

in total, using the Moho depths shown in Fig. 4.6a. In our model, the Normal

Earth Moho is zref = 30 km and the density-contrast is ∆ρ = 350 kg/m3. We

produce the synthetic data at a constant height of 50 km and on a regular grid of

Nlat×Nlon = 159× 119 points (a total of 18921 observations). We contaminate the

synthetic data with normally distributed pseudo-random noise with zero mean and

5 mGal standard deviation (Fig. 4.6b).

The cross-validation procedure to determine ∆ρ and zref requires knowledge of

the Moho depth at certain points (zos in Eq. 4.18), usually from seismic experiments.

Thus, we must also generate synthetic seismic data about the Moho depth. We

produce such data by interpolating the Moho depth shown in Fig. 4.6a on the same

937 geographic coordinates pinpointed in the data set of ASSUMPÇÃO et al. (2013).

The resulting synthetic seismic data is shown in Fig. 4.6c.

We perform the cross-validation procedures in two parts. First, we run the

cross-validation to estimate an optimal regularization parameter (µ). The starting

estimate for all inversions is 60 km depth for all model parameters. For this cross-

validation, we keep zref and ∆ρ fixed to 20 km and 500 kg/m3, respectively. Second,

we use the estimated µ to run the cross-validation to estimate zref and ∆ρ, thus

obtaining the final estimated Moho depths. Fig. 4.7 summarizes the results from

both cross-validation runs and the final inversion results.

For the first cross-validation, we separate the synthetic data (Fig. 4.3) into a

training set with twice the grid spacing of the original data (Nlat ×Nlon = 80× 60)

and a testing set with 14,121 observations. We run the inversion for 16 different

values of µ equally spaced in a logarithmic scale between 10−7 and 10−2. For each

of the 16 estimates we compute the MSE (Eq. 4.17), shown in Fig. 4.7a as function

of µ. The optimal regularization parameter that minimizes the MSE is µ = 10−4

(red triangle in Fig. 4.7a).

In the second cross-validation, we use the estimated value of µ in all inversions.

We test seven values of zref from 20 to 35 km with 2.5 km intervals and seven values

of ∆ρ from 200 to 500 kg/m3 with 50 kg/m3 intervals. We run the inversion for

every combination of zref and ∆ρ, totaling 49 inversions. Finally, we calculate the

Mean Square Error (Eq. 4.18) for each of the 49 estimates and choose the values

of zref and ∆ρ that minimize the MSE. Fig. 4.7b shows a colored-contour map

of the MSE with a minimum (marked by the red triangle) at zref = 30 km and

∆ρ = 350 kg/m3.

Fig. 4.7c shows the final solution after both cross-validation procedures. The re-

covered model is smooth, indicating that the cross-validation procedure was effective

in estimating an optimal regularization parameter. Fig. 4.7d shows the difference

between the true Moho depths (Fig. 4.6a) and the estimated depths (Fig. 4.7c). The
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maximum and minimum differences are, respectively, 9.8 and -8.2 km. The largest

absolute differences are located along the central and northern Andes, where there is

a sharp increase in the true Moho depth (Fig. 4.6a). Positive differences (indicating

a too shallow estimate) appear along the central portion of the Andes, flanked by re-

gions of negative differences (indicating a too deep estimate) on the continental and

Pacific sides. Figs. 4.7e and g show the gravity residuals, defined as the difference

between the observed and predicted gravity data. The residuals appear normally

distributed, with 0.03 mGal mean and a standard deviation of 4.10 mGal. The

gravity residuals follow a similar, though reversed, pattern to the differences shown

in Fig. 4.7d. The largest residuals (in absolute value) are along the Andes, with

the central portion being dominated by negative residuals and flanked by positive

residuals on both sides. Figs. 4.7f and h show the differences between the synthetic

seismic data (Fig. 4.6c) and the estimated Moho depths. Once more, the largest

differences are concentrated along the Andes, particularly in the central Andes and

near Ecuador and Colombia. The differences are smaller along the Atlantic coast

of South America, with notable larger differences in a few points of northeastern

Brazil and along the Amazon river. In general, large residuals are associated with

sharp increases in Moho depth.

