How two gravity-gradient inversion methods can be used to reveal different geologic features of ore deposit — A case study from the Quadrilátero Ferrífero (Brazil)

(2016) Dionísio Uendro Carlos, Leonardo Uieda, Valéria C. F. Barbosa


Info

Article Level Metrics

Citation

Carlos, D. U., L. Uieda, and V. C. F. Barbosa (2016), How two gravity-gradient inversion methods can be used to reveal different geologic features of ore deposit — A case study from the Quadrilátero Ferrífero (Brazil), Journal of Applied Geophysics, doi:10.1016/j.jappgeo.2016.04.011.

Related research

Papers

Theses

Open-source implementation

This paper uses the planting inversion proposed in Robust 3D gravity gradient inversion by planting anomalous densities. We used the implementation in the open-source Fatiando a Terra Python library (the fatiando.gravmag.harvester module).

Abstract

Airborne gravity gradiometry data have been recently used in mining surveys to map the 3D geometry of ore deposits. This task can be achieved by different gravity-gradient inversion methods, many of which use a voxel-based discretization of the Earth's subsurface. To produce a unique and stable solution, an inversion method introduces particular constraints. One constraining inversion introduces a depth-weighting function in the first-order Tikhonov regularization imposing a smoothing on the density-contrast distributions that are not restricted to near-surface regions. Another gravity-gradient inversion, the method of planting anomalous densities, imposes compactness and sharp boundaries on the density-contrast distributions. We used these two inversion methods to invert the airborne gravity-gradient data over the iron-ore deposit at the southern flank of the Gandarela syncline in Quadrilátero Ferrífero (Brazil). Because these methods differ from each other in the particular constraint used, the estimated 3D density-contrast distributions reveal different geologic features of ore deposit. The depth-weighting smoothing inversion reveals variable dip directions along the strike of the retrieved iron-ore body. The planting anomalous density inversion estimates a compact iron-ore mass with a single density contrast, which reveals a variable volume of the iron ore along its strike increasing towards the hinge zone of the Gandarela syncline which is the zone of maximum compression. The combination of the geologic features inferred from each estimate leads to a synergistic effect, revealing that the iron-ore deposit is strongly controlled by the Gandarela syncline.