4.5 Application to the South American Moho

We apply the inversion method proposed here to invert for the Moho depth of the

South American continent. We follow the application of VAN DER MEIJDE et al.

(2013) but with some differences, mainly using a different data set and performing

all modeling in spherical coordinates using tesseroids. The data are corrected of

the effects of topography and sedimentary basins. Crust and mantle heterogeneities

cannot be properly accounted for in regions where information coverage is sparse

and readily accessible models are not available, like in South America and Africa.

Hence, for the purposes of this study, we will assume to be negligible all other crustal

and mantle sources, including lateral variations in density along the Moho.

4.5.1 Gravity and seismic data

The raw gravity data are generated from the satellite only spherical harmonic model

GOCO5S MAYER-GUERR et al. (2015). The GOCO5S model combines data from

15 satellites, including the complete mission data from the GOCE satellite. The data

were downloaded from the International Centre for Global Earth Models (ICGEM)

web-service (BARTHELMES e KÖHLER, 2012, http://icgem.gfz-potsdam.de/

ICGEM/)) in the form of the complete gravity field on a regular grid with 0.2◦ grid
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Figure 4.8: Gravity data for South America and the models used in the data cor-
rections. (a) The gravity disturbance (Eq. 4.1) calculated from the raw gravity data.
(b) Topography from ETOPO1. (c) Gravitational attraction of the topography cal-
culated at the observation height using tesseroids. (d) The Bouguer disturbance
(Eq. 4.2) obtained by subtracting (c) from (a). The upper (e), middle (f), and lower
(g) sediment layer thicknesses from the CRUST1.0 model. (h) The total gravita-
tional attraction of the sediment layers shown in (e), (f), and (g), calculated using
tesseroids.

63



Figure 4.9: Input data for the South American Moho inversion. (a) Sediment-
free Bouguer disturbance for South America. Obtained by subtracting the total
sediment gravitational effect (Fig. 4.8h) from the Bouguer disturbance (Fig. 4.8d).
(b) Seismological Moho depth estimates from ASSUMPÇÃO et al. (2013).
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spacing at ellipsoidal height 50 km. We calculate the gravity disturbance (δ(P )

in Eq. 4.1) by subtracting from the raw data the normal gravity of the WGS84

reference ellipsoid (γ(P )) using the formula of LI e GÖTZE (2001). Fig. 4.8a show

the calculated gravity disturbance of South America.

We remove the gravitational effect of the topography from the gravity distur-

bance by modeling the ETOPO1 digital terrain model (AMANTE e EAKINS, 2009,

http://dx.doi.org/10.7289/V5C8276M) using tesseroids (Fig. 4.8b). We used the

standard densities of 2670 kg/m3 for continents and −1630 kg/m3 for the oceans.

Fig. 4.8c shows the calculated gravitational attraction of the topographic masses at

50 km height. Fig. 4.8d shows the Bouguer disturbance (Eq. 4.2) obtained after

subtracting the topographic effect from the gravity disturbance.

The effect of sedimentary basins is removed using tesseroid models of the

three sedimentary layers present in the CRUST1.0 model (LASKE et al., 2013,

http://igppweb.ucsd.edu/~gabi/rem.html). Each sedimentary layer model in-

cludes the density of each 1◦ × 1◦ model cell. Figs. 4.8e-g show the thickness of the

upper, middle, and lower sedimentary layers, respectively. The density-contrasts of

the tesseroid model is obtained by subtracting 2670 kg/m3 from the density of each

model element. Fig. 4.8h shows the combined gravitational attraction of the sedi-

mentary basin tesseroid model. We subtract the total effect of sediments from the

Bouguer disturbance in Fig. 4.8d to obtain the sediment-free Bouguer disturbance

(Fig. 4.9a), which will be used as input for the inversion.

Fig. 4.9b shows the 937 known Moho depths (colored dots) which were estimated

from seismological data by ASSUMPÇÃO et al. (2013). This data set is used in the

cross-validation procedure.

4.5.2 Inversion and cross-validation

As in the CRUST1.0 synthetic data test (section 4.4.2), we perform the cross-

validation in two parts. First, we run the cross-validation to estimate an optimal

regularization parameter (µ). The starting estimate for all inversions is 60 km depth

for all model parameters. For this cross-validation, we keep zref and ∆ρ fixed to

20 km and 500 kg/m3, respectively. Second, we use the estimated µ to run the

cross-validation to estimate zref and ∆ρ, thus obtaining the final estimated Moho

depth model.

We split the sediment-free gravity disturbance (Fig. 4.9a) into the training and

testing data sets. The training data set is a regular grid with 0.4◦ grid spacing

(twice the spacing of the original data grid) and Nlat×Nlon = 201×151 grid points,

a total of 30,351 observations. The remaining 90,350 points compose the testing

data set. We test 16 values of the regularization parameter (µ) equally spaced on a
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Figure 4.10: Cross-validation results for the South American Moho inversion.
(a) Cross-validation to determine the regularization parameter µ (Eq. 4.10). The
minimum Mean Square Error (Eq. 4.17), shown as a red triangle, corresponds
to µ = 10−10. (b) Cross-validation to determine the reference level (zref ) and
the density-contrast (∆ρ). The colored contours represent the Mean Square Er-
ror (Eq. 4.18). The minimum (red triangle) is found at zref = 35 km and
∆ρ = 400 kg/m3.
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logarithmic scale between 10−10 and 10−2. Fig. 4.10a shows the Mean Square Error

(MSE) as a function of µ. The minimum MSE is found at µ = 10−10, the lowest

value of µ tested, suggesting that little or no regularization is required.

We proceed with the second cross-validation using µ = 10−10 in all inversions.

We test all combinations of seven values of zref , from 20 to 40 km with 2.5 km

intervals, and seven values of ∆ρ, from 200 to 500 kg/m3 with 50 kg/m3 intervals.

Fig. 4.10b shows a map of the MSE with respect to the ASSUMPÇÃO et al. (2013)

data set. The MSE has a well-defined minimum, indicated by the red triangle, at

zref = 35 km and ∆ρ = 400 kg/m3.

4.5.3 Moho model for South America

The final Moho depth model for South America is shown as a pseudo-color map

in Fig. 4.11. The model is available in the online repository that accompanies this

contribution (see section 4.3.7). Each model element is a 0.4◦ × 0.4◦ tesseroid,

represented by the pixels in the pseudo-color map.

Our model differs significantly from CRUST1.0 (Fig. 4.6a) but contains most

of the large-scale features present in the GMSA12 gravity-derived model of VAN

DER MEIJDE et al. (2013). The deepest Moho is along the central Andes, reaching

depths upward of 70 km. The oceanic areas present the shallowest Moho, ranging

approximately from 7.5 to 20 km. The Brazilian and Guyana Shields have a deeper

Moho (greater than 35 km), with the deepest portions in the area around the São

Francisco Craton and the northern border of the Parecis Basin. The Moho is shal-

lower than 35 km along the Guyana Basin, the Andean foreland basins, the Chaco

Basin, and along the centers of the Solimões, Amazonas, and Paraná Basins.

Fig. 4.12a shows the gravity residuals, defined as the difference between the

observed and predicted gravity data. Fig. 4.12b shows the differences between the

seismic-derived Moho depths of ASSUMPÇÃO et al. (2013) (Fig. 4.9b) and the

depths of our gravity-derived model (Fig. 4.11). The differences shown in Fig. 4.12b

range from approximately -23 to 23 km and have a mean of 1.18 km and a standard

deviation of 6.84 km. The gravity residuals and Moho depth differences from seismic

are smallest in the oceanic areas, southern Patagonia, and the eastern coast of the

continent. The largest gravity residuals are located along the Andes and correlate

with the deepest Moho depths. These large residuals follow a pattern of a negative

value in the center flanked by positive values to the east and west. This same pattern

is observed in the CRUST1.0 synthetic test results (Fig. 4.7). In general, larger

gravity residuals appear to be associated with sharp variations in the estimated

Moho depth. Along the Andes, large differences with seismic data are correlated

with the larger gravity residuals. Conversely, this correlation is absent from the large
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Figure 4.11: The estimated Moho depth of South America. Dotted lines represent
the boundaries between major geologic provinces (after ASSUMPÇÃO et al., 2013;
GOUTORBE et al., 2015); AD: Andean Province, AFB: Andean foreland basins,
AM: Amazonas Basin, BR: Brazilian Shield, BO: Borborema province, CH: Chaco
Basin, GB: Guyana Basin, GU: Guyana Shield, PB: Parnáıba Basin, PC: Parecis
Basin, PR: Paraná Basin, PT: Patagonia province, SF: São Francisco Craton, SM:
Solimões Basin. Solid orange lines mark the limits of the main lithospheric plates
(BIRD, 2003); AF: Africa Plate, AN: Antarctica Plate, CA: Caribbean Plate, CO:
Cocos Plate, SA: South America Plate, SC: Scotia Plate, NZ: Nazca Plate. The
solid light grey line is the 35 km Moho depth contour.
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Figure 4.12: Residuals for the estimated South American Moho depth in Fig. 4.11.
(a) Gravity residuals, defined as the difference between the observed data in Fig. 4.9a
and the data predicted by the estimate in Fig. 4.11. (b) Differences between the
seismological depth estimates of ASSUMPÇÃO et al. (2013) and our gravity-derived
Moho depth estimate. The inset in b shows a histogram of the differences along with
their calculated mean and standard deviation (std). Dotted lines mark the limits of
major geologic provinces and lithospheric plates.
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differences seen in the Guyana, Paraná, and the Solimões Basins. In the Borborema

province, northeastern Brazil, our model slightly overestimates the Moho depth.

On the other hand, our model underestimates the Moho depths in the Amazonas,

Solimões, and Paraná Basins. Particularly in the Amazonas and Solimões Basins,

where our model predicts a Moho depth of approximately 30 km, the differences

with the seismological estimates can reach 10 km or more.

4.6 Conclusions

We have developed a computationally efficient gravity inversion method in spherical

coordinates. Our method extends the Gauss-Newton formulation of Bott’s method

(SILVA et al., 2014) to use tesseroids as model elements and smoothness regular-

ization. We retain the computational efficiency of Bott’s method by taking advan-

tage of the sparse nature of all matrices involved. We employ two cross-validation

techniques to estimate the hyper-parameters of the inversion: the regularization

parameter, the Moho density-contrast, and the Normal Earth Moho depth.

The test on simple synthetic data shows that our inversion method is able to

recover a smooth Moho relief with a homogeneous density-contrast. The inversion

was not able to fully recover the shortest wavelength feature in the model, possibly

due to the smoothness constraints which tends to soften high-frequency (sharp) vari-

ations. The cross-validation Mean Square Error curve in Fig. 4.5e has a well-defined

minimum, indicating a value of the regularization parameter (µ) whose correspond-

ing estimate best predicts data that were not included in the inversion. Using this

value of µ in the inversion leads to a stable solution characterized by a smooth Moho

relief with an acceptable data misfit.

The source code profiling results presented in Table 4.1 confirm the efficiency

of the proposed method. When using sparse matrices, solving linear systems and

performing matrix multiplications together account for a mere 0.067% of the total

computation time required for a single inversion. The majority of the computation

time (99.824%) is spent on forward modeling. Thus, we are able to retain the high

computational efficiency of Bott’s method and use a classic Tikhonov regularization

formulation. This approach could, in theory, be extended to other types of regular-

ization (e.g., total variation) and misfit functions (e.g., re-weighted least squares)

already available in the literature. For example, the total variation approach used

by MARTINS et al. (2011) could potentially be implemented in a more straight

forward manner than done by SANTOS et al. (2015).

The more complex synthetic data test based on CRUST1.0 (Fig. 4.7) shows that

the cross-validation using pointwise Moho depth information is able to correctly es-

timate the density-contrast (∆ρ) and Normal Earth Moho depth (zref ). This test
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indicates that the inversion neither correctly estimates Moho depth nor adequately

fits the gravity and pointwise data when sharp variations in Moho depth occur.

This phenomenon is particularly strong in the region below the Andes. A likely

explanation is that the smoothness regularization is intrinsically unable to produce

sharp variations in Moho depth. These effects might be mitigated with the use

of sharpness-inducing regularization, like the weighted smoothness inversion (BAR-

BOSA et al., 1999b), Cauchy norm regularization (PILKINGTON, 2008; SACCHI

e ULRYCH, 1996), entropic regularization (SILVA et al., 2010), total variation reg-

ularization (MARTINS et al., 2011), or an adaptive mixed smoothness-sharpness

regularization (SUN e LI, 2014).

We applied the method proposed here to estimate the Moho depth for South

America. Our estimated Moho depth model is in accordance with previous results

by VAN DER MEIJDE et al. (2013). The model fits well the gravity and seismic

data in all oceanic regions, the central portion of the Andean foreland, Patagonia,

and coastal and central parts of Brazil. However, the model is unable to fit the

gravity and seismic data in places with sharp variations in Moho depth, particularly

below the Andes and in the boundaries of the main geotectonic provinces of the

South American Plate, like the Borborema province, the Parnaiba Basin, and the

São Francisco Craton. This might indicate that smoothness regularization should

not be applied indiscriminately to the whole model, as suggested by the CRUST1.0

synthetic data test. Another reason for the observed misfit might be the presence

of crustal or mantle density anomalies whose gravitational effects were not removed

during the data corrections. In the Guyana Basin on the coastal region of Venezuela,

along the central Amazonas and Solimões Basins, and in the Paraná Basin, our

Moho depth model is able to fit the gravity data but differs significantly from the

seismic data. MARIANI et al. (2013) and NUNN e AIRES (1988) explain these

discrepancies in the Paraná and Amazonas Basins, respectively, as high density

rocks in the lower crust. In general, differences between a gravity and a seismically

derived Moho model may indicate the presence of crustal or mantle density anomalies

that were unaccounted for in the data processing. Such locations warrant further

detailed investigation.

4.7 Online repository

The Moho depth model for South America estimated here can be down-

loaded from the online repository https://github.com/pinga-lab/

paper-moho-inversion-tesseroids. The repository also contains all data

and source code used to produce the results and figures presented here.
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Chapter 5

Conclusions

We have developed two open-source software projects that implement the modules

required for building an inversion method: forward modeling, optimization, and

regularization. We used these modules to develop a fast gravity inversion method

to estimate the depth of the crust-mantle interface (the Moho) in a spherical ap-

proximation. We then applied the proposed method to estimate the Moho depth

for South America.

The Tesseroids software is a collection of command-line programs developed in

the C programming language. The programs calculate the gravitational potential

and its first and second derivatives of a tesseroid (spherical prism) model. We im-

plemented and improved upon an adaptive discretization algorithm to guarantee the

accuracy of the computations. The adaptive discretization is controlled by a scalar

called the distance-size ratio (D). Higher values of D result in finner discretization

and vice-versa. Furthermore, we investigated the accuracy of the calculations as a

function of D. Contrary to previous assumptions, our results showed that the first

and second derivatives require finner discretization than the gravitational potential

to achieve the same accuracy level. The values of the distance-size ratio that yield

a maximum error of 0.1% are D = 1 for the gravitational potential, D = 1.5 for the

first derivatives, and D = 8 for the second derivatives. These values are included as

defaults starting in version 1.2 of the software. Previous versions of Tesseroids have

been used in published research by, for example, BRAITENBERG et al. (2011),

ÁLVAREZ et al. (2012), BOUMAN et al. (2013b), BOUMAN et al. (2013a), MAR-

IANI et al. (2013), BRAITENBERG (2015), and FULLEA et al. (2015).

Fatiando a Terra is a software library implemented in the Python programming

language. The library contains functions and classes for data processing, visualiza-

tion, inversion, and forward modeling. The inverse problems package of the library

offers generic classes for optimization and regularization. These classes can be ex-

tended and combined with the existing forward modeling functions to implement

new inversion methods. Using these tools, the amount of code required to imple-
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ment a new method is reduced, increasing the speed of the cycle of prototyping a

new algorithm, testing, and then refining it. The project has been used in schol-

arly works such as CARLOS et al. (2014), HIDALGO-GATO e BARBOSA (2015),

NICCOLI (2015), OLIVEIRA JR. et al. (2015), and BASSETT et al. (2016). To

date, the project has received contributions from nine developers in three different

countries.

We used the tesseroid forward modeling and inverse problem toolkit of Fatiando a

Terra to implement a new non-linear gravity inversion method to estimate the depth

of the Moho. The inversion method uses the Gauss-Newton formulation of Bott’s

method proposed by SILVA et al. (2014). In this formulation, the Jacobian (sensi-

tivity) matrix is approximated by a linear diagonal matrix. This eliminates the high

computational cost of calculating the full dense Jacobian matrix for every iteration

of the Gauss-Newton method. We stabilize the inverse problem through smoothness

regularization. The use of regularization required that we abandon the elimination

of linear systems of the traditional Bott’s method. However, we maintained com-

putational efficiency by taking advantage of the fact that all matrices involved are

sparse. Our benchmarks suggest that less than 0.1% of the computation time re-

quired for an inversion is spent on matrix operations and solving linear systems. We

also estimate the regularization parameter and two other hyper-parameters of the

inversion through cross-validation procedures.

The applications to synthetic data show the efficiency of the proposed inversion

method in retrieving smooth Moho depth variations. The cross-validation proce-

dures are able to correctly estimate an optimal regularization parameter, anoma-

lous Moho density-contrast, and the reference level (the depth of the Normal Earth

Moho). We applied the proposed method to estimate the Moho depth of the South

American continent. The estimated Moho depths are in agreement with previous

models and with the major tectonic provinces of the continent. Notable misfits be-

tween the observed and predicted gravity data are in the Andes, northern Venezuela,

and the Paraná, Solimões, and Amazon Basins. These regions also present a high

misfit with Moho depth estimates from seismology. Discrepancies between gravity-

derived and seismological estimates of Moho depth may indicate the presence of

other density anomalies with the crust or upper mantle. For example, MARIANI

et al. (2013) and NUNN e AIRES (1988) explain the discrepancies in the Paraná

and Amazon Basins, respectively, as high density material in the lower crust.

In conclusion, we have successfully applied the algorithms and software founda-

tion developed here to solve a geophysical inverse problem. This application demon-

strates that the same approach can be used to aid the development of new inversion

methods in the future. In addition, both software packages were successful in gain-

ing third-party users and have been applied to solve real world scientific problems.
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Fatiando a Terra, in particular, was able to gather other developers to contribute

source code to the software, enabling the continued growth of the project in the

future. We emphasize that this is only possible because the project is open-source

and freely available.
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FULLEA, J., RODRÍGUEZ-GONZÁLEZ, J., CHARCO, M., et al., 2015, “Per-

turbing effects of sub-lithospheric mass anomalies in GOCE gravity gra-

dient and other gravity data modelling: Application to the Atlantic-

Mediterranean transition zone”, International Journal of Applied Earth

77



Observation and Geoinformation, v. 35 (mar.), pp. 54–69. ISSN: 0303-

2434. doi: 10.1016/j.jag.2014.02.003.

GORDON, A. C., MOHRIAK, W. U., BARBOSA, V. C. F., 2013, “Crustal ar-

chitecture of the Almada Basin, NE Brazil: an example of a non-volcanic

rift segment of the South Atlantic passive margin”, Geological Society,

London, Special Publications, v. 369, n. 1 (jan.), pp. 215–234. ISSN:

0305-8719, 2041-4927. doi: 10.1144/SP369.1.

GOUTORBE, B., COELHO, D. L. D. O., DROUET, S., 2015, “Rayleigh wave

group velocities at periods of 6–23 s across Brazil from ambient noise

tomography”, Geophysical Journal International, v. 203, n. 2 (jan.),

pp. 869–882. ISSN: 0956-540X, 1365-246X. doi: 10.1093/gji/ggv343.

GROMBEIN, T., SEITZ, K., HECK, B., 2013, “Optimized formulas for the gravi-

tational field of a tesseroid”, Journal of Geodesy, v. 87, n. 7 (jul.), pp. 645–

660. ISSN: 0949-7714, 1432-1394. doi: 10.1007/s00190-013-0636-1.

HANSEN, P., 1992, “Analysis of Discrete Ill-Posed Problems by Means of the L-

Curve”, SIAM Review, v. 34, n. 4 (dez.), pp. 561–580. ISSN: 0036-1445.

doi: 10.1137/1034115.

HECK, B., SEITZ, K., 2007, “A comparison of the tesseroid, prism and point-

mass approaches for mass reductions in gravity field modelling”, Journal

of Geodesy, v. 81, n. 2 (fev.), pp. 121–136. ISSN: 0949-7714, 1432-1394.

doi: 10.1007/s00190-006-0094-0.

HIDALGO-GATO, M., BARBOSA, V., 2015, “Edge detection of potential-field

sources using scale-space monogenic signal: Fundamental principles”,

GEOPHYSICS, v. 80, n. 5 (jul.), pp. J27–J36. ISSN: 0016-8033. doi:

10.1190/geo2015-0025.1.

HILDEBRAND, F. B., 1987, Introduction to Numerical Analysis. New York, NY,

USA, Dover Publications. ISBN: 978-0-486-65363-1.

HUMPHREY, V., GUDMUNDSSON, L., SENEVIRATNE, S. I., 2016, “Assessing

Global Water Storage Variability from GRACE: Trends, Seasonal Cycle,

Subseasonal Anomalies and Extremes”, Surveys in Geophysics, (fev.),

pp. 1–39. ISSN: 0169-3298, 1573-0956. doi: 10.1007/s10712-016-9367-1.

HUNTER, J. D., 2007, “Matplotlib: A 2D graphics environment”, Computing in

Science & Engineering, v. 9, n. 3, pp. 90–95. doi: 10.1109/MCSE.2007.55.

78



JONES, E., OLIPHANT, T., PETERSON, P., et al., 2001. “SciPy: Open source

scientific tools for Python”. http://www.scipy.org/. Accessed August

2015.

KELLEY, C. T., 1987, Iterative Methods for Optimization. 1 edition ed. Philadel-

phia, Society for Industrial and Applied Mathematics. ISBN: 978-0-89871-

433-3.

KIM, J.-H., 2009, “Estimating classification error rate: Repeated cross-validation,

repeated hold-out and bootstrap”, Computational Statistics & Data Anal-

ysis, v. 53, n. 11 (set.), pp. 3735–3745. ISSN: 0167-9473. doi: 10.1016/j.

csda.2009.04.009.

KU, C. C., 1977, “A direct computation of gravity and magnetic anomalies caused

by 2-and 3-dimensional bodies of arbitrary shape and arbitrary magnetic

polarization by equivalent-point method and a simplified cubic spline”,

Geophysics, v. 42, n. 3, pp. 610–622. doi: 10.1190/1.1440732.

LAFEHR, T., 1991, “An exact solution for the gravity curvature (Bullard B) correc-

tion”, GEOPHYSICS, v. 56, n. 8 (ago.), pp. 1179–1184. ISSN: 0016-8033.

doi: 10.1190/1.1443138.

LASKE, G., MASTERS, G., MA, Z., et al., 2013, “Update on CRUST1.0 - A

1-degree Global Model of Earth’s Crust”. In: EGU General Assembly

Conference Abstracts, v. 15, pp. EGU2013–2658.
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